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Vision User Manual

The Vision User Manual provides detailed descriptions of the product functionality and
the step by step processes for use.

Looking for Something Else?

For information not found in the User Manual for your product, such as specifications
and API reference, browse Related Information.

Related information:

« Hardware and Software Operating System Compatibility
« License Setup and Activation
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Vision Overview

Vision Overview

The Vision Concepts Help describes the basic concepts of machine vision and
image processing for users with little or no imaging experience. This document also
contains in-depth discussions on machine vision and image processing functions for
advanced users.
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Digital Images

This section describes conceptual information about digital images, image display,
and system calibration.

Also contains information about the properties of digital images, image types, file
formats, the internal representation of images in NI Vision, image borders, and image
masks.

Definition of a Digital Image

Animage is a 2D array of values representing light intensity. For the purposes of image
processing, the term image refers to a digital image. An image is a function of the light
intensity f (x, y) where f is the brightness of the point (x, y), and x and y represent the
spatial coordinates of a picture element, or pixel.

By convention, the spatial reference of the pixel with the coordinates (0, 0) is located at
the top, left corner of the image. Notice in the following figure that the value of x
increases moving from left to right, and the value of y increases from top to bottom.

(0,0

— (% ¥)

In digital image processing, an imaging sensor converts an image into a discrete
number of pixels. The imaging sensor assigns to each pixel a numeric location and a
gray level or color value that specifies the brightness or color of the pixel.

Properties of a Digitized Image

A digitized image has three basic properties: resolution, definition, and number of
planes.

ni.com



Digital Images

Image Resolution

The spatial resolution of an image is determined by its number of rows and columns of
pixels. An image composed of m columns and n rows has a resolution of m x n. This
image has m pixels along its horizontal axis and n pixels along its vertical axis.

Image Definition

The definition of an image indicates the number of shades that you can see in the
image. The bit depth of an image is the number of bits used to encode the value of a

pixel. For a given bit depth of n, the image has an image definition of 2", meaning a

pixel can have 2" different values. For example, if n equals 8 bits, a pixel can have 256
different values ranging from 0 to 255. If n equals 16 bits, a pixel can have 65,536
different values ranging from 0 to 65,535 or from -32,768 to 32,767.

Vision can process images with 8-bit, 10-bit, 12-bit, 14-bit, 16-bit, floating point, or
color encoding. The manner in which you encode your image depends on the nature of
the image acquisition device, the type of image processing you need to use, and the
type of analysis you need to perform. For example, 8-bit encoding is sufficient if you
need to obtain the shape information of objects in an image. However, if you need to
precisely measure the light intensity of an image or region in an image, you should use
16-bit or floating-point encoding.

Use color encoded images when your machine vision or image processing application
depends on the color content of the objects you are inspecting or analyzing.

Vision does not directly support other types of image encoding, particularly images
encoded as 1-bit, 2-bit, or 4-bit images. In these cases, Vision automatically transforms
the image into an 8-bit image—the minimum bit depth for NI Vision—when opening
the image file.

The number of planes in an image corresponds to the number of arrays of pixels that
compose the image. A grayscale or pseudo-color image is composed of one plane. A
true-color image is composed of three planes—one each for the red component, blue
component, and green component.

© National Instruments 1 1
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Number of Planes

In true-color images, the color component intensities of a pixel are coded into three
different values. A color image is the combination of three arrays of pixels
corresponding to the red, green, and blue components in an RGB image. HSL images
are defined by their hue, saturation, and luminance values.

Image Types

The Vision libraries can manipulate three types of images: grayscale, color, and
complex images. Although Vision supports all three image types, certain operations on
specificimage types are not possible. For example, you cannot apply the logic
operator AND to a complex image.

The following table shows how many bytes per pixel grayscale, color, and complex
images use. For an identical spatial resolution, a color image occupies four times the
memory space of an 8-bit grayscale image, and a complex image occupies eight times
the memory of an 8-bit grayscale image.

Image Type Number of Bytes per Pixel Data

8-bit (Unsigned)

Integer Grayscale | | | GRETEEDODS

(1 byte or 8-bit) 8-bit for the grayscale intensity

16-bit (Unsigned)
Integer Grayscale

(2 bytes or 16-bit) 16-bit for the grayscale intensity

16-bit (Signed)
Integer Grayscale

16-bit for the grayscale intensity

(2 bytes or 16-bit)

32-bit Floating-Point
Grayscale
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Image Type Number of Bytes per Pixel Data

(4 bytes or 32-bit) 32-bit for the grayscale intensity

32-bit RGB Color

8-bit for the alpha value (not used), 8-bit for the red intensity, 8-bit for the
green intensity, 8-bit for the blue intensity

(4 bytes or 32-bit)

64-bit (Unsigned)
RGB Color

_ 16-bit for the alpha value (not used), 16-bit for the green intensity, 16-bit for
(8 bytes or 64-bit) the red intensity, 16-bit for the blue intensity

64-bit Complex Color

(8 bytes or 64-bit) 32-bit floating for the real part, 32-bit for the imaginary part

Grayscale Images

A grayscale image is composed of a single plane of pixels. Each pixel is encoded using
one of the following single numbers:

« An 8-bit unsigned integer representing grayscale values between 0 and 255

« A 16-bit unsigned integer representing grayscale values between 0 and 65,535

« A 16-bit signed integer representing grayscale values between -32,768 and 32,767

+ Asingle-precision floating point number, encoded using four bytes, representing
grayscale values ranging from - to o

Color Images

A colorimage is encoded in memory as either a red, green, and blue (RGB) image or a
hue, saturation, and luminance (HSL) image. Color image pixels are a composite of
four values. RGB images store color information using 8 bits each for the red, green,
and blue planes. HSL images store color information using 8 bits each for hue,
saturation, and luminance. RGB U64 images store color information using 16 bits each
for the red, green, and blue planes. In the RGB and HSL color models, an additional

© National Instruments 13
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8-bit value goes unused. This representation is known as 4 e 8-bit or 32-bit encoding.
In the RGB U64 color model, an additional 16-bit value goes unused. This
representation is known as 4 « 16-bit or 64-bit encoding.

Alpha plane (not used) [ —— —
Red or hue plane [ — — —
Green or saturation plane ——
Blue or luminance plane ——

Complex Images

A complex image contains the frequency information of a grayscale image. You can
create a complex image by applying a Fast Fourier transform (FFT) to a grayscale
image. After you transform a grayscale image into a complex image, you can perform
frequency domain operations on the image.

Each pixel in a complex image is encoded as two single-precision floating-point values,
which represent the real and imaginary components of the complex pixel. You can
extract the following four components from a complex image: the real part, imaginary
part, magnitude, and phase.

Image Files

An image file is composed of a header followed by pixel values. Depending on the file
format, the header contains image information about the horizontal and vertical
resolution, pixel definition, and the original palette. Image files may also store
information about calibration, pattern matching templates, and overlays. The
following are common image file formats:

+ Bitmap (BMP)

« Tagged image file format (TIFF)

+ Portable network graphics (PNG)—Offers the capability of storing image
information about spatial calibration, pattern matching templates, custom data,
and overlays

« Joint Photographic Experts Group format (JPEG)
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« Joint Photographic Experts Group 2000 format (JPEG2000)

Digital Images

« Audio Video Interleave (AVI)—Offers the capability of storing multiple image frames

in a single file

« National Instruments internal image file format (AIPD)—Used for saving floating-

point, complex, and HSL images

The following table lists the image file formats supported for each image type:

BMP TIFF
8-bit Unsigned Grayscale v v
16-bit Unsigned Grayscale v
16-bit Signed Grayscale v
32-bit Floating-Point Grayscale
32-bit RGB Color v

64-bit RGB Color
32-bit HSL Color

Complex

PNG
v
v
v

JPEG

v

JPEG2000 AVl AIPD

v
v
v

Internal Representation of a Vision Image

v v

&
SN NN NEN

The following figure illustrates how a Vision image is represented in system memory. In
addition to the image pixels, the stored image includes additional rows and columns
of pixels called the image border and the left and right alignments. Specific processing
functions involving pixel neighborhood operations use image borders. The alignment
regions ensure that the first pixel of the image is 64-byte aligned in memory. The size
of the alignment blocks depend on the image width and border size. Aligning the

image increases processing speed by as much as 30%.

The line width is the total number of pixels in a horizontal line of an image, which
includes the sum of the horizontal resolution, the image borders, and the left and right
alignments. The horizontal resolution and line width may be the same length if the
horizontal resolution is a multiple of 32 bytes and the border size is 0.
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1. Image

2. Image Border

3. Vertical Resolution
4. Left Alignment

5. Horizontal Resolution
6. Right Alignment

7. Line Width

Image Borders

Many image processing functions process a pixel by using the values of its neighbors. A
neighbor is a pixel whose value affects the value of a nearby pixel when an image is
processed. Pixels along the edge of an image do not have neighbors on all four sides. If
you need to use a function that processes pixels based on the value of their
neighboring pixels, specify an image border that surrounds the image to account for
these outlying pixels. You define the image border by specifying a border size and the
values of the border pixels.

