NN AL N/

N |

/

NN N

NI-488.2
Features

Ihr Ansprechpartner /
Your Partner:
datalec e
E-Mail: info@datatec.eu
>>> WWW. datatec .eu
Mess- und Prii

uftechnik. Die Experten.

2023-02-17

1l

Authorized
Distributor

NI-488.2 Features

Contents

Programming with NI-488.2 Softwareo et 3

2 ni.com

NI-488.2 Features

Programming with NI-488.2 Software

This document explains the philosophy and structure of the National Instruments IEEE
488.2 software for personal computers. It describes the software functions used in
writing an NI-488.2 program and the actual process of developing an application
program. It also describes utility programs you can use to shorten development time.

Introduction

NI-488.2 is the National Instruments IEEE 488 software. NI-488.2 software, which has
been the de facto industry standard for many years, is a high-speed driver with utilities
that help in developing and debugging an application program. Because the NI-488.2
driver has high-level commands that automatically handle all bus management, you
do not need to learn the programming details of the GPIB hardware board or the IEEE
488.2 protocol. Low-level commands are also available for maximum flexibility and
performance.

The NI-488.2 driver was the first loadable IEEE 488 device driver for MS-DOS-based
personal computers. It is available for computer platforms including PC compatibles,
PS/2, Macintosh, Sun, DEC, HP, and Silicon Graphics, running under operating systems
such as DOS, Windows, Windows 2000/XP/Vista, Windows NT, Mac OS, 0S/2, UNIX,
Solaris, OSF/1, and IRIX. NI-488.2 programs are portable across these different
platforms. Major companies such as IBM, Tektronix, Philips, LeCroy, Howtek, Sharp,
Perkin-Elmer, Instron, Bruel & Kjaer, Hitachi Nakaworks, and Advantest all use our
NI-488.2 software to produce innovative, high-quality products. This large backing has
established NI-488.2 as the de facto industry standard.

Subroutine-Structured Driver

The NI-488.2 driver is subroutine structured. This type of driver structure includes
special subroutines already programmed by a vendor. A subroutine-structured driver
gets its name because these subroutines are called as routines or functions from the
programming language in which the application program was written. National
Instruments chose a subroutine structure for the NI-488.2 driver rather than a

© National Instruments 3

4

NI-488.2 Features

character-1/0 structure, which was chosen by some other vendors. The subroutine
structure is faster, easily handles buffered DMA transfers, and uses a structured,
hierarchical programming style familiar to users of modern programming languages.
National Instruments also offers a character-1/0 driver, because it can be helpful for
some applications.

The NI-488 driver functions have the following format:
ibfunction (ud, parameter 1list)

where ibfunction is the NI-488 function name (for example, ibrd for read, ibwrt
for write, and ibrsp for request serial poll), ud is the unit descriptor for the device or
board accessed by the function (for example, DM5008 or simply dmm for a Tektronix
digital multimeter), and parameter 1ist isthe list of arguments for the particular
ibfunction (for example, a buffer pointer and a count for ibrd and ibwrt). The
parameter list varies slightly for each programming language, but the function names
remain constant. There are more than 30 NI-488 functions to cover all IEEE 488 bus
management functions.

The NI-488.2 driver contains an additional set of routines. These NI-488.2 routines
have the following format:

routine (board, parameter list)

where routine is the NI-488.2 routine name (for example, FindLstn for Find All
Listeners), board is the board number that the routine is accessing, and parameter
1ist is the list of arguments for the particular routine. There are more than 20
NI-488.2 routines, which cover all IEEE 488.2 bus management functions.

NI-488.2 -- Structured Programming

Structured, hierarchical programs use subroutines or functions. This is a preferred and
familiar style to programmers using compiled programming languages such as Visual
Basic, C, FORTRAN, and Pascal.

NI-488 Functions

NI-488.2 software meets a wide spectrum of needs, from low-end applications to the

ni.com

NI-488.2 Features

most sophisticated tasks. NI-488.2 software has two levels of functions—high-level
functions for ease-of-use and low-level functions for maximum flexibility and
performance.

