#### **SPECIFICATIONS**

# PXIe-5785

### 12-Bit, 6.4 GS/s, 2-Channel PXI FlexRIO IF Transceiver

This document lists the specifications for the PXIe-5785. Specifications are subject to change without notice. For the most recent device specifications, refer to *ni.com/support*.

### Contents

| Definitions                                                     | 1  |
|-----------------------------------------------------------------|----|
|                                                                 |    |
| Digital I/O                                                     |    |
| Digital I/O Single-Ended Channels                               |    |
| Digital I/O High-Speed Serial MGT                               |    |
| Reconfigurable FPGA                                             | 3  |
| Onboard DRAM                                                    | 4  |
| Analog Input                                                    | 4  |
| General Characteristics                                         | 4  |
| Typical Specifications                                          | 5  |
| Analog Output                                                   | 10 |
| General Characteristics                                         | 10 |
| Typical Specifications                                          | 10 |
| REF/CLK IN                                                      | 18 |
| CLK/REF IN                                                      | 18 |
| Bus Interface                                                   | 21 |
| Maximum Power Requirements                                      | 21 |
| Physical                                                        | 22 |
| Environment                                                     |    |
| Operating Environment                                           | 22 |
| Storage Environment                                             |    |
| Shock and Vibration.                                            | 22 |
| TCLK Specifications                                             | 23 |
| Intermodule Synchronization Using NI-TClk for Identical Modules | 23 |

### **Definitions**

*Warranted* specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.



*Characteristics* describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are *Typical* unless otherwise noted.

## Digital I/O

| Connector   | Molex <sup>™</sup> Nano-Pitch I/O <sup>™</sup> |
|-------------|------------------------------------------------|
| 5.0 V Power | ±5%, 50 mA maximum, nominal                    |

Table 1. Digital I/O Signal Characteristics

| Signal        | Туре                  | Direction     |
|---------------|-----------------------|---------------|
| MGT Tx± <03>1 | Xilinx UltraScale GTH | Output        |
| MGT Rx± <03>1 | Xilinx UltraScale GTH | Input         |
| DIO <07>      | Single-ended          | Bidirectional |
| 5.0 V         | DC                    | Output        |
| GND           | Ground                | _             |

## Digital I/O Single-Ended Channels

| Number of channels                        | 8                                 |
|-------------------------------------------|-----------------------------------|
| Signal type                               | Single-ended                      |
| Voltage families                          | 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V |
| Input impedance                           | 100 k $\Omega$ , nominal          |
| Output impedance                          | $50 \Omega$ , nominal             |
| Direction control                         | Per channel                       |
| Minimum required direction change latency | 200 ns                            |
| Maximum output toggle rate                | 60 MHz with 100 μA load, nominal  |

Multi-gigabit transceiver (MGT) signals are available on devices with KU040 and KU060 FPGAs only.

Table 2. Digital I/O Single-Ended DC Signal Characteristics<sup>2</sup>

| Voltage Family | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>OL</sub><br>(100μA load) | V <sub>OH</sub><br>(100μA load) | Maximum DC Drive<br>Strength |
|----------------|-----------------|-----------------|---------------------------------|---------------------------------|------------------------------|
| 3.3 V          | 0.8 V           | 2.0 V           | 0.2 V                           | 3.0 V                           | 24 mA                        |
| 2.5 V          | 0.7 V           | 1.6 V           | 0.2 V                           | 2.2 V                           | 18 mA                        |
| 1.8 V          | 0.62 V          | 1.29 V          | 0.2 V                           | 1.5 V                           | 16 mA                        |
| 1.5 V          | 0.51 V          | 1.07 V          | 0.2 V                           | 1.2 V                           | 12 mA                        |
| 1.2 V          | 0.42 V          | 0.87 V          | 0.2 V                           | 0.9 V                           | 6 mA                         |

## Digital I/O High-Speed Serial MGT<sup>3</sup>



Note MGTs are available on devices with KU040 and KU060 FPGAs only.

| Data rate                 | 500 Mbps to 16.375 Gbps, nominal |
|---------------------------|----------------------------------|
| Number of Tx channels     | 4                                |
| Number of Rx channels     | 4                                |
| I/O AC coupling capacitor | 100 nF                           |

## Reconfigurable FPGA

PXIe-5785 modules are available with multiple FPGA options. The following table lists the FPGA specifications for the PXIe-5785 FPGA options.