The size of the border should accommodate the largest pixel neighborhood required
by the function you are using. The size of the neighborhood is specified by the size of a
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2D array. For example, if a function uses the eight adjoining neighbors of a pixel for
processing, the size of the neighborhood is 3 x 3, indicating an array with three
columns and three rows. Set the border size to be greater than or equal to half the
number of rows or columns of the 2D array rounded down to the nearest integer value.
For example, if a function uses a 3 x 3 neighborhood, the image should have a border
size of at least 1; if a function uses a 5 x 5 neighborhood, the image should have a
border size of at least 2. In Vision, an image is created with a default border size of 3,
which can support any function using up to a 7 x 7 neighborhood without any
modification.

Vision provides three ways to specify the pixel values of the image border. The
following figure illustrates these options. Figure A shows the pixel values of an image.
By default, all image border pixels are uninitialized. You can set all of the border pixels
to have a value of 0, as shown in figure B. You can copy the values of the pixels along
the edge of the image into the border pixels, as shown in figure C, or you can mirror the
pixel values along the edge of the image into the border pixels, as shown in figure D.

© National Instruments 17
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The method you use to fill the border pixels depends on the processing function you
require for your application. Review how the function works before choosing a border-
filling method because your choice can drastically affect the processing results. For
example, if you are using a function that detects edges in an image based on the
difference between a pixel and its neighbors, do not set the border pixel values to zero.
As shown in figure B, an image border containing zero values introduces significant
differences between the pixel values in the border and the image pixels along the
border, which causes the function to detect erroneous edges along the border of the
image. If you are using an edge detection function, copy or mirror the pixel values
along the border into the border region to obtain more accurate results.

In Vision, most image processing functions that use neighbors automatically set pixel
values in the image border using neighborhoods. The grayscale filtering operations
low pass, Nth order, and edge detection use the mirroring method to set pixels in the
image border. The binary morphology, grayscale morphology, and segmentation
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functions copy the pixel values along the border into the border region. The correlate,
circles, reject border, remove particles, skeleton, and label functions set the pixel
values in the border to zero.

» Note The border of an image is taken into account only for processing. The
border is never displayed or stored in a file.

Image Masks

An image mask isolates parts of an image for processing. If a function has an image
mask parameter, the function process or analysis depends on both the source image
and the image mask.

An image mask is an 8-bit binary image that is the same size as or smaller than the
inspection image. Pixels in the image mask determine whether corresponding pixels in
the inspection image are processed. If a pixel in the image mask has a nonzero value,
the corresponding pixel in the inspection image is processed. If a pixel in the image
mask has a value of 0, the corresponding pixel in the inspection image is not
processed.

When to Use

Use image masks when you want to focus your processing or inspection on particular
regions in the image.

Concepts

Pixels in the source image are processed if corresponding pixels in the image mask
have values other than zero. The following figure shows how a mask affects the output
of the function that inverts the pixel values in an image. Figure A shows the inspection
image. Figure B shows the image mask. Pixels in the mask with zero values are
represented in black, and pixels with nonzero values are represented in white. Figure C
shows the inverse of the inspection image using the image mask. Figure D shows the
inverse of the inspection image without the image mask.

© National Instruments 19
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The Effect of an Image Mask

You can limit the area in which your function applies an image mask to the bounding
rectangle of the region you want to process. This technique saves memory by limiting
the image mask to only the part of the image containing significant information. To
keep track of the location of this region of interest (ROI) in regard to the original image,
Vision sets an offset. An offset defines the coordinate position in the original image
where you want to place the origin of the image mask.

The following figure illustrates the different methods of applying image masks. Figure
A shows the ROl in which you want to apply an image mask. Figure B shows an image
mask with the same size as the inspection image. In this case, the offset is set to [0, 0].
A mask image also can be the size of the bounding rectangle of the ROI, as shown in
figure C, where the offset specifies the location of the mask image in the reference
image. You can define this offset to apply the mask image to different regions in the
inspection image.

&

©

[ =]

)
ii

1. Region of Interest
2. Image Mask

the following figure illustrates the use of a mask with two different offsets. Figure A
shows the inspection image, and figure B shows the image mask. Figure C and Figure D
show the results of a function using the image mask given the offsets of [0, 0] and [3,
1], respectively.
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58]
—

c D

. Border pixels
[1 [ pixels not affected by the mask
B rioels affected by the mask

Related concepts:

+ Regions of Interest

Display

This section contains information about image display, palettes, regions of interest,
and nondestructive overlays.

Image Display

Displaying images is an important component of a vision application because it gives
you the ability to visualize your data. Image processing and image visualization are
distinct and separate elements. Image processing refers to the creation, acquisition,
and analysis of images. Image visualization refers to how image data is presented and
how you can interact with the visualized images. A typical imaging application uses
many images in memory that the application never displays.
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When to Use

Use display functions to visualize your image data, retrieve generated events and the
associated data from an image display environment, select ROIs from an image
interactively, and annotate the image with additional information.

Concepts

Display functions display images, set attributes of the image display environment,
assign color palettes to image display environments, close image display
environments, and set up and use an image browser in image display environments.
Some ROl functions—a subset of the display functions—interactively define ROIs in
image display environments. These ROI functions configure and display different
drawing tools, detect draw events, retrieve information about the region drawn on the
image display environment, and move and rotate ROIs. Nondestructive overlays
display important information on top of an image without changing the values of the
image pixels.

In-Depth Discussion

The following section describes the display modes available in Vision and the 16-bit
grayscale display mapping methods.

Display Modes

One of the key components of displaying images is the display mode that the video
adapter operates. The display mode indicates how many bits specify the color of a
pixel on the display screen. Generally, the display mode available from a video adapter
ranges from 8 bits to 32 bits per pixel, depending the amount of video memory
available on the video adapter and the screen resolution you choose.

If you have an 8-bit display mode, a pixel can be one of 256 different colors. If you have
a 16-bit display mode, a pixel can be one of 65,536 colors. In 24-bit or 32-bit display
mode, the color of a pixel on the screen is encoded using 3 or 4 bytes, respectively. In
these modes, information is stored using 8 bits each for the red, green, and blue
components of the pixel. These modes offer the possibility to display about 16.7
million colors.
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Understanding your display mode is important to understanding how Vision displays
the different image types on a screen. Image processing functions often use grayscale
images. Because display screen pixels are made of red, green, and blue components,

the pixels of a grayscale image cannot be rendered directly.

In 24-bit or 32-bit display mode, the display adapter uses 8 bits to encode a grayscale
value, offering 256 gray shades. This color resolution is sufficient to display 8-bit
grayscale images. However, higher bit depth images, such as 16-bit grayscale images,
are not accurately represented in 24-bit or 32-bit display mode. To display a 16-bit
grayscale image, either ignore the least significant bits or use a mapping function to
convert 16 bits to 8 bits.

Mapping Methods for 16-Bit Image Display

The following techniques describe how Vision converts 16-bit images to 8-bit images
and displays them using mapping functions. Mapping functions evenly distribute the
dynamic range of the 16-bit image to an 8-bit image.

« Full Dynamic—The minimum intensity value of the 16-bit image is mapped to 0,
and the maximum intensity value is mapped to 255. All other values in the image
are mapped between 0 and 255 using the equation shown below. This mapping
method is general purpose because it ensures the display of the complete dynamic
range of the image. Because the minimum and maximum pixel values in an image
are used to determine the full dynamic range of that image, the presence of noisy
or defective pixels (for non-Class A sensors) with minimum or maximum values can
affect the appearance of the displayed image. Vision uses the following technique
by default:

_ X"y
z=42 x 255

where;

+ zis the 8-bit pixel value,

X is the 16-bit value,

y is the minimum intensity value,
v is the maximum intensity value.

90% Dynamic—The intensity corresponding to 5% of the cumulative histogram is
mapped to 0, the intensity corresponding to 95% of the cumulated histogram is
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mapped to 255. Values in the 0 to 5% range are mapped to 0, while values in the 95
to 100% range are mapped to 255. This mapping method is more robust than the
full dynamic method and is not sensitive to small aberrations in the image. This
method requires the computation of the cumulative histogram or an estimate of

the histogram. Refer to image analysis, for more information on histograms.

+ Given Percent Range—This method is similar to the 90% Dynamic method, except
that the minimum and maximum percentages of the cumulative histogram that
the software maps to 8-bit are user defined.

« Given Range—This technique is similar to the Full Dynamic method, except that
the minimum and maximum values to be mapped to 0 and 255 are user defined.
You can use this method to enhance the contrast of some regions of the image by
finding the minimum and maximum values of those regions and computing the
histogram of those regions. A histogram of this region shows the minimum and
maximum intensities of the pixels. Those values are used to stretch the dynamic
range of the entire image.

« Downshifts—This technique is based on shifts of the pixel values. This method
applies a given number of right shifts to the 16-bit pixel value and displays the
least significant bit. This technique truncates some of the lowest bits, which are
not displayed. This method is very fast, but it reduces the real dynamic of the
sensor to 8-bit sensor capabilities. It requires knowledge of the bit-depth of the
imaging sensor that has been used. For example, an image acquired with a 12-bit
camera should be visualized using four right shifts in order to display the eight
most significant bits acquired with the camera. If you are using a National
Instruments image acquisition device, this technique is the default used by
Measurement & Automation Explorer (MAX).