High-Level Functions

High-level functions hide the IEEE 488 protocol by automatically calling a sequence of
NI-488.2 low-level functions. High-level functions access a specific device and take
care of the addressing and bus management protocol for that device. NI-488.2
software includes a complete set of high-level functions. You can also build your own
customized high-level functions. The high-level functions can combine several GPIB
operations, such as sending interface clear (IFC) or remote enable (REN), into one
subroutine.

Low-Level Functions

Low-level calls give you the flexibility to make one command control multiple devices
or to change the address status of instruments. If you understand the GPIB protocol,
you can use low-level functions to control the interface board and the GPIB directly.

The following table shows a Visual Basic language comparison of the number of low-
level functions that make up one high-level function used to serial poll a specified
driver.

Table 1. Comparison of NI-488 High-Level and Low-Level Functions in Visual Basic
High-Level Function Low-Level Function
cmd$ = "?" + chr$(&H18) + "G!"
CALL ibcmd (gpib0%, cmd$)
status$ = space$ (1)
CALL ibrsp (dvm%, status%)
CALL ibrd (gpib0%, statuss$)

cmd$ = " ?" + chr$ (&H19)

CALL ibcmd (gpib0%, cmd$)

© National Instruments 5

6

NI-488.2 Features

NI-488.2 Routines

The NI-488.2 routines consist of high-level routines and low-level routines. More
accurately, these routines are in the following groups:

« Simple Device |/O
Multiple Device I/O
Multiple Device Control
Bus Management
Low-Level I/O

You can use the NI-488.2 routines with compliant 488.2-compatible devices to achieve
greater predictability of instrument behavior and programming correctness, and
increased programming similarity between the instruments from different
manufacturers.

Language Interface

When you use functions and routines designed by National Instruments to access the
NI-488.2 driver, you must define them to the programming language you are using.
Each application program includes a declaration file, which defines the proper use of
parameters for the functions and routines (such as vbib-32 .bas for Visual Basic,
windecl.h for Windows C programs, and dec1-32.h for Windows 95 C programs).

Because NI-488.2 bypasses operating system entry points, the program must also
interface with the device driver. To interface the program with the device driver, you
must use a language interface written by National Instruments. This language interface
is specific to a particular programming language. It can link to a compiled language
program or load into an interpretive language program. The language interface first
locates and opens the NI-488.2 driver. Then, it maps the subroutine calling
conventions of the programming language to the calling conventions expected by the
NI-488.2 driver. This process of including a declaration file and linking files to the
compiled program is familiar to compiled language users. Interpretive language users,
however, must load the language interface at the beginning of a program.

The following table contains a complete list of the Visual Basic NI-488 functions, their
parameters, and a short description of each.

ni.com

CALL Syntax

ibask (ud%, option%, wvalue%)
ibcac

ibclr (ud%)

ibcemd (ud%, cmdbuf$)

ibcmda (ud%, cmdbuf$)

ibconfig (ud%, option%, value%)
ibdev (BdIndx%, pad$%, sad$%, tmo%,
eot%, eos%, ud$%)

ibdma (ud%,v%)

ibeos (ud%,v%)

ibeot (ud%,v%)

ibfind (udname$, ud%)

ibgts (ud%,v%)

o\

)

ibist (ud%,v

iblines (ud%, clines%)
ibln (ud%,pad%,sad%,listen%)

ibloc
ibonl (ud%,v%)
ibpad (ud%,v%)
ibpct (ud%)

ibppc (ud%,v%)

ibrd (ud%, rdbufs$)
ibrda (ud%, rdbufs)
ibrdf (ud%, flname$)
ibrpp (ud%,ppr%)

ibrsc (ud%,v%)

ibrsp

NI-488.2 Features

Description
Checks current configuration parameters
Become Active Controller
Clear specified device
Send commands from string
Send commands asynchronously from string

Set current configuration parameters
Open and initialize a device descriptor

Enable/disable DMA

Change/disable EOS mode
Enable/disable END message

Open device and return unit descriptor
Go from Active Controller to standby
Set/clearist