Table 3. Reconfigurable FPGA Options

|                                      | KU035                                                                                                     | KU040   | KU060   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|---------|
| LUTs                                 | 203,128                                                                                                   | 242,200 | 331,680 |
| DSP48 slices<br>(25 × 18 multiplier) | 1,700                                                                                                     | 1,920   | 2,760   |
| Embedded Block RAM                   | 19.0 Mb                                                                                                   | 21.1 Mb | 38.0 Mb |
| Data Clock Domain                    | 200 MHz, 16 samples per cycle per channel (dual channel mode), 32 samples per cycle (single channel mode) |         |         |

<sup>&</sup>lt;sup>2</sup> Voltage levels are guaranteed by design through the digital buffer specifications.

<sup>&</sup>lt;sup>3</sup> For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

**Table 3.** Reconfigurable FPGA Options (Continued)

|                            | KU035                             | KU040                             | KU060 |
|----------------------------|-----------------------------------|-----------------------------------|-------|
| Timebase reference sources | PXI Express 100 MHz (PXIe_CLK100) |                                   |       |
| Data transfers             | DMA, interrupts, programmed I/O   | DMA, interrupts,<br>multi-gigabit |       |
| Number of DMA channels     |                                   | 60                                |       |



Note The Reconfigurable FPGA Options table depicts the total number of FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by board-interfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI support.

## **Onboard DRAM**

| Memory size                   | 4 GB (2 banks of 2 GB)      |
|-------------------------------|-----------------------------|
| DRAM clock rate               | 1064 MHz                    |
| Physical bus width            | 32 bit                      |
| LabVIEW FPGA DRAM clock rate  | 267 MHz                     |
| LabVIEW FPGA DRAM bus width   | 256 bit per bank            |
| Maximum theoretical data rate | 17 GB/s (8.5 GB/s per bank) |

## **Analog Input**

### **General Characteristics**

| Number of channels    | 2, single-ended, simultaneously sampled |
|-----------------------|-----------------------------------------|
| Connector type        | SMA                                     |
| Input impedance       | 50 Ω                                    |
| Input coupling        | AC                                      |
| Sample Clock          |                                         |
| Internal Sample Clock | 3.2 GHz                                 |
| External Sample Clock | 2.8 GHz to 3.2 GHz                      |
|                       |                                         |

#### Sample Rate

| Dual channel mode                 | 3.2 GS/s per channel           |
|-----------------------------------|--------------------------------|
| Single channel mode               | 6.4 GS/s                       |
| Analog-to-digital converter (ADC) | ADC12DJ3200, 12-bit resolution |
| Input latency <sup>4</sup>        | 239 ns                         |

## Typical Specifications

| Full-scale input range         | 1.25 V pk-pk (5.92 dBm) at 10 MHz |
|--------------------------------|-----------------------------------|
| AC gain accuracy               | ±0.11 dB at 10 MHz                |
| DC offset                      | ±2.19 mV                          |
| Bandwidth (-3 dB) <sup>5</sup> | 500 kHz to 6 GHz                  |

Table 4. Single-Tone Spectral Performance, Dual Channel Mode

|                           | Input Frequency |                                              |       |       |       |  |  |  |
|---------------------------|-----------------|----------------------------------------------|-------|-------|-------|--|--|--|
|                           | 99.9 MHz        | 99.9 MHz 399 MHz 999 MHz 1.999 GHz 2.499 GHz |       |       |       |  |  |  |
| SNR <sup>6</sup> (dBFS)   | 56.0            | 55.6                                         | 54.7  | 52.9  | 51.6  |  |  |  |
| SINAD <sup>6</sup> (dBFS) | 55.5            | 55.0                                         | 54.0  | 51.8  | 50.8  |  |  |  |
| SFDR (dBc)                | -64.9           | -63.4                                        | -62.7 | -59.9 | -58.6 |  |  |  |
| ENOB <sup>7</sup> (bits)  | 8.9             | 8.8                                          | 8.7   | 8.3   | 8.1   |  |  |  |