Related concepts:

+ Image Analysis

Palettes

At the time a grayscale image is displayed on the screen, Vision converts the value of
each pixel of the image into red, green, and blue intensities for the corresponding pixel
displayed on the screen. This process uses a color table, called a palette, which
associates a color to each possible grayscale value of an image. Vision provides the
capability to customize the palette used to display an 8-bit grayscale image.
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When to Use

With palettes, you can produce different visual representations of an image without
altering the pixel data. Palettes can generate effects, such as photonegative displays or
color-coded displays. In the latter case, palettes are useful for detailing particular
image constituents in which the total number of colors is limited.

Displaying images in different palettes helps emphasize regions with particular
intensities, identify smooth or abrupt gray-level variations, and convey details that
might be difficult to perceive in a grayscale image. For example, the human eye is
much more sensitive to small intensity variations in a bright area than in a dark area.
Using a color palette may help you distinguish these slight changes.

Concepts

A palette is a pre-defined or user-defined array of RGB values. It defines for each
possible gray-level value a corresponding color value to render the pixel. The gray-
level value of a pixel acts as an address that is indexed into the table, returning three
values corresponding to a red, green, and blue (RGB) intensity. This set of RGB values
defines a palette in which varying amounts of red, green, and blue are mixed to
produce a color representation of the value range.

In the case of 8-bit grayscale images, pixels can take 28, or 256, values ranging from 0
to 255. Color palettes are composed of 256 RGB elements. A specific color is the result
of applying a value between 0 and 255 for each of the three color components: red,
green, and blue. If the red, green, and blue components have an identical value, the
result is a gray level pixel value.

A gray palette associates different shades of gray with each value so as to produce a
linear and continuous gradation of gray, from black to white. You can set up the palette
to assign the color black to the value 0 and white to 255, or vice versa. Other palettes
can reflect linear or nonlinear gradations going from red to blue, light brown to dark
brown, and so on.

Vision has five predefined color palettes. Each palette emphasizes different shades of
gray.

© National Instruments 25



26

Digital Images

In-Depth Discussion

The following sections introduce the five predefined palettes available in NI Vision. The
graphs in each section represent the color tables used by each palette. The horizontal
axes of the graphs represent the input gray-level range [0, 255], and the vertical axes
represent the RGB intensities assigned to a given gray-level value.

Gray Palette

This palette has a gradual gray-level variation from black to white. Each value is
assigned to an equal amount of red, green, and blue in order to produce a gray-level.

Red ) e

Green

Blue s

o 255

Temperature Palette

This palette has a gradation from light brown to dark brown. 0 is black and 255 is
white.

Red ——

Grean o

Blue

o 128 258
Rainbow Palette

This palette has a gradation from blue to red with a prominent range of greens in the
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middle value range. 0 is blue and 255 is red.

Red

Grean

Blue

o

Gradient Palette

Digital Images

This palette has a gradation from red to white with a prominent range of light blue in
the upper value range. 0 is black and 255 is white.

Red

Grean

Blue

Binary Palette

152

255

This palette has 17 cycles of 15 different colors. The following table illustrates these
colors, where g is the gray-level value.

g:
1

N

W

255

255
255

Resulting Color

Red
Green
Blue
Yellow

Purple
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g= R G B Resulting Color
6 0 255 255 Aqua

7 255 127 0 Orange

8 255 0 127 Magenta

9 127 255 0 Bright green
10 127 0 255 Violet

11 0 127 255 Sky blue

12 0 255 127 Sea green
13 255 127 127 Rose

14 127 255 127 Spring green
15 127 127 255 Periwinkle

The values 0 and 255 are special cases. A value of 0 results in black, and a value of 255
results in white.

This periodic palette is appropriate for the display of binary and labeled images.

Red ‘ ‘

Graan ‘

Blue | ‘

Regions of Interest

Aregion of interest (ROI) is an area of an image in which you want to perform your
image analysis. When to Use

Use ROIs to focus your processing and analysis on part of an image. You can define an
ROI using standard contours, such as an oval or rectangle, or freehand contours. You
also can perform any of the following options:
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+ Construct an ROl in an image display environment.

+ Associate an ROl with an image display environment.

« Extract an ROl associated with an image display environment.
« Erase the current ROI from an image display environment.

« Transform an ROl into an image mask.

« Transform an image mask into an ROI.

Concepts

An ROI describes a region or multiple regions of an image in which you want to focus
your processing and analysis. These regions are defined by specific contours. Vision
supports the following contour types.

Icon Contour Name
Point

e Line

O Rectangle

O Oval

- Polygon

o Freehand Region

s Annulus

- Broken Line

& Freehand Line

e Rotated Rectangle

You can define an ROl interactively, programmatically, or with an image mask. Define
an ROl interactively by using the tools from the tools palette to draw an ROl on a
displayed image. For more information about defining ROIs programmatically or with
an image mask, refer to your Vision user manual.

Nondestructive Overlay

A nondestructive overlay enables you to annotate the display of an image with useful
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information without actually modifying the image. You can overlay text, lines, points,
complex geometric shapes, and bitmaps on top of your image without changing the
underlying pixel values in your image; only the display of the image is affected. You can
also group several different overlays together to indicate a similarity between the
overlays. Overlay groups act as a single overlay and allow you to apply common
overlay functions to the entire group, such as clear, copy, and merge. The following
figure shows how you can use the overlay to depict the orientation of each particle in
the image.

When to Use

You can use nondestructive overlays for many purposes, such as the following:

« Highlighting the location in an image where objects have been detected.

« Adding quantitative or qualitative information to the displayed image, such as the
match score from a pattern matching function.

« Displaying ruler grids or alignment marks.

Concepts

Overlays do not affect the results of any analysis or processing functions—they affect
only the display. The overlay is associated with an image, so there are no special
overlay data types. You need only to add the overlay to your image. By default, Vision
clears the overlay anytime you change the size or orientation of the image because the
overlay ceases to have meaning. However, you can set the properties for an overlay
group so that transformations applied to the image are also applied to the overlay
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group. You can save overlays with images using the PNG file format.

Setting Up Your Imaging System

Before you acquire, analyze, and process images, you must set up your imaging
system. Five factors comprise a imaging system: field of view, working distance,
resolution, depth of field, and sensor size. The following figure illustrates these
concepts.
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1. Resolution—The smallest feature size on your object that the imaging system can
distinguish

2. Field of view—The area of the object under inspection that the camera can acquire

3. Working distance—The distance from the front of the camera lens to the object
under inspection

4. Sensor size—The size of a sensor's active area, typically defined by the sensor's

horizontal dimension

Depth of field—The maximum object depth that remains in focus

Image—The image under inspection.

Pixel—The smallest division that makes up a digital image.

Pixel resolution—The minimum number of pixels needed to represent the object

under inspection

© N o,

For additional information about the fundamental parameters of an imaging system,
refer to the Application Notes sections of the Edmund Industrial Optics Optics and
Optical Instruments Catalog, or visit Edmund Industrial Optics at
www.edmundoptics.com.

Acquiring Quality Images

The manner in which you set up your system depends on the type of analysis and
processing you need to do. Your imaging system should produce images with high
enough quality so that you can extract the information you need from the images. Five
factors contribute to overall image quality: resolution, contrast, depth of field,
perspective, and distortion.

Resolution

There are two kinds of resolution to consider when setting up your imaging system:
pixel resolution and resolution. Pixel resolution refers to the minimum number of
pixels you need to represent the object under inspection. You can determine the pixel
resolution you need by the smallest feature you need to inspect. Try to have at least
two pixels represent the smallest feature. You can use the following equation to
determine the minimum pixel resolution required by your imaging system:

(length of object's longest axis / size of object's smallest feature) x 2
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If the object does not occupy the entire field of view, the image size will be greater than
the pixel resolution.

Resolution indicates the amount of object detail that the imaging system can
reproduce. Images with low resolution lack detail and often appear blurry. Three
factors contribute to the resolution of your imaging system: field of view, the camera
sensor size, and number of pixels in the sensor. When you know these three factors,
you can determine the focal length of your camera lens.

Field of View

The field of view is the area of the object under inspection that the camera can
acquire. The following figure describes the relationship between pixel resolution and
the field of view.

hﬂ] | PRREIN 0 [T

Figure A shows an object that occupies the field of view. Figure B shows an object that
occupies less space than the field of view. If w is the size of the smallest feature in the x
direction and h is the size of the smallest feature in the y direction, the minimum x
pixel resolution is:

YWeov
w

x 2

The minimum y pixel resolution is:

hfov
h

x 2

Choose the larger pixel resolution of the two for your imaging application.
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Sensor Size and Number of Pixels in the Sensor

The camera sensor size is important in determining your field of view, which is a key
element in determining your minimum resolution requirement. The sensor's diagonal
length specifies the size of the sensor's active area. The number of pixels in your
sensor should be greater than or equal to the pixel resolution. Choose a camera with a
sensor that satisfies your minimum resolution requirement.

Lens Focal Length

When you determine the field of view and appropriate sensor size, you can decide
which type of camera lens meets your imaging needs. A lens is defined primarily by its
focal length. The relationship between the lens, field of view, and sensor size is as
follows:

focal length = (sensor size x working distance) / field of view.

If you cannot change the working distance, you are limited in choosing a focal length
for your lens. If you have a fixed working distance and your focal length is short, your
images may appear distorted. However, if you have the flexibility to change your
working distance, modify the distance so that you can select a lens with the
appropriate focal length and minimize distortion.

Contrast

Resolution and contrast are closely related factors contributing to image quality.
Contrast defines the differences in intensity values between the object under
inspection and the background. Your imaging system should have enough contrast to
distinguish objects from the background. Proper lighting techniques can enhance the
contrast of your system.

