

CNT-104R

Multi-channel Rubidium Frequency
Calibrator / Analyzer

DATA SHEET

pendulum

Mess- und Prüftechnik. Die Experten.

Ihr Ansprechpartner /
Your Partner:

dataTec AG

E-Mail: info@datatec.eu

>>> www.datatec.eu

- Combined 400 MHz Multi-channel Frequency Analyzer and 10 MHz Frequency Reference with integrated Rubidium oscillator
- Ultra-stable 10 MHz Frequency Reference, using optional built-in GNSS-control of the Rubidium oscillator
- Excellent one-box, ultra-accurate Frequency Calibrator
- Time calibration is accurate to 10 ns rms to UTC (with GNSS option)
- Test 1-4 DUTs in parallel
- Gap-free frequency measurements; 50ns to 1000s gate time
- Ultra-high resolution: Time: 7 ps; Freq.: 12-13 digits/s
- Graphic touch screen display for settings and display of values, statistics (numeric and distribution graph), trend & modulation domain
- The instrument can be controlled locally via touch screen or mouse, or remotely (from anywhere in the world) - via web interface or VNC
- Intelligent and easy-to-use

The Pendulum CNT-104R is a new concept for super-performance **multi-channel frequency and time-interval calibration** & analysis, in a bench-top unit. It is a one-box Frequency and Time Interval calibrator combining an ultra-stable 10 MHz Rubidium Frequency Reference with a 4-channel advanced Frequency Analyzer. You can calibrate up to 4 oscillators/clocks in parallel simultaneously on 4 input channels.

The optional **GNSS control of the Rubidium clock** eliminates the small ageing drift giving an unprecedented accuracy in a compact one-box solution. On the large graphic screen, you can watch drift over time and frequency distribution, as well as traditional numeric and statistics parameters. CNT-104R has gap-free measurements, <7 ps time resolution, 12-13 digits/s frequency resolution, and variable gate time setting from 50ns to 1000s.

Highest Performance for R&D and metrology

- The ultra-high resolution of 12 to 13 digits for 1s gate time gives faster and more accurate calibration results. Track and compare 4 parallel signals with 7 ps resolution/timestamp, at a settable rate from 1000s down to 50 ns between samples in each channel.
- Gap-free, zero-dead-time counting provides back-to-back measurements without losing any cycle, even for very long measurements.
- The CNT-104R is also a high-performance Modulation Domain Analyzer (MDA) for the advanced user. Thanks to the high speed of up to 20M meas./s for 4 parallel signals, very fast frequency or phase/time changes can be captured in real time.

Save money in production test

- The 4-channel design enables 4 parallel frequency measurements. One CNT-104R can replace 4 existing frequency counters in a test system at a lower cost/counter, **plus** provide an ultra-stable reference frequency to the test stand. 5 instruments-in-one-box.
- Choose between Ethernet, or WLAN as a communication interface to a PC/Laptop/Tablet, or to the test system controller.
- High bus speed reduces test time in ATE test systems. Perform fast block measurements up to 170k meas./s. Test time is reduced compared to existing solutions, and time is money.

Optional GNSS control for ultimate calibration performance

- Using the optional GNSS control, the 10 MHz frequency reference accuracy is 1E-12 averaged over 24h, day after day, forever. The intrinsic ageing of the Rubidium clock is totally eliminated.
- You can use the GNSS control either for continuous disciplining of the Rubidium timebase, or as a one-shot reset of the accumulated ageing drift, e.g. when you work mostly in a GNSS-denied environment.
- Calibrate 1-4 frequency sources in a short time to 11 digits uncertainty
- The GNSS receiver also provides an *internal Phase/Time Reference* with an outstanding accuracy
- Calibrate 1-3 external sync signals, with an uncertainty of 10 ns rms to UTC
- The portable format, short warm-up time, and the GNSS option, makes CNT-104R an excellent "Travelling clock" for field testing of sync clocks outside the normal lab.
- Calibration results can be saved in internal memory, on a USB stick, or on a connected PC

pendulum

Display modes

Values & Statistics

Numeric display of Measurement values or Statistics parameters. Values mode also display auxiliary parameters.

Time-line & Distribution

Multi-channel graphs are color-coded. Up to 4 input signal graphs can individually be hidden/displayed,

Measuring Functions

Resolution Measure up to 4 input signals in parallel with down to 7 ps resolution per timestamp (Period single, Time Interval, Pulse width, Rise/Fall time, Duty cycle, TIE), or 12 digits/s (frequency and period average).

