PXIe-5108 Specifications

Ihr Ansprechpartner / Your Partner:

dataTec AG

E-Mail: info@datatec.eu >>> www.datatec.eu

2025-12-17

Contents

PXIe-5108 Specifications	-	>
r xie-3106 Specifications	-)

PXIe-5108 Specifications

PXIe-5108 Specifications

These specifications apply to the PXIe-5108 with 4 channels and the PXIe-5108 with 8 channels.

Revision History

Version	Date changed	Description
379215A-01	August 2025	Initial release.

Looking For Something Else?

For information not found in the specifications for your product, such as operating instructions, browse *Related Information*.

Related information:

- User Manual
- Software and Driver Downloads
- Dimensional Drawings
- Product Certifications
- Letter of Volatility
- Discussion Forums
- NI Learning Center

Definitions

Warranted Specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Specifications account for measurement uncertainties, temperature drift, and aging. Specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under

stated operating conditions but are not covered by the model warranty.

- Typical—describes the performance met by a majority of models.
- **Nominal**—describes an attribute that is based on design, conformance testing, or supplemental testing.

Values are *Typical* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- All vertical ranges
- All bandwidths and bandwidth limiting filters
- Sample rate set to 250 MS/s
- Onboard sample clock locked to onboard reference clock
- PXIe-5108 module warmed up for 15 minutes at ambient temperature.
- Calibration IP used properly.

Warranted specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature range of 0 °C to 45 °C
- Chassis configured:²
 - PXI Express chassis fan speed set to HIGH
 - Foam fan filters removed if present
 - Empty slots contain PXI chassis slot blockers and filler panels
- External calibration cycle maintained
- External calibration performed at 23 °C±3 °C

Typical specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature range of 0 $^{\circ}$ C to 45 $^{\circ}$ C
- 1. Warm-up begins after the chassis and controller or PC is powered, the PXIe-5108 is recognized by the host, and the PXIe-5108 is configured in NI-SCOPE. Self-calibration is recommended following the specified warm-up time.
- 2. For more information about cooling, refer to your chassis documentation and the *Maintain Forced-Air Cooling Note to Users*.

Nominal and Measured specifications are valid under the following conditions unless otherwise noted.

• Room temperature, approximately 23 °C

PXIe-5108 Front Panel

Figure 1. PXIe-5108 (4 Channel) and PXIe-5108 (8 Channel) Front Panel

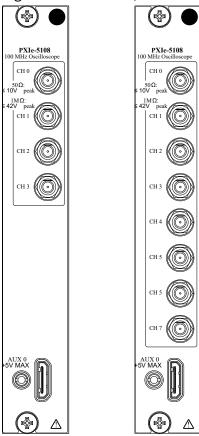


Table 1. Connectors

Signal	Connector Type	Description
CH<07>	SMB	Analog input connection; digitizes data and triggers acquisitions
AUX 0	MHDMR	Sample Clock or Reference Clock input, Reference Clock output, bidirectional digital PFI, and 3.3 V power output

PXIe-5108 Pinout

Use the pinout to connect to terminals on the PXIe-5108.

Figure 2. PXIe-5108 AUX 0 Connector Pinout

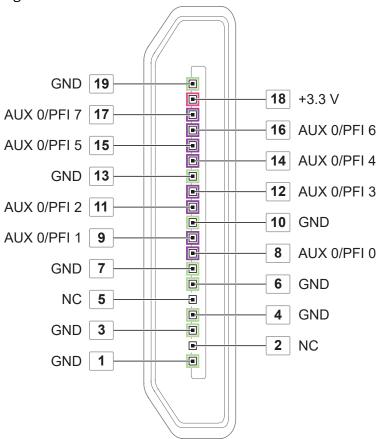


Table 2. AUX 0 Connector Pin Assignments

Pin	Signal	Signal Description	
1	GND	Ground reference for signals	
2	CLK IN	Used to import an external Reference Clock or Sample Clock	
3	GND	Ground reference for signals	
4	GND	Ground reference for signals	
5	CLK OUT	sed to export the Reference Clock	
6	GND	Fround reference for signals	
7	GND	Ground reference for signals	
8	AUX 0/PFI 0	Bidirectional PFI line	
9	AUX 0/PFI 1	Bidirectional PFI line	
10	GND	Ground reference for signals	
11	AUX 0/PFI 2	Bidirectional PFI line	