Depth of Field
The depth of field of a lens is its ability to keep objects of varying heights in focus. If

you need to inspect objects with various heights, chose a lens that can maintain the
image quality you need as the objects move closer to and further from the lens.
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Perspective

Perspective errors often occur when the camera axis is not perpendicular to the object
you are inspecting. Figure A shows an ideal camera position. Figure B shows a camera
imaging an object from an angle.

1. Lens Distortion
2. Perspective Error
3. Known Orientation Offset

Perspective errors appear as changes in the object's magnification depending on the
object's distance from the lens. Figure A shows a grid of dots. Figure B illustrates
perspective errors caused by a camera imaging the grid from an angle.
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Try to position your camera perpendicular to the object you are trying to inspect to
reduce perspective errors. If you need to take precise measurements from your image,
correct perspective error by applying calibration techniques to your image.
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Distortion

Nonlinear distortion is a geometric aberration caused by optical errors in the camera
lens. A typical camera lens introduces radial distortion. This causes points to appear
further away from the optical center of the lens than they really are. Figure C illustrates
the effect of distortion on a grid of dots. When distortion occurs, information in the
image is misplaced relative to the center of the field of view, but the information is not
necessarily lost. Therefore, you can undistort your image through spatial calibration.

Spatial Calibration

This section describes how to calibrate an imaging setup so that you can convert pixel
coordinates to real-world coordinates. Converting pixel coordinates to real-world
coordinates is useful when you need to make accurate measurements from inspection
images using real-world units.

Introduction

Spatial calibration is the process of computing pixel to real-world unit transformations
while accounting for many errors inherent to the imaging setup. Calibrating your
imaging setup is important when you need to make accurate measurements in real-
world units.

An image contains information in the form of pixels. Spatial calibration allows you to
translate a measurement from pixel units into another unit, such as inches or
centimeters. This conversion is easy if you know a conversion ratio between pixels and
real-world units. For example, if one pixel equals one inch, a length measurement of 10
pixels equals 10 inches.

This conversion may not be straightforward because perspective projection and lens
distortion affect the measurement in pixels. Calibration accounts for possible errors by
constructing mappings that you can use to convert between pixel and real world units.
You also can use the calibration information to correct perspective or nonlinear
distortion errors for image display and shape measurements.

Vision calibration software supports area scan cameras using rectilinear or telecentric
lenses. Vision calibration software may not accurately calibrate true fisheye or
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curvilinear lenses.

When to Use

Use the Vision calibration tools to do the following:

« Calibrate your imaging setup automatically by imaging a standard pattern, such as
a calibration template, or by providing reference points.

+ Convert measurements such as lengths, areas, or widths between real-world units
and pixel units.

+ Apply a learned calibration mapping to correct an image acquired through a
calibrated setup.

« Assign an arbitrary calibration axis to measure positions in real-world units relative
to a pointin an image.

Calibration Algorithms This section describes the calibration algorithms that are
supported by Vision. The following table provides a brief description of when to use
each algorithm. Refer to individual subsections for detailed information.

Name When to Use

Use simple calibration when your camera is perpendicular to the plane of the object
under inspection and distortion is negligible. For example, simple calibration can be
used with an imaging setup that uses a telecentric lens.

Simple
Calibration

Perspective Use perspective calibration to correct perspective distortion introduced by a camera
Calibration thatis not perpendicular to plane of the object under inspection.

Use a distortion model to correct distortion introduced by lens imperfections. Vision
supports the following distortion models:

Distortion + Division—Corrects radial distortion.
Modeling + Polynomial—Corrects radial and tangential distortion.

If your camera is also not perpendicular to the object under inspection, you can
combine distortion modelling with perspective calibration.
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Use a camera model to model detailed camera characteristics, including the focal
length, image center, and distortion model.

Camera Camera models are most commonly used in robotics applications to determine the
Modeling  relationship of the camera to the object under inspection.

Because a camera model includes a distortion model, you do not need to compute a

separate distortion model.

Microplane

Calibration Use microplane calibration when the working plane is nonlinear.

Simple Calibration

The simple calibration algorithm performs a direct conversion of pixel coordinates and
real-world units.

Perspective Calibration

The perspective calibration algorithm computes a pixel to real-world mapping for the
entire image, which allows you to easily convert between pixel coordinates and real-
world units.

The following figure contains multiple dots of the same size in real world values which
are distorted by perspective projection:
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Distortion Modeling

A distortion model uses one or more calibration grids to model distortion introduced
by lens imperfections and correct distortion for the entire image. Distortion modeling
can model radial and tangential distortion.
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The following figures illustrate typical radial lens distortion.

&

m

Figure A illustrates barrel distortion and figure B illustrates pincushion distortion. You
can use both the division model and the polynomial model to correct for radial
distortion.

Tangential distortion occurs when the camera sensor is not aligned with the optical
axis. Use the polynomial model if your image exhibits tangential distortion.

Camera Modeling

A camera model uses multiple calibration grids to model detailed camera
characteristics, including the focal length, image center, and distortion model. Using a
camera model, you can apply mathematical calculations to determine values such as
the pose of an object.

Microplane Calibration

The microplane calibration algorithm computes pixel to real-world mappingsin a
rectangular region centered on each point in a calibration grid. Vision interpolates the
mapping information around each point based on neighboring points.

Use microplane calibration to correct distortion introduced by a nonlinear working
plane. The following figure illustrates nonlinear distortion:
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Concepts

The calibration software uses a calibration algorithm and a list of known pixel to real-
world mappings to compute calibration information for the entire image. The
calibration software uses these known mappings to compute the pixel to real-world
mapping for the entire image. Individual calibration algorithms may have specific
requirements for creating the list of pixel to real-world mappings.

After you calibrate an image, you can define a calibration axis in order to express pixel
measurements in real-world units, or spatially correct a portion of a distorted image.

You can also review statistical results to evaluate the quality or state of your calibration
system.

Mapping Pixel Coordinates to Real-World Coordinates

You can specify a list of pixel to real-world mappings in two ways, depending on the
calibration algorithm you select. You can manually map pixel coordinates to real-world
coordinates, or you can use a calibration grid.

The resulting calibration information is valid only for the imaging setup that you used
to create the mapping. Any change in the imaging setup that violates the mapping
information compromises the accuracy of the calibration information.

Defining Mappings Manually

To define mappings manually, input a list of real world points and the corresponding
pixel coordinates to the calibration software. The following table describes the
algorithms that allow you to define mappings manually:
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Name Description

Simple calibration transforms pixel coordinates to real-world coordinates by scaling
the image horizontally and vertically. Provide the calibration software with the
horizontal and vertical distance between pixels in real-world units.

Simple
Calibration

Provide a set of pixel to real-world mappings to perspective calibration to correct the
Perspective perspective distortion. A minimum of 4 pixel to real-world mappings are required to
Calibration correct the perspective distortion, but additional mappings may provide better
results.

Using a Calibration Grid

A calibration grid consists of a grid of equidistant points similar to the grid of dots
shown in figure A.
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To use a calibration grid, provide the calibration with the horizontal (dx) and vertical
(dy) spacing between the points in real-world units. The calibration software uses the
image of the grid, shown in figure B, and the spacing between the dots in the grid to
generate the list of pixel to real-world mappings required for the calibration process.

The following algorithms support using a calibration grid:
+ Distortion Model,

o Division
o Polynomial
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« Camera Model,
+ Microplane Calibration.

Refer to the following guidelines to achieve accurate results with a calibration grid:

« The calibration grid should cover most of the field of view or area under
inspection.

« A minimum of 4 pixel to real-world mappings are required to correct distortion in
the image, but additional mappings may provide better results.

Using Multiple Calibration Grid Images

Some calibration algorithms may require multiple calibration grids. For example, a
distortion model can only be learned for points that are present in a calibration grid
image. If the points do not cover the entire field of view or area under inspection, the
distortion model may be inaccurate.

Vision calibration software can use multiple calibration grid images. The following
figure illustrates multiple calibration grid images obtained by repositioning the
calibration grid within a single field of view.
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When multiple images are supplied, the calibration software uses a least square
method to optimize the distortion model. After learning the distortion model, you
must perform perspective calibration to set the working plane on which you want to
make measurements and enable pixel to real-world mappings.

The following figure illustrates the steps involved in using multiple calibration grid
images.
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First, learn the distortion or camera model using points from multiple calibration grid
images. Then learn the perspective calibration for the working plane on which you
want to make the measurement. If the working plane changes, you must relearn the
perspective calibration.

Using Multiple Calibration Grid Images in Multiple Planes

To compute a camera model, you must provide multiple grid images from at least
three different projection planes. The following figure illustrates the same calibration
grid in multiple projection planes.

For accurate results, the calibration grids used to calculate the camera model should
cover a minimum relative angle of 45 degrees. The following figures illustrate different
relative angle coverages:

— > ><
O 0 @

The leftmost figure illustrates two calibration grids with a relative angle range of 20
degrees. The rightmost figure illustrates two calibration grids with a relative angle of
90 degrees. A camera model calculated for the left figure would be less accurate than
the camera model calculated for the right figure. For example, the point where the
grids intersect in the right figure is much more clearly defined than in the other figures.
If the relative angle between calibration grids is too small, the calibration software
indicates that it does not have sufficient data to compute the camera model.