Table 5. Single-Tone Spectral Performance, Single Channel Mode<sup>8</sup>

|                           | Input Frequency                            |       |       |       |       |  |
|---------------------------|--------------------------------------------|-------|-------|-------|-------|--|
|                           | 99.9 MHz 399 MHz 999 MHz 1.999 GHz 2.499 0 |       |       |       |       |  |
| SNR <sup>6</sup> (dBFS)   | 54.6                                       | 54.2  | 52.4  | 49.7  | 48.9  |  |
| SINAD <sup>6</sup> (dBFS) | 54.4                                       | 53.9  | 52.1  | 49.4  | 48.6  |  |
| SFDR (dBc)                | -61.7                                      | -60.4 | -56.1 | -51.7 | -51.1 |  |
| ENOB <sup>7</sup> (bits)  | 8.7                                        | 8.7   | 8.4   | 7.9   | 7.8   |  |

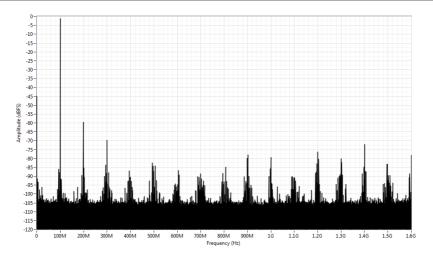
<sup>&</sup>lt;sup>4</sup> SMA input to LabVIEW diagram

<sup>&</sup>lt;sup>5</sup> Normalized to 10 MHz.

<sup>&</sup>lt;sup>6</sup> Measured with a -1 dBFS signal and corrected to full-scale. 3.2 kHz resolution bandwidth.

<sup>&</sup>lt;sup>7</sup> Calculated from SINAD and corrected to full scale.

<sup>&</sup>lt;sup>8</sup> Measured using channel AI0. Spectral performance may be degraded using channel AI1.


Table 6. Noise Spectral Density<sup>9</sup>

| Mode           | $\frac{nV}{\sqrt{Hz}}$ | <u>dBm</u><br>Hz | dBFS<br>Hz |
|----------------|------------------------|------------------|------------|
| Dual channel   | 14.4                   | -143.8           | -149.2     |
| Single channel | 9.8                    | -147.2           | -152.6     |



**Note** Noise spectral density is verified using a 50  $\Omega$  terminator connected to the input.

Figure 1. Single Tone Spectrum (Dual Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured



<sup>&</sup>lt;sup>9</sup> Excludes fixed interleaving spur (Fs/2 spur).

Figure 2. Single Tone Spectrum (Dual Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured

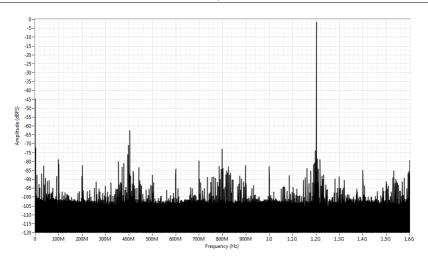
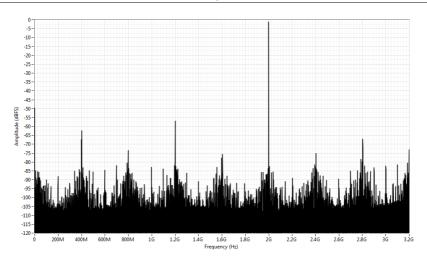




Figure 3. Single Tone Spectrum (Single Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured



Figure 4. Single Tone Spectrum (Single Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured



| Channel-to-channel crosstalk, m | easured  |  |
|---------------------------------|----------|--|
| 99.9 MHz                        | -92.5 dB |  |
| 399 MHz                         | -85.5 dB |  |
| 999 MHz                         | -76.5 dB |  |
| 1.999 GHz                       | -68.8 dB |  |
| 2.499 GHz                       | -67.4 dB |  |

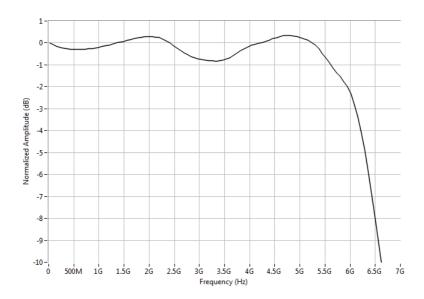



Figure 6. Input Return Loss, Measured



## **Analog Output**

### **General Characteristics**

| Number of channels                      | 2, single-ended, simultaneously updated |
|-----------------------------------------|-----------------------------------------|
| Connector type                          | SMA                                     |
| Output impedance                        | 50 Ω                                    |
| Output coupling                         | AC                                      |
| Update rate                             |                                         |
| Internal Sample Clock, 2x interpolation | 6.4 GS/s                                |
| External Sample Clock, 2x interpolation | 6.4 GS/s <sup>10</sup>                  |
| Data rate (per channel)                 |                                         |
| Dual channel mode                       | 3.2 GS/s, real                          |
| Single channel mode                     | 3.2 GS/s, complex                       |
| Digital-to-analog converter (DAC)       | DAC38RF82, 12-bit resolution            |
| Output latency <sup>11</sup>            |                                         |
| DUC disabled                            | 211 ns                                  |
| DUC enabled                             | 221 ns                                  |

## Typical Specifications



**Note** Due to a silicon flaw in the TI DAC38RF82 chip, there is a 0.5% chance of seeing a 50 mV glitch at the output of either channel after a bitfile re-download, invoking the Reset method explicitly or by closing the FPGA reference, or committing a new configuration.

| Full-scale output power <sup>12</sup> |                      |
|---------------------------------------|----------------------|
| Dual Channel Mode                     | 2.85 dBm (878 mVpp)  |
| Single Channel Mode                   | -3.33 dBm (431 mVpp) |

<sup>10</sup> To achieve this update rate when using an external sample clock, inject a 3.2 GS/s clock into the REF/CLK IN port and enable 2x interpolation.

<sup>11</sup> LabVIEW diagram to SMA output

<sup>&</sup>lt;sup>12</sup> Into a 50  $\Omega$  load.

#### Bandwidth (-3 dB)<sup>13</sup>

| Dual Channel Mode                                | 3 MHz to 1.53 GHz  |
|--------------------------------------------------|--------------------|
| Single Channel Mode (no anti-image filter)       | 60 MHz to 2.85 GHz |
| Single Channel Mode (with anti-<br>image filter) | 60 MHz to 2.35 GHz |

Table 7. Single Tone Spectral Performance, Dual Channel Mode<sup>14</sup>

|              | Generation Frequency |          |  |
|--------------|----------------------|----------|--|
|              | 501 MHz              | 1.01 GHz |  |
| 2nd HD (dBc) | -67.8                | -61.7    |  |
| 3rd HD (dBc) | -63.0                | -62.0    |  |
| SFDR (dBc)   | -63.0                | -61.7    |  |

Table 8. Single Tone Spectral Performance, Single Channel Mode<sup>14</sup>

|              | Generation Frequency |
|--------------|----------------------|
|              | 1.01 GHz             |
| 2nd HD (dBc) | -62.4                |
| 3rd HD (dBc) | -67.3                |
| SFDR (dBc)   | -62.4                |

Table 9. IMD3 Performance, Dual Channel Mode, Measured<sup>15</sup>

|            | Generation Frequency 501 MHz and 511 MHz 1.005 GHz and 1.015 GHz |       |  |
|------------|------------------------------------------------------------------|-------|--|
|            |                                                                  |       |  |
| IMD3 (dBc) | -73.9                                                            | -67.6 |  |

<sup>&</sup>lt;sup>13</sup> Normalized to 10 MHz in dual channel mode and 200 MHz in single channel mode. 2x interpolation and inverse sinc filter enabled.