Pin	Signal	Signal Description	
12	AUX 0/PFI 3	Bidirectional PFI line	
13	GND	Ground reference for signals	
14	AUX 0/PFI 4	Bidirectional PFI line	
15	AUX 0/PFI 5	idirectional PFI line	
16	AUX 0/PFI 6	idirectional PFI line	
17	AUX 0/PFI 7	Bidirectional PFI line	
18	+3.3 V	+3.3 V power (200 mA maximum)	
19	GND	Ground reference for signals	

PXIe-5108 SCB-19 Pinout

You can use the SCB-19 connector block to connect digital signals to the AUX 0 connector on the PXIe-5108 front panel. Refer to the following figure and table for information about the SCB-19 signals when connected to the AUX 0 front panel connector.

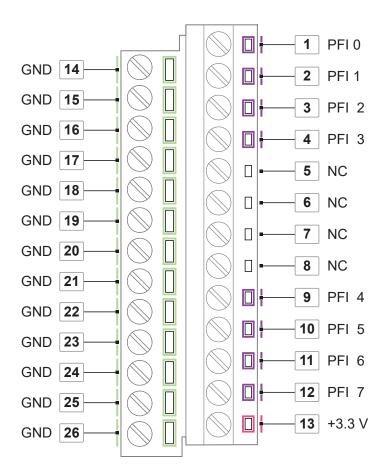


Table 3. SCB-19 Signal Descriptions

Pin	Signal	Signal Description
1	PFI 0	Bidirectional PFI line
2	PFI 1	Bidirectional PFI line
3	PFI 2	Bidirectional PFI line
4	PFI 3	Bidirectional PFI line
5	NC	No connection
6	CLK IN	Used to import an external reference clock or sample clock
7	NC	No connection
8	CLK OUT	Used to export the reference clock
9	PFI 4	Bidirectional PFI line
10	PFI 5	Bidirectional PFI line

Pin	Signal	Signal Description
11	PFI 6	Bidirectional PFI line
12	PFI 7	Bidirectional PFI line
13	+3.3 V	+3.3 V power (200 mA maximum)
14 to 26	GND	Ground reference for signals

Mini-HDMI Breakout to SMA Cable Assembly Pinout

The mini-HDMI breakout to SMA cable assembly connects the AUX 0 MHDMR front panel connector of the PXIe-5108 oscilloscope to the two SMA PFI lines of up to four PXIe-5108 waveform generators within a PXIe-5108 to enable waveform-synchronous measurements.

Figure 3. Mini-HDMI Breakout to SMA Cable Assembly

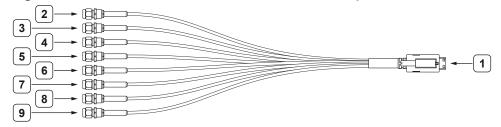


Table 4. Mini-HDMI Breakout to SMA Cable Assembly Signal Descriptions

Item in Figure	Label	Connector	Description
1	MINI-HDMI BREAKOUT TO 8 SMA	Mini-HDMI (m)	Interface to PXIe-5108 AUX 0 interface connector ³
2	PFI 0	SMA (m)	Bidirectional PFI line.
3	PFI 1	SMA (m)	Bidirectional PFI line.
4	PFI 2	SMA (m)	Bidirectional PFI line.
5	PFI 3	SMA (m)	Bidirectional PFI line.
6	PFI 4	SMA (m)	Bidirectional PFI line.
7	PFI 5	SMA (m)	Bidirectional PFI line.
8	PFI 6	SMA (m)	Bidirectional PFI line.

^{3.} Mini-HDMI and MHDMR are equivalent connectors.

Item in Figure	Label	Connector	Description
9	PFI 7	SMA (m)	Bidirectional PFI line.

Refer to the installation procedures for the PXIe-5108 to learn how to correctly connect all mini-HDMI breakout to SMA cable assemblies in your system.

PXIe-5108 AUX 0 Breakout Cable to 6 BNCs Pinout

You can use the AUX 0 Breakout Cable to 6 BNCs to connect digital signals to the AUX 0 connector on the PXIe-5108 front panel. Refer to the following figure and table for information about the AUX 0 Breakout Cable to 6 BNCs signals when connected to the AUX 0 front panel connector.