Smart Frequency/Period avg. calculation mode

All measurements are made **gap-free** (back-to-back). Statistics resolution enhancement algorithm (*smart mode*) gives up to one extra result digit depending on input signal and measurement setting.

Frequency A, B, D, E

Mode: *Parallel measurements* on up to 4 inputs.

Range: 0.001 Hz to 400 MHz

Aux. Parameter: Vmax, Vmin, Vp-p

Frequency C (option)

Range: See input C

Aux. Parameter: Period C

Frequency Ratio (A,B,C,D, or E) / (A,B,C,D, or E)

Mode: *Parallel measurements* on 2 or 4 inputs.

Range: (10^{-9}) to 10^{11}

Aux Parameters: Freq 1, Freq 2

Period A, B, C, D, E average

Mode: *Parallel measurements* on up to 4 inputs.

Range: See the inverse of Frequency specifications

Aux. Parameter:

- Ch. A, B, D, E: Vmax, Vmin, Vp-p
- Ch. C: Frequency C

TIE A, B, C, D, E (Option 151)

TIE = Time Interval Error, calculated as: *Accumulated period - Expected ("ideal") accumulated period*

Mode: *Parallel measurements* gap-free on 1 to 4 inputs.

Freq range: See Frequency specifications

Aux. Parameter: Ref Frequency

Period A, B, D or E single

Mode: *Parallel measurements* on 1 or 2 inputs

Range: 2.5 ns to 1000 sec.

Aux. Parameter (A, B): Vmax, Vmin, Vp-p

Time Interval A, B, D, E (single or continuous)

Mode: *Parallel timestamping* of trigger events on up to 4 channels on continuous or single-shot signals.

Start and stop channel(s): any of A, B, D, E

Note: each input can produce 1 or 2 trigger events with individual trigger level and slope

Accumulated Time Interval: add/subtract 1 start channel period to the Time Interval, when required)

Range: -1000s to +1000s

Repetition rate: up to 300 MHz or single-shot events

Min. Pulse width: 1.5 ns

Positive and Negative Pulse Width A, B, D, E

Mode: *Parallel measurements* on 1 or 2 inputs

Range: 1.5 ns to 1000 sec.

Repetition rate: up to 300 MHz or single-shot events

Rise/Fall Time A, B, D, E

Mode 1: *Parallel measurements* on 1 or 2 inputs of

Rise OR Fall time, or

Mode 2: *Single* input measurement of Rise AND Fall time on the same pulse

Range: 1.5 ns to 1000 sec.

Aux. Parameters: Slew rate, Vmax, Vmin

Positive and negative Slew Rate A, B, D, E

Mode: *Parallel measurements* on 1 or 2 inputs

Calculation: $(80\% \text{ of } V_{p-p}) / (\text{Rise or Fall Time})$

Aux. Parameters: Rise/Fall time, Vmax, Vmin

Positive and Negative Duty Cycle A, B, D, E

Mode: *Single* input measurement; rep. rate <300 MHz

Range: 0.000001 to 0.999999

Aux. parameters: Period, Pulse width

Phase A Relative B, B Relative A

Mode: Intended for phase shift or delay measurements of two signals with identical frequency

Accumulated Phase: add/subtracting 360° to the Phase, when required.

Range: -180° to $+180^\circ$ (Acc. Phase is OFF)

Resolution: 0.00003° to 100 kHz, decreasing to $0.03^\circ > 100$ MHz. (10k sample statistics averaging)

Freq. Range: up to 300 MHz

Aux. Parameters: Freq (A), Va/Vb (in dB)

Totalize A, B, D, E

Inputs: up to 4 inputs (A, B, D, E)

Mode: Tot A, B, D, E; A+B, D+E; A-B, D-E; A/B, D/E

Range: 1 to 10^{10} counts

Freq range: up to 400 MHz

Start control: Manual, start arming

Stop control: Manual, stop arming, timed

Vmax, Vmin, Vp-p A, B, D, E

Range: -5 V to +5 V, -50V to +50V

Freq. Range: DC, 1Hz to 200 MHz

Coupling: Sine (AC or DC), Square (DC only)

Resolution: 1 mV (5V range), 10 mV (50V range)

Uncertainty (5V range):

- DC, 1Hz to 1kHz: $<1\% + 15$ mV
- 1kHz to 20 MHz sine: $3\% + 15$ mV (typ.)
- 20 to 100 MHz sine: $10\% + 15$ mV (typ.)
- 100 to 200 MHz sine: $30\% + 15$ mV (typ.)