For the most accurate results, use multiple calibration grid images to compute a
camera model, as illustrated in the following figure:
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Calibration Axis

To express measurements in real-world units, you must define a calibration axis. To
define a calibration axis, specify the following information:

« The origin of the calibration axis, expressed in pixel coordinates.

« The angle between the calibrated x-axis and the horizontal axis of the image,
expressed in degrees.

« The direction of the calibrated vertical axis, either direct or indirect.

The following figure illustrates a default calibration axis and a user-defined calibration
axis. The origins of the coordinate systems lie at the center of the circled dots. Point A
indicates the origin for a default calibration axis starting at the top leftmost pixel of an
image. Point B indicates the origin of a user-defined calibration axis.

The calibration axis angle, defined by 6, specifies the orientation of the calibrated x*
axis with respect to the horizontal axis in the image.

The calibration axis originating at point A uses an indirect vertical axis, while the
calibration axis originating at point B uses a direct vertical axis.
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The following figures illustrate vertical axis directions. An indirect axis orientation, as
shown in figure A, corresponds to a typical digital image where the top left pixel serves
as the origin. A direct axis orientation, as shown in figure B, corresponds to the
orientation of a real-world cartesian Y-axis.

Default Calibration Axis Definition

If the calibration uses multiple calibration grid images, the calibration axis is defined in
the working plane image.

The calibration process defines a default calibration axis as follows:

1. Theoriginis set according to the following conditions:
o If you use manually defined reference points, the origin is placed at point 0, 0
relative to the points you define.
o If you use a calibration grid image, the origin is placed at the center of the left,
top-most pointin the calibration grid image.
2. The angle is set to zero. This aligns the x-axis with the topmost row of points in the
calibration grid image.
3. Thevertical axis direction is set to indirect. This aligns the y-axis to the leftmost
column of points in the calibration grid image.
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If you specify a list of points instead of using a calibration grid, the points define the
default calibration axis origin, angle, and vertical axis direction.

Redefining a Calibration Axis

You can use Vision software to redefine a calibration axis. For example, you may want
to define a calibration axis based on measurements taken from a part under
inspection.

The following figure shows an inspection application whose objective is to determine
the location of the hole in the board with respect to the corner of the board. The board
is on a stage that can translate in the x and y directions and can rotate about its center.
The corner of the board is located at the center of the stage.

In the initial setup, shown in figure A, the defined calibration axis aligns with the
corner of the board using the following parameters:

« The origin of the calibration axis is defined as the location in pixels of the corner of
the board.

« The angle of the calibration axis is set to 180 degrees.

« The axis direction is set to indirect.

In this example, you can use pattern matching to find the location in pixels of the hole,
as illustrated by the crosshair mark in figure A. Convert the location of the hole in
pixels to a real world location. This conversion returns the real world location of the
hole with respect to the defined calibration axis.

During the inspection process, the stage may translate and rotate by a known amount.
This causes the board to occupy a new location in the camera's field of view, which
makes the board appear translated and rotated in subsequent images, as shown in
figure B. Because the board has moved, the original calibration axis no longer aligns
with the corner of the board. Therefore, measurements made using this calibration
axis are inaccurate.

Use the information about how much the stage has moved to determine the new
location of the corner of the board in the image. Use the Set Calibration function to
update the calibration axis to reflect the new position, as illustrated in figure C. The
origin of the updated calibration axis becomes the new pixel location of the corner of
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the board, and the angle of the calibration axis is the angle by which the stage has
rotated.

A B C

Calibration Quality Information

Distortion is specified in relative terms. For example, a lens which exhibits 2 percent
barrel radial distortion over a given field will image a point in the corner of the field 2
percent too far from the optical axis. In the resulting image, a corner that should be
400 pixels from the optical axis measures 408 pixels away from the optical axis.

Vision calibration software provides a percentage distortion statistic to indicate the
quality of a calibrated system. Vision software calculates the error divided by the
distance from the optical axis for each pixel. The average result is presented as the
percentage distortion statistic.

Use the percentage distortion statistic to determine whether the selected calibration
algorithm is adequate for your application. For example, you may receive a high
percentage distortion statistic if you use perspective calibration or a sparse calibration
grid to correct an image exhibiting nonlinear or lens distortion. You can also use the
percentage distortion statistic to determine whether there is a problem with the
calibrated system. For example, if your lens introduces negligible distortion, a high
percentage distortion statistic may indicate a problem such as a physically distorted
calibration template.

Error Map

Vision calibration software computes an error map, along with the following error
statistics:

« Mean error,
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« Maximum error,
« Standard deviation.

The error map is an estimate of the positional error that you can expect when you
convert a pixel coordinate into a real-world coordinate. The error map is a 2D array
that contains the expected positional error for each pixel in the image.

The error value of the pixel coordinate (i, j) indicates the largest possible location error
for the estimated real-world coordinate (x, y) as compared to the true real-world
location. The following equation shows how to calculate the error value.

e(i, j) = \/(X_ Xtrue)2 + (y_ ytrue)2

The error value indicates the radial distance from the true real world position in which
the estimated real world coordinates can exist. The error value has a confidence
interval of 95%, which implies that the positional error of the estimated real-world
coordinate is equal to or smaller than the error value 95% of the time. A pixel
coordinate with a small error value indicates that its estimated real-world coordinate is
computed very accurately. A large error value indicates that the estimated real-world
coordinate for a pixel may not be accurate.

Use the error map to determine whether your imaging setup and calibration
information satisfy the accuracy requirements of your inspection application. If the
error values are greater than the positional errors that your application can tolerate,
you need to improve your imaging setup. An imaging system with high lens distortion
usually results in an error map with high values. If you are using a lens with
considerable distortion, you can use the error map to determine the position of the
pixels that satisfy the accuracy requirements of your application. Because the effect of
lens distortion increases toward the image borders, pixels close to the center of the
image have lower error values than the pixels at the image borders.

Image Correction

Image correction involves transforming a distorted image acquired in a calibrated
setup into an image where perspective errors and lens distortion are corrected. Vision
corrects an image by applying the transformation from pixel to real-world coordinates
for each pixel in the input image. Then Vision applies simple shift and scaling
transformations to position the real-world coordinates into a new image. Vision uses
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interpolation during the scaling process to generate the new image.

When you learn for correction, you have the option of constructing a correction table.
The correction table is a lookup table, stored in memory, that contains the real-world
location information of all the pixels in the image. The lookup table greatly increases
the speed of image correction but requires more memory and increases your learning
time. Use this option when you want to correct several images at a time in your vision
application.

N 7
_/Q\_ Tip Correcting images is a time-intensive operation. You may be able to get
~  the measurements you need without image correction. For example, you can
use Vision particle analysis functions to compute calibrated measurements
directly from an image that contains calibration information but has not been
corrected. Also, you can convert pixel coordinates returned by edge detection
tools into real-world coordinates.

Correction Area

You can correct an entire image or regions in the image based on user-defined ROIs or
the calibration ROI defined by the calibration software. The following figure illustrates
the different image areas you can specify for correction. Vision learns calibration
information for only the regions you specify.
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®

®

1. Full Image—Corrects the entire image regardless of the calibration ROl and the
user-defined ROI.

2. User or Calibration ROI—Corrects pixels in both the user-defined ROl and the
calibration ROI.

3. User ROI—Corrects only the pixels inside the user-defined ROI specified during the
learn calibration phase.

4. User and Calibration ROI—Corrects only the pixels that lie in the intersection of the
user-defined ROl and the calibration ROI.

5. Calibration ROI—Corrects only the pixels inside the calibration ROI. The calibration
ROl is computed by the calibration algorithm.

The valid coordinate indicates whether the pixel coordinate you are trying to map to a
real-world coordinate lies within the image region you corrected. For example, if you
corrected only the pixels within the calibration ROI but you try to map a pixel outside
the calibration ROI to real-world coordinates, the Corrected Image Learn ROI
parameter indicates an error.

Scaling Mode

The scaling mode defines how to scale a corrected image. Two scaling mode options
are available: scale to fit and scale to preserve area. The following illustrates the
scaling modes. Figure A shows the original image. With the scale to fit option, the
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corrected image is scaled to fit in an image the same size as the original image, as
shown in figure B. With the scale to preserve area option, the corrected image is scaled
such that features in the image retain the same area as they did in the original image,
as shown in figure C. Images that are scaled to preserve area are usually larger than
the original image. Because scaling to preserve the area increases the size of the
image, the processing time for the function may increase.
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In-Depth Discussion

This section describes the factors responsible for producing an image and how those
factors can be used to map real-world coordinates to image coordinates. This section
also describes how Vision software corrects for distortion, and how you can calculate

the pose of an object in an image.

The following illustration shows projective mapping:
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Calibration Target

Image Plana

Plane FParallel o

1,2, 3, 4, = Projection of Calibration Target Image Plane

in Plane Parallel o Image Plane

where:

« the calibration target is represented in a real-world coordinate system (Xw, Yw, Zw),
« the camera coordinate system is represented as (xc, Yc, Zc), with the z axis aligned

with the optical axis and the x and y axes aligned with the horizontal and vertical
axes of the image plane,

+ anintermediate plane, parallel to the image plane, illustrates the shape of the
calibration target in an image.