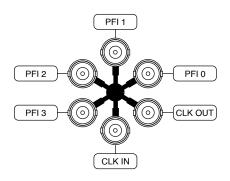


Table 5. AUX 0 Breakout Cable to 6 BNCs Signal Descriptions

Signal	Connector Type	Description
CLK IN	BNC female	Used to import an external reference clock
CLK OUT		Used to export the reference clock
PFI 0		Bidirectional PFI line
PFI 1		Bidirectional PFI line
PFI 2		Bidirectional PFI line
PFI 3		Bidirectional PFI line

Vertical

Analog Input

Table 6. Analog input specifications

	Number of channels	Input type	Connectors
PXIe-5108 (4 CH)	Four (simultaneously sampled)	Referenced single- ended	SMB, ground referenced
PXIe-5108 (8 CH)	Eight (simultaneously sampled)	Referenced single- ended	SMB, ground referenced

Impedance and Coupling

Input impedance	50 Ω ±1.5%, typical 1 M Ω ±0.5%, typical
Input capacitance (1 $M\Omega$)	16 pF ±1.2 pF, typical
Input coupling	AC DC

Figure 4. 50 Ω Voltage Standing Wave Ratio (VSWR), Measured

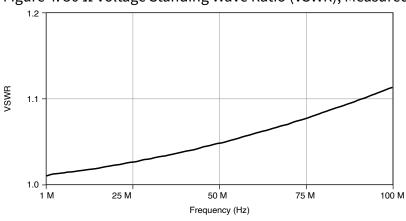
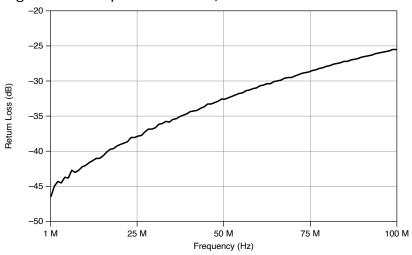



Figure 5. 50 Ω Input Return Loss, Measured

Voltage Levels

Table 7. 50 Ω FS Input Range and Vertical Offset Range

Input Range (V _{pk-pk})	Vertical Offset Range (V)
0.2 V	±0.5
0.7 V	±0.5
1.4 V	±0.5
5 V	±2.5
10 V ⁴	0

Table 8. 1 $\mbox{M}\Omega$ FS Input Range and Vertical Offset Range

The state of the s		
Input Range (V _{pk-pk})	Vertical Offset Range (V)	
0.2 V	±0.5	
0.7 V	±0.5	
1.4 V	±0.5	
5 V	±4.5	
10 V	±4.5	
40 V	±20	
80 V	0	

4. Derated to 5 $V_{\mbox{\scriptsize pk-pk}}$ for periodic waveforms with frequencies below 100 kHz.

Maximum input overload	
50 Ω	7 V RMS with Peaks ≤10 V
1 ΜΩ	Peaks ≤42 V

Notice Signals exceeding the maximum input overload may cause damage to the device.

Accuracy

Table 9. Resolution

Resolution	14 bits
------------	---------

Table 10. DC Accuracy

50 Ω	$\pm[(0.45\% \times \textbf{Reading} - \textbf{Vertical Offset}) + (0.4\% \times \textbf{Vertical Offset}) + (0.05\% \text{ of FS}) + 0.4 \text{ mV}], warranted$
1 MΩ, 40 V_{pk-pk} range	$\pm[(0.45\% \times \textbf{Reading} - \textbf{Vertical Offset}) + (0.5\% \times \textbf{Vertical Offset}) + (0.05\% \text{ of FS}) + 0.4 \text{ mV}], warranted$
1 M Ω , all other ranges	$\pm[(0.45\% \times \textbf{Reading} - \textbf{Vertical Offset}) + (0.4\% \times \textbf{Vertical Offset}) + (0.05\% \text{ of FS}) + 0.4 \text{ mV}], warranted$

 \pmb{Note} Within $\pm\,5\,^{\circ}\text{C}$ of self-calibration temperature. Accuracy is warranted only when using DC input coupling. DC specifications apply only in any of the following situations:

- The sample rate is set to 250 MS/s.
- NI-SCOPE is 21.0 or later, Sample Clock Time Base Source is

set to VAL_ONBOARD_CONFIGURABLE_RATE_CLK, and the Sample Clock Timebase Rate is set to 200 MS/s or 150 MS/s.