(For square waves add 10% to Vmax/min & 20% to Vp-p)

(For 50V range, add 2% + 150 mV)

Aux parameters: Vmin, Vmax, Vp-p

Input Specifications

Inputs A, B, D, E (BNC connector)

Frequency Range:

- DC-Coupled: DC to 400 MHz
- AC-Coupled: 10 Hz to 400 MHz

Impedance: $1\text{M}\Omega // 40\text{ pF}$ or $50\ \Omega$ (VSWR ≤ 2.1 typ.)

Trigger Slope: Positive or negative

Channel-channel skew: <30 ps (after calibration)

Sensitivity (typical):

- DC-400 MHz: <70 mVrms (PreAmp=OFF)
- DC-100 MHz: 15 mVrms (PreAmp=ON)
- 100-200 MHz: 25 mVrms (PreAmp=ON)
- 200-350 MHz: 35 mVrms (PreAmp=ON)
- 350-400 MHz: 50 mVrms (PreAmp=ON)

Hysteresis window: approx. 20 mV (PreAmp=OFF)

Attenuation: x1, x10

Dynamic Range (x1):

PreAmp = OFF: 0.2 to 10 Vp-p within ± 5 V window

PreAmp = ON: 0.01 to 3 V p-p within ± 1.5 V window

Trigger Level: Read-out in menu

- Resolution: 1mV
- Uncertainty (x1): $\pm(15\text{ mV} + 1\% \text{ of trigger level})$

Trigger Level modes: Manual, Relative (to Vp-p), Auto

Auto Trigger Level is set to:

- 50% point of input signal's Vp-p, combined with a wide hysteresis between the 40% and 60% points, for frequency, period average, TIE
- 10% and 90% points, for Rise/Fall Time, Slew rate
- 50% point with minimum hysteresis for all other functions
- Min. voltage 200 mVp-p

Analog LP Filter: Nominal 10 or 100kHz selectable

Max Voltage Without Damage:

- $1\text{M}\Omega$: 350 V (DC + AC pk) to 440 Hz, falling to 12 Vrms at 1MHz.

- $50\ \Omega$: 12 Vrms

Input C (Option 10)

Operating Input Power Range opt. 10:

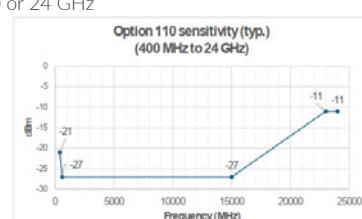
- 100 to 300 MHz: -21 dBm to +35 dBm

- 0.3 to 2.5 GHz: -27 dBm to +35 dBm

- 2.5 to 2.7 GHz: -21 dBm to +35 dBm

- 2.7 to 3.0 GHz: -15 dBm to +35 dBm

Prescaler Factor: 16


Impedance: $50\ \Omega$ nominal, VSWR $<2.5:1$ typ.

Max Power without Damage: +35 dBm

Connector: Type N Female

Input C (Option 110)

Freq. Range: 0.4 to 24 GHz; As standard SW limited by 10 GHz. Upgradable by SW license to 15, 20 or 24 GHz

Max Operating Input Power Level: +20 dBm

Prescaler Factor: 64

Impedance: $50\ \Omega$ nominal, VSWR $<2.0:1$ typ.

AM tolerance: > 90% within sensitivity range

Max Power Without Damage: +27 dBm

Connector: 2.92 mm, SMA compatible Female

Rear Panel Inputs and Outputs

Reference Frequency Input (BNC)

Frequency: 1, 5, or 10 MHz; 0.1 to 5Vrms sine

Impedance: $50\ \Omega$ (nom.)

Reference Frequency Output (BNC)

Source: External input if used, otherwise internal

Frequency: External ref freq., or 10 MHz (internal)

Output impedance: $50\ \Omega$

Amplitude: 1Vrms sine into $50\ \Omega$ (nom.)

External Disciplining Input (SMA)

Frequency: 1 pps (from external source)

Input levels: TTL levels in $50\ \Omega$

Arming Input (BNC)

Arming of all measuring functions

- Impedance: Approx. $1\text{k}\Omega$
- Freq. Range: DC to 160 MHz
- Trigger level: approx. 1.5V fixed
- Trigger slope: Pos. or neg. selectable

Programmable Pulse Output (Option 132)

Pulse mode: Pulse generator, Gate open, Alarm

Period range: 10ns-2s in 2ns steps

Pos. Pulse width range: 4ns-2s in 2ns steps

Rise time: 2.5 ns (nom.)