A camera coordinate axis is displaced from a real-world coordinate axis by the
following transformation: Pc = R(Pw - T)

where:
« Pywisapointinthe real-world coordinate system,
+ Pcisthe homogenous pointin the camera coordinate system,

« Risthe rotation matrix between the real-world coordinate axis and the camera
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coordinate axis,
« Tisthe origin of the real-world coordinate axis minus the camera coordinate axis.
Homography

A physical projection, or homography, defines a geometric mapping of points from one
plane to another. In calibration, a homography can describe the conversion of 3D
coordinates in the real world to pixel coordinates in the image.

A physical projection transformation maps the real-world point P(Xw, Yw, Zw) to the
image point p(Xw, Yw)-

\d : : , . -
 Note Because p is defined in homogenous coordinates, you must divide
through by z to recover the actual image coordinates.

A typical homography can be expressed as p = sHP,
where:

p is the image plane projection expressed in camera coordinates [Xc Yc l]T that
correspond to 2D image coordinates,

P is a real-world point expressed in 3D real world coordinates [Xyw Yw Zw 1]T"

)

sis ascaling factor,

His homography.

In Vision calibration software, homography (H) is a 3 x 3 matrix which is the product of
two matrices: a camera matrix (M) and a homography matrix (W).

Camera Matrix
A camera matrix (M) describes the following internal camera parameters:

« focal length
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« principle point position
+ pixel size

+ pixel skew angle

Internal camera parameters are represented with the following matrix:

f
M= |0
0
where,
F
fo=+
F
s,
and

+ Fisthefocal length, in millimeters,

afy
£y
0

Cx
C
1

;—1

Digital Images

« sy is the horizontal size of a pixel in the camera sensor, in pixels per millimeter,

- syis the vertical size of a pixel in the camera sensor, in pixels per millimeter,

+ Cyis the horizontal displacement of the imager from the optical axis, in
millimeters,

+ cyisthevertical displacement of the imager from the optical axis, in millimeters,

« ais the pixel skew angle of y with respect to x. a is typically equal to 0.
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The camera focal length (F) and pixel dimensions (sy, sy) cannot be directly calculated.
Camera calibration can only calculate the derivative focal length and pixel dimension
combinations (fy, fy).

Homography Matrix
A homography matrix (W) consists of the rotation matrix and translation vector that
relate a point in a real-world plane and a pointin an image plane. The physical
projection transformation matrix can be expressed as:
W=[Rt]
where:
« Requals the rotation matrix,
+ tequals the translation vector.
The rotation matrix (R) can be expressed as 3 separate 3 x 1 matrices, so that:
R=[r1r2r3]
Thus, the original homography:
p =sHP

can be expressed as:

F] =sM[ry r, ry t]

X
=
0
L 1

Because calibration is performed with a planar calibration target, we can generalize
that Z =0 to further simplify the homography as:
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Lens ans Camera Distortion

There are two common types of distortion. Lens characteristics may introduce radial
distortion, while a misalignment of the lens and camera sensor may introduce

tangential distortion.

The following illustration shows radial distortion:

Image Flans

Object Plane

Image Plane Lens Plane P

D‘rg

e 4 S S

ry

Image Plans

P4 = Expectad Projection of point P; on Image Plane
Pip= Expected Projection of point Py on Image Plane dus 1o lans distortion
P4 = Expected Projection of point Pson Image Plane
FPzp = Expected Projection of painl Pson Image Plane dus to lans distortion

The following illustration shows tangential distortion:
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Object Plane

Lens Plane o

Image Plane

Titted Image
Plane

Titted Image
Plane Center™

Vision provides division and polynomial distortion models which can correct distortion
in an image.

Division Distortion Model

The division distortion model can correct radial distortion. The division distortion
model uses a single coefficient parameter (K) to model distortion.

The division distortion model can be represented as:

_ 2x
Xcorrected = 5 2
l+\/l—4K(X +y)

_ 2y
Ycorrected = 2 2
1+ \/1 —4K(X"+ Yy

where,
K> 0 corrects pincushion distortion,
K <0 corrects barrel distortion.

The following illustration shows barrel distortion:
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The following illustration shows pincushion distortion:

o |

e ——

L

Use the inverse equations to distort corrected coordinates:

X

X2 + y2

X:
1+k

y=—>"=

1+|<x2+y2

Polynomial Distortion Model
The polynomial distortion model can correct both radial and tangential distortion.
Using the Polynomial Distortion Model to Correct Radial Distortion

The polynomial distortion model uses one or more coefficient parameters (K) to model
distortion. The distortion model for radial distortion can be represented as:

2 4 6 8,, 10 nx2
Xcorrected = X(l +Kir+Kr + Kr + Kyr Kyr + K, + r( ))

Yecorrected = Y(l + K1I’2 + K2r4 + K3r6 + K4l’8K4flo +K,+ I’(n * 2))
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You can specify the number of coefficients required to model radial distortion for your
specific lens.

Using the Polynomial Distortion Model to Correct Tangential Distortion

The polynomial distortion model uses two parameters, P; and P, to characterize
tangential distortion. The distortion model for tangential distortion can be
represented as:

Determining the Pose of an Object

The Homography section explains that a typical homography can be expressed as p =
SHP

where:

p is the image plane projection expressed in camera coordinates [Xc Yc l]T that
correspond to 2D image coordinates,

P is a real-world point expressed in 3D real world coordinates [Xyw Yw Zw 1]T

H

sis a scaling factor,

His homography.

In Vision calibration software, homography (H) is a 3 x 3 matrix which is the product of
two matrices: a camera matrix (M) and a homography matrix (W).

The Homography Matrix section explains that the original homography p = sHP can be
simplified as p =sM[r1 r t]P

where;

« pistheimage plane projection expressed in camera coordinates [X¢ Yc l]T that
correspond to 2D image coordinates,

« P equals a real-world point expressed in 3D real world coordinates [Xw Yw Zw 1]T,
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s equals a scaling factor,

M equals the camera matrix:

fe U &5
0 ﬂ Cy ‘
0 0 1

r1 and rp equal the simplified rotational vector R,

t equals the translation vector.
Calculating the Pose of an Object
To calculate the pose of the working plane, you must complete the following steps:

1. Learn the camera model and generate the camera matrix (M).

2. Perform perspective correction and generate the homography matrix (W).

3. Using the homography (H) and camera matrix (M) information provided by NI
Vision software, apply the following matrix transformation to calculate the
rotational and translational coefficients.

RR" =1

where | is the identity matrix:

Nttt =14l
P=nxr

4. Use the calculated coefficients to derive the Euler angles for an object to
determine the pose.
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Image Processing and Analysis

This section describes conceptual information about image analysis and processing,
operators, and frequency domain analysis.

Image Analysis

This section contains information about histograms, line profiles, and intensity
measurements.

Image analysis combines techniques that compute statistics and measurements based
on the gray-level intensities of the image pixels. You can use the image analysis
functions to understand the content of the image and to decide which type of
inspection tools to use to solve your application. Image analysis functions also provide
measurements that you can use to perform basic inspection tasks such as presence or
absence verification.

Histogram

A histogram counts and graphs the total number of pixels at each grayscale level. From
the graph, you can tell whether the image contains distinct regions of a certain gray-
level value.

A histogram provides a general description of the appearance of an image and helps
identify various components such as the background, objects, and noise.

When to Use

The histogram is a fundamental image analysis tool that describes the distribution of
the pixel intensities in an image. Use the histogram to determine if the overall intensity
in the image is high enough for your inspection task. You can use the histogram to
determine whether an image contains distinct regions of certain grayscale values. You
also can use a histogram to adjust the image acquisition conditions.

You can detect two important criteria by looking at the histogram.
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+ Saturation—Too little light in the imaging environment leads to underexposure of
the imaging sensor, while too much light causes overexposure, or saturation, of
the imaging sensor. Images acquired under underexposed or saturated conditions
will not contain all the information that you want to inspect from the scene being
observed. It isimportant to detect these imaging conditions and correct for them
during setup of your imaging system. You can detect whether a sensor is
underexposed or saturated by looking at the histogram. An underexposed image
contains a large number of pixels with low gray-level values. This appears as a
peak at the lower end of the histogram. An overexposed or saturated image
contains a large number of pixels with very high gray-level values.

« Lack of contrast—A widely-used type of imaging application involves inspecting
and counting parts of interest in a scene. A strategy to separate the objects from
the background relies on a difference in the intensities of both, for example, a
bright part and a darker background. In this case, the analysis of the histogram of
the image reveals two or more well-separated intensity populations. Tune your
imaging setup until the histogram of your acquired images has the contrast
required by your application.

Concepts

The histogram is the function H defined on the grayscale range [0, .. ., k, . . ., 255] such
that the number of pixels equal to the gray-level value k is:

H(k) = nk
where

+ kisthe gray-level value,
« nkis the number of pixels in an image with a gray-level value equal to k,
« Y nkfromk=0to 255is the total number of pixels in an image.

The histogram plot in the following figure reveals which gray levels occur frequently
and which occur rarely.

The following image shows grayscale range:
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Two types of histograms can be calculated: the linear and cumulative histograms.

In both cases, the horizontal axis represents the gray-level value that ranges from 0 to
255. For a gray-level value k, the vertical axis of the linear histogram indicates the
number of pixels nk set to the value k, and the vertical axis of the cumulative histogram
indicates the percentage of pixels set to a value less than or equal to k.

Linear Histogram
The density function is
Hiinearl k) = i
where
 Hiinear(k) is the number of pixels equal to k.