In all other situations, derate DC accuracy by the DC accuracy sampling drift.

Table 11. DC drift

$\pm [(0.010\% \times \textbf{Reading} - \textbf{Vertical Offset}) + (0.003\% \times \textbf{Vertical Offset}) + (0.006\% \text{ of FS})]$
per °C

Note Used to calculate errors when onboard temperature changes more than ± 5 °C from the self-calibration temperature.

Table 12. AC amplitude accuracy

50 Ω	±0.15 dB at 50 kHz, warranted
$1\text{M}\Omega, 40\text{V}_{\text{pk-pk}}$ and $80\text{V}_{\text{pk-pk}}$ ranges	±0.25 dB at 50 kHz, warranted
1 M Ω , all other ranges	±0.15 dB at 50 kHz, warranted

Table 13. Conversion error rate

250 MS/sec	<1 × 10 ⁻¹⁰
200 MS/sec	<1 × 10 ⁻¹⁵
150 MS/sec	<1 × 10 ⁻²⁰

Note A *conversion error* is defined as deviation greater than 0.6% of full scale.

Table 14. Crosstalk

F	Level		
Frequency	50 Ω	1 M Ω , 0.2 V _{pk-pk} to 10 V _{pk-pk} Range	1 MΩ, 40 V _{pk-pk} Range
1 MHz	-75 dB	-75 dB	
50 MHz	-75 dB	-75 dB	-65 dB
100 MHz	-70 dB	-70 dB	

Note Measured on one channel with test signal applied to another channel, with the same range setting on both channels.

Notice This device may experience increased peak to peak noise when connected cables are routed in an environment with radiated or conducted electromagnetic interference. To limit the effects of this interference and to ensure that this device functions within specifications, take precautions when designing, selecting, and installing measurement probes and cables.

Bandwidth and Transient Response

Table 15. Bandwidth (-3 dB), Warranted

Input Impedance	Input Range (V _{pk-pk})	Bandwidth
F0 O	0.2 V	99 MHz
50 Ω	All other input ranges	100 MHz
1 M Ω 5	All input ranges	98 MHz

Note Normalized to 50 kHz.

Table 16. Bandwidth-limiting filters (digital FIR)

Noise Filter	Remark
20 MHz	
40 MHz	

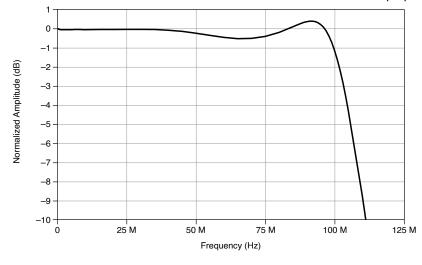
5. Verified using a 50 Ω source and 50 Ω feedthrough terminator.

Noise Filter	Remark
80 MHz	Available at sample rates ≥200 MS/s.

Table 17. AC-coupling cutoff

AC-coupling cutoff (-3 dB)	16.50 Hz

Note Verified using a 50 Ω source.


Table 18. Rise/fall time

50 Ω	5.15 ns
1 ΜΩ	5.25 ns

Note 50% FS input pulse.

Figure 6. 50 Ω Full Bandwidth Frequency Response, 1.4 V_{pk-pk} , Measured

Spectral Characteristics

Note For 1 M Ω , verified using a 50 Ω source and 50 Ω feedthrough terminator.

Table 19. Spurious-Free Dynamic Range (SFDR), 50 Ω and 1 $\text{M}\Omega^{6[6]}$

Input Range (V _{pk-pk})	Full Bandwidth, Input Frequency ≤30 MHz
0.2 V	-70 dBc
0.7 V	-78 dBc
1.4 V	-71 dBc
5 V	-80 dBc

Table 20. Total Harmonic Distortion (THD), 50 Ω and 1 $M\Omega^7$

Input Range (V _{pk-pk})	Full Bandwidth, Input Frequency ≤30 MHz
0.2 V	-74 dBc
0.7 V	-77 dBc
1.4 V	-70 dBc
5 V	-77 dBc

Table 21. Effective Number of Bits (ENOB), 50 Ω and 1 $\text{M}\Omega^{\underline{[6]}}$