Returns status of the GPIB control lines
Check for the presence of a device on the bus
Go to local

Place device online/offline

Change primary address

Pass control

Parallel poll configure

Read data to string

Read data asynchronously to string
Read data to file

Conduct a parallel poll
Request/release system control

Return serial poll byte

© National Instruments 7

8

CALL Syntax
ibrsv (ud%,v%)
ibsad (ud%,v%)
ibsic (ud%)
ibsre (ud%,v%)
ibstop (ud%)
ibtmo (ud%,v%)
ibtrg (ud%)
ibwait (ud%,mask$%)
ibwrt (ud%, wrtbufs$)
ibwrta (ud%, wrtbufs$)
ibwrtf (ud%, flnames$)

NI-488.2 Features

Description
Request service
Change secondary address
Send interface clear
Set/clear remote enable line
Abort asynchronous operation
Change/disable time limit
Trigger selected device
Wait for selected event
Write data from string
Write data asynchronously from string

Write data from file

The following table contains a complete list of the Visual Basic NI-488.2 routines, their

parameters, and a short description of each.

Table 2. Visual Basic NI-488.2 Routines

ibstop (ud%)

ibtmo (ud%, v%)

ibtrg (ud%)

ibwait (ud%, mask$%)

ibwrt (udé&, sstr, cnté&)

ibwrta (udé&, sstr, cnté&)

ibwrtf (ud%, flname$)

AllSpoll (board$,
resultlist%(0))

addresslist%(0),

DevClear (board%, address%)

DevClearlist (board%, addresslist%(

EnableLocal (board%, addresslist% (0

ni.com

Abort asynchronous operation
Change/disable time limit

Trigger selected device

Wait for selected event

Write data from string

Write data asynchronously from string

Write data from file
Serial poll all devices

Clear a single device

0)) Clear multiple devices

Enable operations from the front of a

)) device

NI-488.2 Features

Enable remote GPIB programming of
EnableRemote (board%, addresslist%(0)) prog &

devices
FindLstn
(board%, addresslist% (0), resultlist%(0), Find all Listeners
1limit$%)
FindRQS (board%, addresslist%(0), Determine which device is requesting
result%) service

Pass control to another device with

P Control (b d% dd % .
assControl (boards, addresss) Controller capability
PPoll (board%, result%) Perform a parallel poll

PPollConfig (board%, address%,

. Configure a device for parallel polls
dataline%, sense%)

PPollUnconfig (board%, addresslist%(0)) Unconfigure devices for parallel polls

RcvRespMsg (board%, datas, Read data bytes from already addressed
termination%) device

ReadStatusByte (board%, address%, Serial poll a single device to get its status
result%) byte

Receive (boards, addresss, datas, Read data bytes from a GPIB device

termination$%)
Prepare a particular device to send data
ReceiveSetup (board%, address%) bytes and prepare the GPIB board to read
them
ResetSys (board%, addresslist%(0)) Initialize a GPIB system on three levels

Send (b ds, add %, datas, . <
end (boar acaress atas Send data bytes to a single GPIB device

eotmode%)
SendCmds (board%, commands$) Send GPIB command bytes

Send data bytes to already addressed

SendDataBytes (board%, data$, eotmode%) devices

Clear the GPIB interface functions with

SendIFC (board%) IEC

SendList (board%, addresslist%(0),

Send data bytes to multiple GPIB devices
data$, eotmode%)

SendLLO (board%) Send the local lockout message to all

© National Instruments 9

NI-488.2 Features

devices

Prepare particular devices to receive data

SendSetUp (board%, addresslist%(0)) bytes

Place particular devices in the Remote

SetRWLS (b ds, dd list% .
© (boar addresslists) with Lockout state

Determine the current state of the SRQ

TestSRQ (board%, result$) line

TestSys (board%, addresslist%,

, Cause devices to conduct self-tests
resultlist% (0))

Trigger (board%, address%) Trigger a single device
Triggerlist (board%, addresslist%(0)) Trigger multiple devices

Wait until a device asserts Service

WaitSRQ (board%, result$) Request

Performance

With NI-488.2 software, a separate routine or function call uniquely identifies the
subroutine. You can use the ibfind function to return a descriptor the operating
system defines for each GPIB interface board and device in a system. By using NI-488
functions or NI-488.2 routines to directly access a particular board or device, you can
bypass the operating system and reduce overhead. The following figure compares the
performance of a character-1/0 driver, our NI-488 driver running on the NEC uPD7210
Controller chip, our NI-488.2 driver running on the NAT4882™ Controller chip, and our
NI-488.2 driver running on the TNT4882C Controller chip.