The probability function is

n
P[inear(k) = X

where

* PLinear(k) is the probability that a pixel is equal to k.

AN a
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Cumulative Histogram

The distribution function is

k

HCumul(k) = Zi= 0

n;
where

« Hcumul(k) is the number of pixels that are less than or equal to k.

The probability function is

k.

PCumuI(k) = X 71

i=0
where

« Pcumul(k) is the probability that a pixel is less than or equal to k.

Heamu®) [

Interpretation

The gray-level intervals featuring a concentrated set of pixels reveal the presence of
significant components in the image and their respective intensity ranges.

The linear histogram reveals that the image is composed of three major elements.

The cumulative histogram of the same image shows that the two left-most peaks
compose approximately 80% of the image, while the remaining 20% corresponds to
the third peak.

Histogram Scale

The vertical axis of a histogram plot can be shown in a linear or logarithmic scale. A
logarithmic scale lets you visualize gray-level values used by small numbers of pixels.
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These values might appear unused when the histogram is displayed in a linear scale.

In a logarithmic scale, the vertical axis of the histogram gives the logarithm of the
number of pixels per gray-level value. The use of minor gray-level values becomes
more prominent at the expense of the dominant gray-level values. The logarithmic
scale emphasizes small histogram values that are not typically noticeable in a linear
scale. The following figure illustrates the difference between the display of the
histogram of the same image in a linear and logarithmic scale. In this particular image,
three pixels are equal to 0.

The following image shows a linear vertical scale:
My ‘

The following image shows a logarithmic vertical scale:

Ll

My

Histogram of Color Images

The histogram of a color image is expressed as a series of three tables, each
corresponding to the histograms of the three primary components in the color model
in the following table.

Color Model Components
RGB Red, Green, Blue
HSL Hue, Saturation, Luminance
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Line Profile

A line profile plots the variations of intensity along a line. It returns the grayscale
values of the pixels along a line and graphs it.

When to Use

The line profile utility is helpful for examining boundaries between components,
quantifying the magnitude of intensity variations, and detecting the presence of
repetitive patterns.

Concepts

The following figure illustrates a typical line profile.

Intensity Max -
(Brighter)

fu
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Starting Point Ending Point

The peaks and valleys represent increases and decreases of the light intensity along
the line selected in the image. Their width and magnitude are proportional to the size
and intensity of their related regions.

For example, a bright object with uniform intensity appears in the plot as a plateau.
The higher the contrast between an object and its surrounding background, the

steeper the slopes of the plateau. Noisy pixels, on the other hand, produce a series of
narrow peaks.

Intensity Measurements

Intensity measurements measure the grayscale image statistics in an image or regions
in animage.

When to Use

You can use intensity measurements to measure the average intensity value in a region
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of the image to determine, for example, the presence or absence of a part or a defect in
a part.

Concepts
Vision contains the following densitometry parameters:

« Minimum Gray Value—Minimum intensity value in gray-level units

« Maximum Gray Value—Maximum intensity value in gray-level units

+ Mean Gray Value—Mean intensity value in the particle expressed in gray-level units
« Standard Deviation—Standard deviation of the intensity values

Structural Similarity Index

Structural Similarity (SSIM) Index is an image quality metric. SSIM index is computed
for the image with respect to the reference image. The reference image is usually
needs to be of perfect quality. This quantitative measure considers three parameters
namely luminance, contrast and structural information between the two images to
computed the SSIM value.

When to Use

« SSIM can be used in television industry to determine the quality of video streamed
from the satellites.

« SSIM can be used as a benchmark to check the performance of other image
progressing algorithms, like image compression.

Concepts

The human visual system is adapted to extract structural information. The SSIM
algorithm separates out the similarity measurements into three different components:

« Luminance
« Contrast
o Structural

The luminance between the two signals is determined by the mean intensity of the
signals. The contrast is determined by the standard deviation. And the structural is
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determined by the correlation of the two signals.
2 2
L(x’ y) = (2quy+ Cl) / (2p-x + uy + Cl)
Cio y = (20,0, + C)) / 200+, + )

S ) = (0 + G / (00, + G5

where

Ux is the mean over a window in Image X,
* Uy is the mean over a window in Image,
« Oy is standard deviation (square root of variance) over a window in Image X,
« Oy is standard deviation (square root of variance) over a window in Image Y,
* Oxy is co-variance over a window between Image X and ImageY,
« xandy referto alocal window in the Image X and Y respectively,
« C1,C2and C3 are constants.

SSIM (x,y) is a multiplication of these three components.

If C3is set to Cp/2, then over a particular window:
SSIM(x, y) = ((Zuxuy+ Cl) * (20Xy+ Cz)) / ((uxz + uy2 + Cl) * (0X2 + O'yz + C2))

The Mean-SSIM is the average over all such local windows. The window is moved
across the image one pixel at a time.

Normal SSIM

In normal SSIM, a circular symmetric Gaussian weighting function is used calculate the
mean values. Choose Normal SSIM when the image has low contrast or does not
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contain clear structural information; for example, when the image is a texture sample.
Fast SSIM

Fast SSIM uses a faster approach to calculate the variance and mean values, which are
time-consuming in normal SSIM. The gradient images are calculated using the Roberts
gradient templates to represent variance. Mean values are calculated by averaging
pixels in the local window. Fast SSIM is best suited for images which have clear
structural information, such as strong edges. Because it is based on gradient images,
Fast SSIM may not be sufficient if the image has low contrast or poor structural
information.

Feature Extraction

Use feature extraction to extract important or interesting features from an image.
When to Use

Use feature extraction on images along with classifiers for applications like:

« Classification—Identify an unknown sample by comparing a set of its significant
features to a set of features that conceptually represent classes of known samples.

+ Image Segmentation—Segment an image and find defects in parts of an image.

« Texture Analysis—Classify textures and identify defects in textures.

Concepts

Histogram of Oriented Gradients Concepts

Vision has 2 feature extraction algorithms: histogram of oriented gradients (HOG) and
local binary patterns (LBP).

Histogram of oriented gradients is a technique to extract features from an image. The
technique counts occurrences of gradient orientation in localized portions of an
image.

The concept behind the HOG descriptors is that local object appearance and shape
within an image can be described by the distribution of intensity gradients or edge
directions. The implementation of these descriptors can be achieved by dividing the
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image into a grid of small connected regions, called blocks, and for each block
constructing a histogram of gradient directions for the pixels within the cell. The
histograms are concatenated to represents the features. For improved accuracy, the
local histograms are normalized by calculating a measure of the gradient across a
block, and then using this value to normalize all pixels within the block.

Gradient Computation

The gradients in the x- and y-directions are computed for the whole image or the ROI.
The kernels used for the computation of gradients in the x- and y-directions are:

-4, 0 1 -1 =1 -1
=1 0 1 0 0 0
-1 0 iL 1 1 i |

Magnitude = (IX) + (Iy)
Agnle = arcatan(ly / IX)

Histogram Computation

The histogram is computed for each block by binning the gradient magnitude for each
angle range. Each histogram is normalized to values ranging between 0 and 1 using the
gradient magnitude.

The following graphic shows Local Binary Patterns Concepts:
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- -~ v S
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The following graphic shows Local Binary Patterns Concepts:
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Histogram Computation

The histogram is computed for each block by counting the LBP values in each bin.
Each histogram is normalized to values ranging between 0 and 1.

Grid Based computation for HOG and LBP

The histograms computed for each block give the features local to the block. All the
histograms are concatenated to form the final histogram which represents the features
for the whole image.

Block 1 Block 2 Block 3
How to Use the Bin Size
The bin size plays an important role in deciding the accuracy in using the features. Use
a lower bin size for small images, images with noise, and images which do not have

finer details to be captured by the user. Use a higher bin sized for large images, in
images with low noise, and in images where finer details play a significant role.
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Image Processing

This section contains information about lookup tables, convolution kernels, spatial
filters, and grayscale morphology.

Lookup Tables

The lookup table (LUT) transformations are basic image-processing functions that
highlight details in areas containing significant information, at the expense of other
areas. These functions include histogram equalization, gamma corrections,
logarithmic corrections, and exponential corrections.

When to Use

Use LUT transformations to improve the contrast and brightness of an image by
modifying the dynamic intensity of regions with poor contrast.

Concepts

A LUT transformation converts input gray-level values from the source image into
other gray-level values in the transformed image.

A LUT transformation applies the transform T(x) over a specified input range
[rangeMin, rangeMax] in the following manner:

+ T(x) =dynamicMin if x < rangeMin
« f(x) if rangeMin <x <rangeMax
« dynamicMax if x > rangeMax

where

« X represents the input gray-level value,
« dynamicMin =0 (8-bit images) or the smallest initial pixel value (16-bit and floating
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point images),

« dynamicMax = 255 (8-bit images) or the largest initial pixel value (16-bit and
floating point images),

« dynamicRange = dynamicMax - dynamicMin,

« f(x) represents the new value.

The function scales f(x) so that f(rangeMin) = dynamicMin and f(rangeMax) =
dynamicMax. f(x) behaves on [rangeMin, rangeMax] according to the method you
select.

In the case of an 8-bit resolution, a LUT is a table of 256 elements. The index element
of the array represents an input gray-level value. The value of each element indicates
the output value.

The transfer function associated with a LUT has an intended effect on the brightness
and contrast of the image.