Output impedance: $50\ \Omega$ (nom.)

Output level: Low <0.4V; High: 4.5-5.25V (open output); 2.0-2.5V (50 ohm load)

Multi-GNSS antenna input (SMA) - Option 55

Supported Systems and Frequencies:

- GPS: L1 C/A, L5
- Galileo: E1 B/C, E5a
- GLONASS: L1OF
- BeiDou: B1I, B1C, B2A
- NavIC: SPS-L5
- QZSS: L1 C/A, L5

System/frequency bands can be individually enabled/disabled

Supported active antenna parameters:

Gain: 17 to 50 dB, <+10 dBm at receiver input
DC feed on center pin: +5V, 100 mA max.

Auxiliary Functions

Trigger Hold-Off

Time Delay Range: 20 ns to 2 s in 10 ns steps

External Start and Stop Arming

Modes:

- Start Arming
- Stop Arming
- Ext. Gate (combined Start and Stop Arming)

Arming channels: A, B, D, E or rear panel ARM

Arming delay to first trigger ready: <5 ns (typ.)

Start/Stop Time Delay Range: 20 ns to 2 sec.

Statistics

Functions: Maximum, Minimum, Mean, Δ max-min, Standard Deviation and Allan Deviation

Display: Numeric or frequency distribution graph

Sample Size: 2 to 16×10^6 samples

Limit alarm

Graphical indication of limits with Pass/Fail message on front panel.

Limit Qualifier: OFF or Capture values above, below, inside or outside limits

Sample Interval (Gate time)

The Sample Interval sets the measuring time (gate) in Frequency/Period and Totalize modes, and the time between measurements/samples in all other modes

Range: OFF or 50 ns to 1000 sec.

Mathematics

Functions: OFF, $(K^*X-L)/M$, $(K/X-L)/M$, $X/M-1$
X is current reading, and K (Scale factor), L (Nulling value) and M (Reference value) are constants

Other Functions

Timebase Reference: Internal, External or Auto-selected

Restart: Aborts current measurement and starts a new

Run/Hold: Switch between RUN (continuous measurements) and HOLD (Freezes result, until a new measurement is initiated via Restart)

Save and Recall Settings and Measurements

Instrument Set-ups can be saved/recalled. Setups saved to internal memory can be user protected.

Measurement results (RAM) can be accessed by connected PC, and/or saved in internal non-volatile memory, and moved to USB stick.

Time Base Oscillator

Mode	Disciplined	Free run
Time base type:	Rubidium	Rubidium
Uncertainty due to:	<ul style="list-style-type: none"> - Aging per 24h per month per year 	<ul style="list-style-type: none"> $<1 \times 10^{-12}$ (1) $<1 \times 10^{-12}$ (1) $<1 \times 10^{-12}$ (1)
- Temperature variations: 0°C to 50°C	5×10^{-12} (1) typ. value	
20°C to 26°C (typ. value)	$<5 \times 10^{-11}$ (1)	
	$<5 \times 10^{-10}$ (1)	
	$<3 \times 10^{-10}$	
	$<3 \times 10^{-11}$	
Short-term stability: $\tau = 1$ s (Allan Deviation) $\tau = 10$ s $\tau = 24$ h	<ul style="list-style-type: none"> $<5 \times 10^{-11}$ $<2 \times 10^{-11}$ $<1 \times 10^{-12}$ 	<ul style="list-style-type: none"> $<5 \times 10^{-11}$ $<2 \times 10^{-11}$
Phase noise stability (typ. value) at - 10 Hz / 100 Hz / 1 kHz / 10 kHz offset from carrier:	<-95 / -125 / -135 / -140 dBc	<-95 / -125 / -135 / -140 dBc
Frequency retrace (after 24h OFF time): - After 1 h ON time - After 7 min. ON time Time to lock:	$<3 \times 10^{-11}$ $<5 \times 10^{-10}$ <6 minutes	$<3 \times 10^{-10}$
Free run: Typical total uncertainty at 2σ (95%) confidence interval, averaged over 24h, for temperature 20°C to 26°C, up to 1 year after last calibration/adjustment		

(1) After 24h of continuous operation

Max. Measurement Speed and Storage size (RAM):