10 ni.com

NI-488.2 Features

Figure 1. NI-488 Throughput Comparison

‘o MI-488 Throughput Comparison (1 KB Transfers)

1.0 .RI-.":‘I:JH I:‘Wr =1

Largear number is Daller

hroughput (Moytess)

Character 110 MI-488 and MI-488.2 and MI-488_2 and
MEC pFO7T210 NAT4582/ Turbo 488 THT4R820

GPIB hardware interfaces equipped with the NAT4882 and Turbo488™ ASICs can
transfer data at rates exceeding 1 Mbytes/s for reads and writes. TNT4882C-based
interfaces can attain IEEE 488.1 transfer rates of 1.5 Mbytes/s and HS488 transfer rates
up to 8 Mbytes/s. These chips increase efficiency by moving time-consuming software
driver functions into hardware. The NAT4882 and Turbo488 are featured on boards for
ISA, Mlcro Channel, Macintosh LC bus, and DEC TURBOchannel. The TNT4882C is
featured on boards for PCl, ISA, EISA, PC Card (PCMCIA), Macintosh NuBus, Sun SBus,
and NEC bus.

Buffered Transfers

Buffered data transfers are easy to accomplish with a subroutine-structured driver. A
buffered data transfer is a transfer of many data values between a device and
computer memory. This capability is important for instruments that deal with large
arrays of data, such as digitizers and spectrum analyzers. Digitizers are the fastest
growing instruments, particularly with the high-powered analysis capabilities of
modern PCs and software.

The NI-488 software makes buffered data transfers easy and transparent. The software
can accomplish these transfers with only one command. This is done by specifying one
of the parameters of an NI-488 function or NI-488.2 routine as an array, string, or file.
Then data is read into or written from that particular array, string, or file. Buffered data
transfers are much easier to program in instruments with a subroutine-structured
driver than with a character-1/0 driver. The following table illustrates this point.

© National Instruments 1 1

NI-488.2 Features

Table 3. Comparison of the NI-488.2 Driver Code and Character-1/O Driver Code
NI-488.2 Driver Character-1/0 Driver

DEF FNgetwd (addr)=PEEK (addr) +

CALL ibrd (scope%,wvfrm$) 256 * PEEK (addr + 1)
ds% = VARSEG (wvfrm$)

or rdesc = 0
rdesc = VARPTR (wvfrm$)
CALL Receive (0,1,wvfrm$,STOPend) PRINT #1, "ENTER 01 #1024 BUFFER";
ds%;":";FNgetwd (rdesc + 2);"DMA"

NI-488.2 Program Examples

The example programs shown below use high-level (device) functions and routines
that automatically handle the details of GPIB protocol. These programs first configure
the voltage type, voltage range, and speed of a multimeter, then perform a serial poll,
take a voltage reading, and print the reading.

Using NI-488 Functions Using NI-488.2 Routines

Visual Basic Visual Basic

Private Sub Commandl Click ()

VOLTS = SPACES$ (13)

CALL IBFIND ("DMM", DMM%)

CALL IBWRT (DMM%, "*RST; VDC; RATE F",
17)

CALL IBRSP (DMM%, SPR%)

CALL IBRD (DMM%, VOLTS, 100)
TextDisplay = VOLTS$

Private Sub Commandl Click ()

VOLTS$ = SPACES$ (13)

CALL Send (0,1, "*RST; VDC; RATE F,
MEAS1?", NLend)

CALL ReadStatusByte (0, 1, spr%)