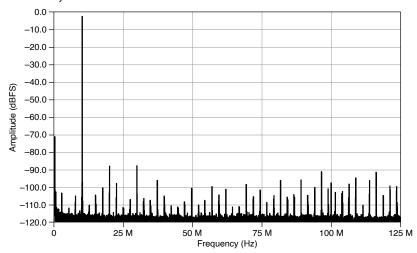

Input Range (V _{pk-pk})	20 MHz Filter Enabled, Input Frequency ≤10 MHz	Full Bandwidth, Input Frequency >10 MHz, ≤30 MHz
0.2 V	9.8	9.5
0.7 V	11.4	10.8
1.4 V	11.9	10.8
5 V	11.8	11.0

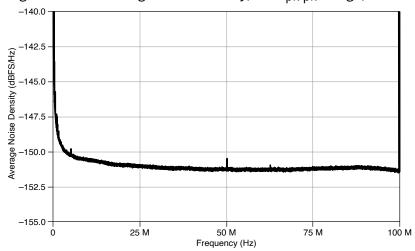
Figure 7. 50 Ω Single-Tone Spectrum, 1.4 V_{pk-pk} Input Range, Full Bandwidth, 9.9 MHz Input Tone at

^{6. -1} dBFS input signal corrected to FS. 358 Hz resolution bandwidth.

^{7. -1} dBFS input signal corrected to FS. Includes the 2 through the 5 harmonics.

-1 dBFS, Measured

Noise



Note Verified using a 50 Ω terminator connected to input.

Table 22. RMS Noise, 50Ω and $1 M\Omega$, Warranted

Input Range (V _{pk-pk})	RMS Noise (% of Full Scale)
0.2 V	0.045
All other input ranges	0.018

Figure 8. 50 Ω Average Noise Density, 1.4 V_{pk-pk} Range, Measured

27.5 n 25.0 n Average Noise Density (V/sqrt(Hz)) 22.5 n 20.0 n 17.5 n 15.0 n 12.5 n 10.0 n 7.5 n 5.0 n

50 M

Frequency (Hz)

25 M

Figure 9. 50 Ω Average Noise Density, 0.2 V_{pk-pk} Range, Measured

Skew

2.5 n 0.0 n -

Channel-to-channel skew ⁸	<120 ps
--------------------------------------	---------

100 M

75 M

Horizontal

Sample Clock

Sources			
Internal	Onboard clock (internal VCXO)		
External	AUX 0 CLK IN (front panel MHDMR connector) PXIe_DStarA (backplane connector)		
Sample rate rang	ge, real-time ⁹	3.815 kS/s to 250 MS/s	

- 8. For input frequencies <90 MHz.
- 9. Divide by *n* decimation from 250 MS/s. For more information about the Sample Clock topic in the *NI* SCOPE User Manual.

Sample clock jitter ¹⁰		700 fs RMS	
Timebase frequency			
Internal (software-selectable)		250 MHz 200 MHz	
		150 MHz	
External		150 MHz to 250 MHz	
Timebase accuracy			
Phase-locked to onboard clock	se-locked to onboard clock ±25 ppm, warranted		
hase-locked to external clock Equal to the external clock a		ccuracy	
DC accuracy sampling drift, ±(% of Reading) per MHz from 250 MHz ¹¹		±0.0127	
Duty cycle tolerance		45% to 55%	

Related information:

- Sample Clock in NI-SCOPE User Manual
- 10. Integrated from 100 Hz to 10 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter.
- 11. Used to calculate additional DC accuracy error when using a base sample clock that is less than 250 MHz. To calculate the additional error, take the difference of the base sample clock rate from 250 MHz, divide by 1,000,000, and multiply by the DC accuracy sampling drift.

Phase-Locked Loop (PLL) Reference Clock

Sources		
Internal	None (internal VCXO) Onboard clock (internal VCXO) PXI_Clk10 (backplane connector)	
External (10 MHz) ¹²	AUX 0 CLK IN (front panel MHDMR connector)	
Duty cycle tolerance		45% to 55%

External Sample Clock

Source AUX 0 CLK IN (front panel MHDMR connector)			
Impedance	50 Ω		
Coupling	AC		
Input voltage range			
As a 250 MHz sine wave		1 dBm through 18 dBm	
As a fast slew rate input (square wave, V _{pk-pk})		0.4 V to 5 V	
Maximum input overload			

12. The PLL reference clock must be accurate to ± 25 ppm.

As a 250 MHz sine wave	20 dBm
As a fast slew rate input (square wave, V _{pk-pk})	6 V