20 MSa/s (1 to 4 inputs): 16k samples
12.5 to 3.125 MSa/s (1 to 4 inputs): 32M samples

Display

Display: Graphic screen for menu control, numerical read-out, status information, plus distribution, trend and time-line graphs

Resolution: 1280x720 pixels

Type: Color Touch 5" TFT LCD display with backlight

Front panel accessible tools: Graph smoothing, pan and zoom, cursor read-out

Remote interfaces

Remote operation

Programmable Functions: All front panel accessible functions

Max. measurement rate (depending on measurement settings):

Block mode: up to 170k readings/s

Individual results: up to 425 readings/s

To Internal Memory: up to 20M readings/s

Data Output format: ASCII, IEEE double precision floating point, or packed

USB interface

USB version: 2.0

Front panel connectors:

2x Type A; (Host) 5V (nom.) max. 0.5A. For FW updates, SW licenses, external mouse, result storage, WiFi dongle.

LAN & WLAN interface

Speed: 10/100/1000 Mbps

Capabilities:

- Web server
- SCPI over HiSLIP protocol, compatibility with VISA

Supported WiFi USB-dongles:

TP-Link TL-WN321G, TP-LINK Archer T4U v.2, TP-LINK Archer T4U v.3

General Specifications

Environmental Data

Class: MIL-PRF-28800F, Class 3

Installation category:

Operating Temp:

0°C to +50°C / 5 to 75% RH, bench-top,

0°C to +40°C / 5 to 75% RH, rack-mount

Storage Temp: -40°C to +71°C

Max altitude: 4600 meters

Vibration: Random and sinusoidal according to MIL-PRF-28800F, Class 3

Shock: Half-sine 30G per MIL-PRF-28800F; Bench handling

Transit drop test: According to MIL-PRF-28800F

Safety: EN 61010-1:2011, pollution degree 2, installation/over voltage category II, measurement category I, CE, indoor use only.

CSA C22.2 No 61010-1-12

EMC: EN 61326-1:2013-06, increased test levels according to EN 61000-6-2:2008, Group 1, Class B, CE

Power Requirements

Max. Version: 100 to 240 V_{AC} $\pm 10\%$, 47 to 63 Hz, <70W

Dimensions and Weight

Width x Height x Depth: 210 x 90 x 395 mm
(8.25 x 3.6 x 15.6 in)

Weight: Net 3 kg (6.6 lb)

Ordering Information

Basic model

CNT-104R: 4-channel 400 MHz Frequency Analyzer, 7 ps resolution, Rubidium timebase

Input C Frequency Options

Option 10: 3 GHz Input C (HW-Factory installed)

Option 110: 10 GHz Input C (HW-Factory installed)

Option 110/15: SW upgrade from 10 to 15 GHz

Option 110/20: SW upgrade from 15 to 20 GHz

Option 110/24: SW upgrade from 20 to 24 GHz

Other HW options (factory installed)

Option 55: GNSS control of Rubidium oscillator

Option 11A: Rear panel inputs for inputs A,B,D,E

Option 11C: Rear panel inputs for input C

Options (SW license enabled)²

Option 132: Enable pulse output 0.5 Hz to 100 MHz

Option 151: TIE measurement function

Option 152: Add Easy-to-use Frequency Offset measurement function

2: These options can be installed at any time by the user

Included with Instrument:

- 2 year product warranty³
- Line cord (dependent on destination country)
- Link to User documentation (PDF)
- Certificate of Calibration
- Important information document

3: Warranty period is extended to 3 years, at no cost, by registering the product within 1 year from delivery.

Optional Accessories

Option 01/200: Multi-GNSS L1&L5 antenna, 40 dB gain, N-female connector, incl. mounting kit

Option 02/A: Antenna cable adapter SMA to TNC

Option 02/20T: Antenna cable, N to TNC, 20m

Option 02/50T: Antenna cable , N to TNC, 50m

Option 22/90: Rack-Mount Kit- 1 unit

Option 22/05: Rack-Mount Kit -2 units

Option 27: Carrying Case - soft

Option 27H: Heavy-duty Hard Transport Case

Option 90/07: Calibration Certificate with

Protocol; Rubidium oscillator

Option 90/07A: Accredited ISO 17025 calibration; Rubidium oscillator

Option 95/05: Extended warranty 2 extra years

OM-100: User's Manual English (printed)⁴

PM-100: Programmer's Manual English (printed)⁴

GS-100-EN: Getting Started English (printed)⁴

4: Always available as download from the Pendulum website