<sup>&</sup>lt;sup>14</sup> DC, <sup>3</sup>.2 GHz, output corrected to 0 dBFS by inverse sinc filter, 2x interpolation, no anti-image

<sup>&</sup>lt;sup>15</sup> 2x interpolation, inverse sinc filter enabled, each tone corrected to -6 dBFS by inverse sinc filter.

Table 10. Noise Spectral Density<sup>16</sup>

|                | 501 MHz Generation Frequency |           |            |
|----------------|------------------------------|-----------|------------|
| Mode           | $rac{nV}{\sqrt{Hz}}$        | dBm<br>Hz | dBFS<br>Hz |
| Dual Channel   | 1.18                         | -165.5    | -168.4     |
| Single Channel | 0.941                        | -167.5    | -164.2     |

Figure 7. Single Tone Spectrum (Dual Channel Mode, 501 MHz 0 dBFS), Measured 17



Measured > 50 MHz offset from fundamental. 2x interpolation and inverse sinc filter enabled. Noise spectral density value depends on output tone frequency. See DAC38RF82 datasheet for noise spectral density results at other tone frequencies.

<sup>&</sup>lt;sup>17</sup> 2x interpolation. Output corrected to 0 dBFS by inverse sinc filter. 10 kHz resolution bandwidth.

Figure 8. Single Tone Spectrum (Dual Channel Mode, 1.01 GHz 0 dBFS), Measured 17

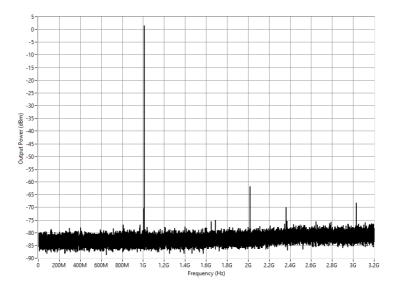
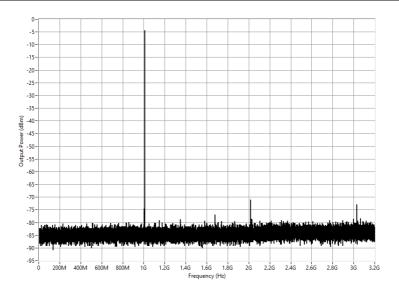
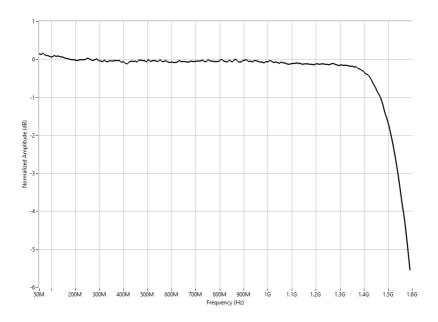
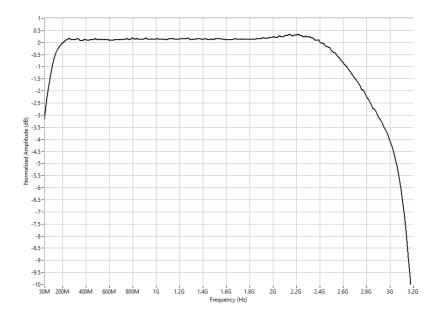
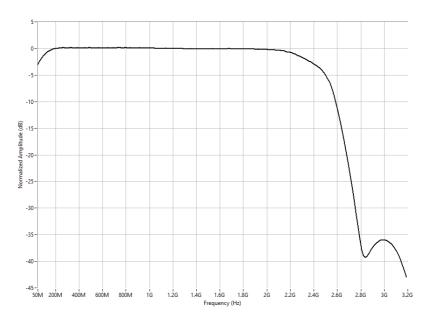