CALL Receive (0, 1, VOLTS$, STOPend)

TextDisplay = VOLTS$

End
End
C C
#include <stdio.h> #include <stdio.h>
#include "decl-32.h" #include "decl-32.h"
main () { main () {

12 ni.com

NI-488.2 Features

Using NI-488 Functions Using NI-488.2 Routines

int spr;

char volt [13];

Send (0, 1, "FORO0S2", 6, NLEND);

ReadStatusByte (0, 1, &spr):;

Receive (0, 1, wvolt, 13,
STOPend) ;

printf ('%s", volt);

}

char int dmm; spr; volt [13];
dmm = ibfind ("DMM") ;

ibwrt (dmm, "FORO0S2", 6);
ibrsp (dmm, &spr);

ibrd (dmm, wvolt, 13);

printf ("%s", volt);

}

After compiling these programs, you must link the object code with the appropriate
NI-488 language interface to create your stand-alone executable program.

Utilities

The NI-488 software includes several useful utilities designed to shorten development
time. These utilities can help you quickly develop and debug your application
programs.

Interactive Control Program

With the Interface Bus Interactive Control (IBIC) program, you can communicate with
GPIB devices through NI-488 functions and NI-488.2 routines. This program is a
powerful development and debugging tool. You can use it to learn the NI-488 functions
and routines, learn the device-specific messages of an instrument, debug an
application program one step at a time, or locate a malfunctioning device on the GPIB.

NI-488.2 Communicator

You can use the NI-488.2 Communicator to verify that you can establish simple
communication with your GPIB instrument. This is an interactive utility that allows you
to write commands to your instrument and read responses back from your instrument.
It provides detailed information about the status of the NI-488.2 calls and you can use
it to print sample C source code that performs a simple query to a GPIB instrument.

Configuration Utility

© National Instruments 13

14

NI-488.2 Features

The configuration utility is a menu-driven program in which you can customize
software parameters such as the device name, address, message termination mode,
and timeout limit for use with functions and routines. With a configuration utility, you
do not have to specify these parameters in each program and you can use names and
mnemonics in your program to reference actual GPIB devices.

NI 1/O Trace

Using NI1/0 Trace, the user can “trace” driver calls. This feature is extremely useful for
application debugging. The NI 1/O Trace records all device and board level calls with a
time stamp. Developers can easily and efficiently detect errors and timing issues in
their applications. This utility further differentiates National Instruments GPIB device
functionality and usability above all others.

GPIB Analyzer

With GPIB Analyzer, you can analyze the physical bus activity by observing all of the
GPIB handshake signals, interface management signals, and data signals. This
capability is useful for advanced debugging where NI 1/O Trace alone cannot resolve
the problems. In addition, you can analyze bus timing issues in much more detail. The
GPIB Analyzer software is available with only NI GPIB Analyzer boards (PCle/PCI-
GPIB+). No other GPIB supplier provides similar functionality.

Diagnostic Programs

All NI products include hardware and software diagnostic programs to help you check
for hardware conflicts and verify proper software installation.

Summary

The NI-488.2 software is designed for high performance and maximum flexibility. Many
options are available with the NI-488.2 software. You do not need to learn the
programming details of the GPIB interface board or IEEE 488.2 protocol. If you are
already familiar with the IEEE 488.2 protocol, NI-488.2 software gives you low-level
functionality, thereby giving you maximum flexibility and performance. This document
has described the NI-488.2 software features you can use to achieve performance and
minimize development time.

ni.com

NI-488.2 Features

Related Links

Products and Services: GPIB, Serial, and Ethernet

© 2026 National Instruments Corporation. © National Instruments 15

http://www.ni.com/en-us/shop/select/gpib-serial-and-ethernet-category#facet:&productbeginindex:0&orderby:&pageview:grid&pagesize:

	Programming with NI-488.2 Software
	Introduction
	Subroutine-Structured Driver
	NI-488.2 -- Structured Programming
	Performance
	Buffered Transfers
	NI-488.2 Program Examples
	Utilities
	Summary
	Related Links