External Reference Clock In

Source	AUX 0 CLK IN (front panel MHDMR connector)		
Impedance	50 Ω		
Coupling	AC		
Frequency ¹³	10 MHz		
Input voltage range			
As a 250 MHz sine wave		1 dBm through 18 dBm	
As a fast slew rate input (square wave, V _{pk-pk})		6 V	
Duty cycle tolerance	45% to 55%		

Reference Clock Out

Source	PXI_Clk10 (backplane connector)

13. The PLL reference clock must be accurate to ± 25 ppm.

Destination	AUX 0 CLK OUT
Output impedance	50 Ω
Logic type	3.3 V LVCMOS
Maximum current drive	±8 mA

PXIe_DStarA

Source	System timing slot
Destinations	Onboard clock (internal VCXO)

PXI_Clk10

Source	PXI backplane
Destination	Reference clock

Trigger

Supported triggers	Reference (stop) trigger Reference (arm) trigger
	Start trigger

	Advance trigger
Trigger types	Edge Hysteresis Window Digital Immediate Software
Dead time	Sample clock period × 10
Holdoff	From Dead time to [(2 ⁶⁴ - 1) × Sample clock period]
Delay	From 0 to [(2 ⁵¹ - 1) × Sample clock period]

For more information about triggers, refer to *Triggering* in *NI-SCOPE*.

Analog Trigger

Sources	
PXIe-5108 (4 CH)	CH <03>
PXIe-5108 (8 CH)	CH <07>

Table 23. Analog Trigger Time Resolution and Rearm Time

Interpolator Status	Time Resolution	Rearm Time
Enabled	Sample clock period / 1024	Sample clock period × 124
Disabled	Sample clock period	Sample clock period × 84

Trigger accuracy 14[14]		
Input range (V _{pk-pk}): 0.2 V		0.75% of FS
Input range (V _{pk-pk}): 0.7 V, 1.4 V, 5 V		0.5% of FS
Trigger jitter ^[14]	15 ps RMS	
Minimum threshold duration ¹⁵	Sample clock period	

Digital Trigger

Sources	AUX 0 PFI <07> PXI_Trig <06>
Time resolution	Sample clock period×2
Rearm time	Sample clock

- 14. For input frequencies <90 MHz.
- 15. Data must exceed each corresponding trigger threshold for at least the minimum duration to ensure analog triggering.

	period × 84
Approximate trigger delay difference between analog edge trigger and digital trigger source ¹⁶	630 ns, nominal

Related information:

• Characterizing Setup to Account for Delay on Digital Trigger

Software Trigger

Destinations	Reference (stop) trigger Reference (arm) trigger Start trigger Advance trigger
Time resolution	Sample clock period × 2
Rearm time	Sample clock period × 84

16. This value is approximate because changes to the digital trigger routing or the analog signal path affect propagation delay. You can compensate for the delay difference by adjusting the NI-SCOPE trigger delay value. Add an additional 80 ns trigger delay when passing a trigger between PXIe-5108 modules. With the same hardware and software configuration, the trigger delay difference is consistent within the timing resolution across modules of the same model. For more information about the trigger delay difference, refer to *Characterizing Setup to Account for Delay on Digital Trigger*.

Programmable Function Interface

Connector AUX 0 PFI <0		<07> (front panel MHDMR connector)
Direction	Bidirectio	nal per channel
Direction control latency	125 ns	
As an input (trigger)		
Destinations		Start trigger (acquisition arm) Reference (stop) trigger Arm Reference trigger Advance trigger
Input impedance		49.9 kΩ
V _{IH}		2 V
V _{IL}		0.8 V
Maximum input overload		0 V to 3.3 V (5 V tolerant)
Minimum pulse width		10 ns
As an output (event)	ı	
Sources		Ready for Start

	Start trigger (acquisition arm) Ready for Reference Reference (stop) trigger End of Record Ready for Advance Advance trigger Done (End of Acquisition)
Output impedance	50 Ω
Logic type	3.3 V CMOS
Maximum current drive	12 mA
Minimum pulse width	10 ns

Power Output (+3.3 V)

Connector	AUX 0 +3.3 V (front panel MHDMR connector)
Voltage output	3.3 V ±10%
Maximum current drive	200 mA