Figure 9. Single Tone Spectrum (Single Channel Mode, 1.01 GHz 0 dBFS), Measured<sup>17</sup>

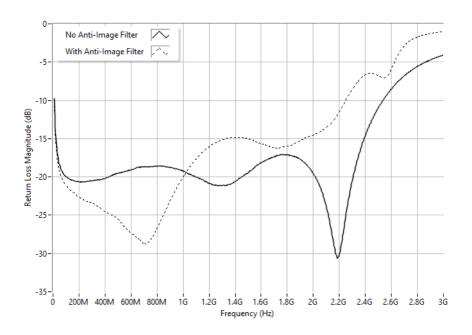



| Channel-to-channel crosstalk, | measured <sup>18</sup> |  |
|-------------------------------|------------------------|--|
| 100 MHz                       | -82 dBc                |  |
| 500 MHz                       | -91 dBc                |  |
| 1.0 GHz                       | -90 dBc                |  |
| 1.5 GHz                       | -88 dBc                |  |
| 2.0 GHz                       | -82 dBc                |  |
| 2.5 GHz                       | -82 dBc                |  |

<sup>&</sup>lt;sup>18</sup> Aggressor channel generating a full-scale output into a 50 ohm terminator




<sup>&</sup>lt;sup>19</sup> -6 dBFS, 2x Interpolation, inverse sinc filter enabled, no anti-image filter, normalized to 200 MHz.


Figure 11. Analog Output Single Channel Mode Frequency Response, No Anti-Image Filter, Measured<sup>19</sup>



**Figure 12.** Analog Output Single Channel Mode Frequency Response With Anti-Image Filter, Measured<sup>20</sup>



<sup>&</sup>lt;sup>20</sup> -6 dBFS, 2x Interpolation, inverse sinc filter enabled, normalized to 200 MHz.



## **REF/CLK IN**

### **CLK/REF IN**

| Connector type           | SMA                                  |
|--------------------------|--------------------------------------|
| Input impedance          | 50 Ω                                 |
| Input coupling           | AC                                   |
| Input voltage range      | 0.35 V pk-pk to 3.5 V pk-pk, nominal |
| Absolute maximum voltage | ±12 V DC, 4 V pk-pk AC               |
| Duty cycle               | 45% to 55%                           |

#### Sample Clock iitter

| Analog input  | $86.8 \text{ fs}_{rms}$ , measured <sup>21</sup> |
|---------------|--------------------------------------------------|
| Analog output | 198.8 fs <sub>rms</sub> , measured <sup>22</sup> |

#### Table 11. Clock Configuration Options

| Clock Configuration                      | External Clock<br>Frequency | Description                                                                                                                     |
|------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Internal PXI_CLK10 <sup>23</sup>         | 10 MHz                      | The internal Sample Clock locks to the PXI 10 MHz Reference Clock, which is provided through the backplane.                     |
| External Reference<br>Clock (CLK/REF IN) | 10 MHz <sup>24</sup>        | The internal Sample Clock locks to an external Reference Clock, which is provided through the CLK/REF IN front panel connector. |
| External Sample Clock<br>(CLK/REF IN)    | 2.8 GHz to 3.2 GHz          | An external Sample Clock can be provided through the CLK/REF IN front panel connector.                                          |

 $<sup>^{21}</sup>$  Integrated from 3.2 kHz to 20 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter. Excludes trigger jitter.

<sup>&</sup>lt;sup>22</sup> Integrated from 1 kHz to 30 MHz. Includes the effects of the converter aperture uncertainty, converter PLL circuitry, and the clock circuitry jitter. Excludes trigger jitter.

<sup>&</sup>lt;sup>23</sup> Default clock configuration.

The external Reference Clock must be accurate to  $\pm 25$  ppm.