Output impedance $<1 \Omega$

Waveform

Onboard memory size ¹⁷		
PXIe-5108 (4 CH)		256 MB
PXIe-5108 (8 CH) 512 MB		512 MB
Minimum record length	1 sample	
Number of pretrigger samples	Zero up to (<i>Record length</i> - 1)	
Number of posttrigger samples	Zero up to Record length	
Maximum number of records in onboard memory	Total onboard memory / 48 × Number of channels , where number of channels is the number of channels enabled rounded up to the nearest power of two	

Figure 10. Allocated Onboard Memory Per Record

 $Roundup \left| Roundup \left| \frac{Coerced number of samples + Number of samples per sample word}{Number of samples per memory word} \right| \times Number of samples per memory word + 3 \times Number of samples per memory word \right| \times Bytes per sample \times Number of channels$

where

- Number of samples per sample word = 16 samples / number of channels
- 17. Onboard memory is shared among all enabled channels.

- Number of samples per memory word = 48 samples / number of channels
- Coerced number of samples is the number of pretrigger samples rounded up to the next multiple of Number of samples per sample word + the number of posttrigger samples rounded up to the next multiple of number of samples per sample word
- *Number of channels* is the number of channels enabled rounded up to the nearest power of two

Memory Sanitization

For information about memory sanitization, refer to the letter of volatility for your device, which is available at <u>ni.com/manuals</u>.

Calibration

External Calibration

External calibration yields the following benefits:

- Corrects for gain and offset errors of the onboard references used in selfcalibration.
- Adjusts timebase accuracy.
- Compensates the 1 $M\Omega$ ranges.

All calibration constants are stored in nonvolatile memory.

Self-Calibration

Self-calibration is done on software command.

The calibration corrects for the following aspects:

- Gain
- Offset
- Intermodule synchronization errors

Refer to the NI High-Speed Digitizers Help for information about when to selfcalibrate the device.

Calibration Specifications

Interval for external calibration	2 years
Warm-up time ¹⁸	15 minutes

Software

Driver Software

This device was first supported in NI-SCOPE 2025 Q3. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows[™]/CVI[™]
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

TClk Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the NI-TClk Synchronization Help, which is located within the NI High-Speed Digitizers Help. For other

18. Warm-up begins after the chassis and controller or PC is powered, the PXIe-5108 is recognized by the host, and the PXIe-5108 is configured in NI-SCOPE. Self-calibration is recommended following the specified warm-up time.

configurations, including multichassis systems, contact NI Technical Support at <u>ni.com/support</u>.

Intermodule Synchronization Using NI-TClk for Identical Modules

Synchronization specifications are valid under the following conditions:

- All modules are installed in one PXI Express chassis.
- The NI-TClk driver is used to align the Sample clocks of each module.
- All parameters are set to identical values for each SMC-based module.
- Modules are synchronized without using an external Sample clock.
- Self-calibration is completed.

Note Although you can use NI-TClk to synchronize non-identical modules, these specifications apply only to synchronizing identical modules.

Skew ¹⁹	300 ps
Skew after manual adjustment	≤10 ps
Sample clock delay/adjustment resolution	3.5 ps

Power

Table 24. Power Consumption

PXIe-5108 (4 CH) power consumption	
+3.3 V DC	6.5 W, typical
+12 V DC	13.75 W, typical
Total power	20.25 W, typical
PXIe-5108 (8 CH) power consumption	

19. Caused by clock and analog path delay differences. No manual adjustment performed. Tested with a PXIe-1082 chassis with a maximum slot-to-slot skew of 100 ps. Valid within ±1 °C of self-calibration.

+3.3 V DC	8.5 W, typical
+12 V DC	18 W, typical
Total power	26.5 W, typical

Physical

Dimensions	3U, one-slot, PXI Express Gen 18.5 cm × 2.0 cm × 13.0 cm (7.3 in × 0.8 in × 5.1 in)	2 x8 Module
Weight		
PXIe-5108 (4 CH)		449 g (15.8 oz)
PXIe-5108 (8 CH)		461 g (16.3 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 45 °C
Relative humidity range	10% to 90%, noncondensing

Storage Environment

Ambient temperature range, storage	-40 °C to 71 °C
Relative humidity range, storage	5% to 95%, noncondensing

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse
Random vibration	 Operating: 5 Hz to 500 Hz, 0.3 g RMS Nonoperating: 5 Hz to 500 Hz, 2.4 g RMS

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> Certifications and Declarations section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.