Figure 14. Analog Input Phase Noise with 800 MHz Input Tone, Measured

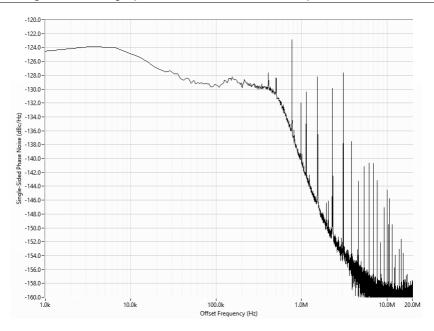
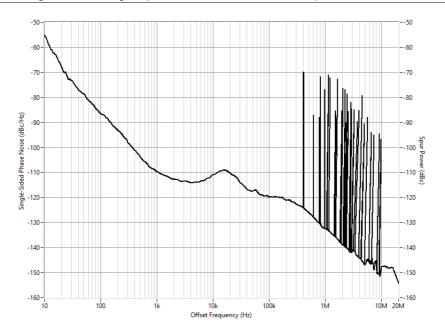




Figure 15. Analog Output Phase Noise with 1 GHz Output Tone, Measured



### **Bus Interface**

| Form factor        | x8 PXI Express, specification v2.1 compliant            |
|--------------------|---------------------------------------------------------|
| Slot compatibility | x4, x8, and x16 PXI Express or PXI Express hybrid slots |

## Maximum Power Requirements



Note Power requirements are dependent on the contents of the LabVIEW FPGA VI used in your application.

| +3.3 V              | 3 A  |
|---------------------|------|
| +12 V               | 4 A  |
| Maximum total power | 58 W |

## **Physical**

| Dimensions (not including connectors) | 18.8 cm × 12.9 cm (7.4 in. × 5.1 in.) |
|---------------------------------------|---------------------------------------|
| Weight                                | 190 g (6.7 oz)                        |

### **Environment**

| Maximum altitude | 2,000 m (800 mbar) (at 25 °C ambient temperature) |
|------------------|---------------------------------------------------|
| Pollution Degree | 2                                                 |

Indoor use only.

## Operating Environment

| , ,                     | 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                         | limit.)                                                                                                                     |
| Relative humidity range | 10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)                                                       |

## Storage Environment

| Ambient temperature range | -40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 4 limits.) |
|---------------------------|-------------------------------------------------------------------------------------------------------------------|
| Relative humidity range   | 5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)                                              |

### Shock and Vibration

| Operating shock | 30 g peak, half-sine, 11 ms pulse (Tested in |
|-----------------|----------------------------------------------|
|                 | accordance with IEC 60068-2-27. Meets        |
|                 | MIL-PRF-28800F Class 2 limits.)              |

<sup>25</sup> The PXIe-5785 requires a chassis with slot cooling capacity ≥58 W. Not all chassis with slot cooling capacity ≥58 W can achieve this ambient temperature range. Refer to the PXI Chassis Manual for specifications to determine the ambient temperature ranges your chassis can achieve.

#### Random vibration

| Operating    | 5 Hz to 500 Hz, $0.3~g_{rms}$ (Tested in accordance with IEC 60068-2-64.)                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Nonoperating | 5 Hz to 500 Hz, 2.4 g <sub>rms</sub> (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.) |

## **TCLK Specifications**

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample Clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the NI-TClk Synchronization Help within the FlexRIO Help. For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

### Intermodule Synchronization Using NI-TClk for Identical Modules

Synchronization specifications are valid under the following conditions:

- All modules are installed in one PXI Express chassis.
- The NI-TClk driver is used to align the Sample Clocks of each module.
- All parameters are set to identical values for each module.
- Modules are synchronized without using an external Sample Clock.



Note Although you can use NI-TClk to synchronize non-identical modules, these specifications apply only to synchronizing identical modules.

| Skew <sup>26</sup>            | 80 ps, measured  |
|-------------------------------|------------------|
| Skew after manual adjustment  | ≤10 ps, measured |
| Sample Clock delay/adjustment | 0.4 ps           |

<sup>26</sup> Caused by clock and analog delay differences. No manual adjustment performed. Tested with a PXIe-1085 chassis with a 24 GB backplane with a maximum slot to slot skew of 100 ps. Measured at 23 °C.

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help.Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.