Example

The following example uses the following source image. In the linear histogram of the
source image, the gray-level intervals [0, 49] and [191, 254] do not contain significant
information.

|
0 49 180 285

Using the following LUT transformation, any pixel with a value less than 49 is set to 0,
and any pixel with a value greater than 191 is set to 255. The interval [50, 190] expands
to [1, 254], increasing the intensity dynamic of the regions with a concentration of
pixels in the gray-level range [50, 190].
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Fix) +

0 X
If x € (0,49), A(x)=0
If x € (191, 254), fix) = 225
elsef(x) = 1.81 x x-89.5

The LUT transformation produces the following image. The linear histogram of the
new image contains only the two peaks of the interval [50, 190].

w

Predefined Lookup Tables

Seven predefined LUTs are available in NI Vision: Linear, Logarithmic, Power 1/Y,
Square Root, Exponential, Power Y, and Square. The following table shows the transfer
function for each LUT and describes its effect on an image displayed in a palette that
associates dark colors to low-intensity values and bright colors to high-intensity
values, such as the Gray palette.

Transfer

LUT Function Shading Correction
Increases the intensity dynamic by evenly distributing a given
Linear gray-level interval [min, max] over the full gray scale [0, 255].
|| Minand max default values are 0 and 255 for an 8-bit image.
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Transfer

LUT Function Shading Correction

Logarithmic Powerl/Y Increases the brightness and contrast in dark regions. Decreases
Square Root the contrast in bright regions.

Exponential PowerY Decreases the brightness and contrast in dark regions. Increases
Square the contrast in bright regions.

Logarithmic and Inverse Gamma Correction

The logarithmic and inverse gamma corrections expand low gray-level ranges
while compressing high gray-level ranges. When using the Gray palette, these
transformations increase the overall brightness of an image and increase the contrast
in dark areas at the expense of the contrast in bright areas.

The following graphs show how the transformations behave. The horizontal axis
represents the input gray-level range, and the vertical axis represents the output gray-
level range. Each input gray-level value is plotted vertically, and its point of
intersection with the look-up curve is plotted horizontally to give an output value.

250 + e
200 + _——— Log
150 4 Y4
wodlf 7 | ¥=3
_____ ¥ =2
50

0

The Logarithmic, Square Root, and Power 1/Y functions expand intervals containing
low gray-level values while compressing intervals containing high gray-level values.

The higher the gamma coefficient Y, the stronger the intensity correction. The
Logarithmic correction has a stronger effect than the Power 1/Y function.
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Logarithmic and Inverse Gamma Correction Examples

The following series of illustrations presents the linear and cumulative histograms of
an image after various LUT transformations. The more the histogram is compressed on
the right, the brighter the image.

» Note Graphics on the left represent the original image, graphics on the top
right represent the linear histogram, and graphics on the bottom right
represent the cumulative histogram.

The following illustrations show the original image and histograms.

'
Yy

A Power 1/Y transformation (where Y = 1.5) produces the following image and
histograms.

A Square Root or Power 1/Y transformation (where Y = 2) produces the following image
and histograms.
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A Logarithm transformation produces the following image and histograms.

ik
-

The exponential and gamma corrections expand high gray-level ranges while
compressing low gray-level ranges. When using the Gray palette, these
transformations decrease the overall brightness of an image and increase the contrast
in bright areas at the expense of the contrast in dark areas.

Exponential and Gamma Correction

The following graphs show how the transformations behave. The horizontal axis
represents the input gray-level range, and the vertical axis represents the output gray-
level range. Each input gray-level value is plotted vertically, and its point of
intersection with the look-up curve is plotted horizontally to give an output value.

250 +
200+ G Exp
150 + ¥=2
wo+ S e | T ¥=3
————— Y=4
50 1

0 _
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The Exponential, Square, and Power Y functions expand intervals containing high gray-
level values while compressing intervals containing low gray-level values.

The higher the gamma coefficient Y, the stronger the intensity correction. The
Exponential correction has a stronger effect than the Power Y function.

Exponential and Gamma Correction Examples

The following series of illustrations presents the linear and cumulative histograms of
an image after various LUT transformations. The more the histogram is compressed,
the darker the image.

» Note Graphics on the left represent the original image, graphics on the top
right represent the linear histogram, and graphics on the bottom right
represent the cumulative histogram.

The following illustrations show the original image and histograms.

A Power Y transformation (where Y = 1.5) produces the following image and
histograms.

A Square or Power Y transformation (where Y = 2) produces the following image and
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histograms.

An Exponential transformation produces the following image and histograms.

Equalize

The Equalize function is a lookup table operation that does not work on a predefined
LUT. Instead, the LUT is computed based on the content of the image where the
function is applied.

The Equalize function alters the gray-level values of pixels so that they become evenly
distributed in the defined grayscale range, which is 0 to 255 for an 8-bit image. The
function associates an equal amount of pixels per constant gray-level interval and
takes full advantage of the available shades of gray. Use this transformation to
increase the contrast in images that do not use all gray levels.

The equalization can be limited to a gray-level interval, also called the equalization
range. In this case, the function evenly distributes the pixels belonging to the
equalization range over the full interval, which is 0 to 255 for an 8-bit image. The other
pixels are set to 0. The image produced reveals details in the regions that have an
intensity in the equalization range; other areas are cleared.
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Equalization Example

This example shows how an equalization of the interval [0, 255] can spread the
information contained in the three original peaks over larger intervals. The
transformed image reveals more details about each component in the original image.
The following graphics show the original image and histograms.

» Note In Examples 1 and 2, graphics on the left represent the original image,
graphics on the top right represent the linear histogram, and graphics on the
bottom right represent the cumulative histogram.

A .

\ o : : o
 Note The cumulative histogram of an image after a histogram equalization

always has a linear profile, as seen in the preceding example.

Equalization Example 2

This example shows how an equalization of the interval [166, 200] can spread the
information contained in the original third peak (ranging from 166 to 200) to the
interval [0, 255]. The transformed image reveals details about the component with the
original intensity range [166, 200] while all other components are set to black. An
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equalization from [166, 200] to [0, 255] produces the following image and histograms.

Convolution Kernels

A convolution kernel defines a 2D filter that you can apply to a grayscale image. A
convolution kernel is a 2D structure whose coefficients define the characteristics of the
convolution filter that it represents. In a typical filtering operation, the coefficients of
the convolution kernel determine the filtered value of each pixel in the image. Vision
provides a set of convolution kernels that you can use to perform different types of
filtering operations on an image. You also can define your own convolution kernels,
thus creating custom filters.

When to Use

Use a convolution kernel whenever you want to filter a grayscale image. Filtering a
grayscale image enhances the quality of the image to meet the requirements of your
application. Use filters to smooth an image, remove noise from an image, enhance the
edge information in an image, and other related edits.

Concepts

A convolution kernel defines how a filter alters the pixel values in a grayscale image.
The convolution kernel is a 2D structure whose coefficients define how the filtered
value at each pixel is computed. The filtered value of a pixel is a weighted combination
of its original value and the values of its neighboring pixels. The convolution kernel
coefficients define the contribution of each neighboring pixel to the pixel being
updated. The convolution kernel size determines the number of neighboring pixels
whose values are considered during the filtering process.

In the case of a 3 x 3 kernel, illustrated in figure A, the value of the central pixel (shown
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in black) is derived from the values of its eight surrounding neighbors (shown in gray).
A5 x5 kernel, shown in figure B, specifies 24 neighbors, a 7 x 7 kernel specifies 48
neighbors, and so forth.

| Y
| |
O—=r @ O—> 1’ r+——2)
I /'I
iy B
1. Kernel
2. Image

Afiltering operation on an image involves moving the kernel from the leftmost and
topmost pixel in the image to the rightmost and bottommost point in the image. At
each pixel in the image, the new value is computed using the values that lie under the
kernel, as shown in the following illustration.

Kernel

<}4 Filtering
4 Function

[‘-t .--\.

I i

F o

= Neighbors
E Central Pixel

When computing the filtered values of the pixels that lie along the border of the image
(the first row, last row, first column, or last column of pixels), part of the kernel falls
outside the image. For example, the following figure shows that one row and one
column of a 3 x 3 kernel fall outside the image when computing the value of the
topmost leftmost pixel.
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1. Border
2. Image
3. Kernel

Vision automatically allocates a border region when you create an image. The default
border region is three pixels deep and contains pixel values of 0. You also can define a
custom border region and specify the pixel values within the region. The size of the
border region should be greater than or equal to half the number of rows or columns
in your kernel. The filtering results from along the border of an image are unreliable
because the neighbors necessary to compute these values are missing, therefore
decreasing the efficiency of the filter, which works on a much smaller number of pixels
than specified for the rest of the image. For more information about border regions,

refer to the digital images section.

Related concepts:

« Digital Images
Spatial Filtering
Filters are divided into two types: linear (also called convolution) and nonlinear.

A convolution is an algorithm that consists of recalculating the value of a pixel based
on its own pixel value and the pixel values of its neighbors weighted by the coefficients
of a convolution kernel. The sum of this calculation is divided by the sum of the
elements in the kernel to obtain a new pixel value. The size of the convolution kernel
does not have a theoretical limit and can be either square or rectangular (3 x 3,5 x5,
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5x7,9%3,127 x 127, and so on).
Convolutions are divided into four families:

Gradient
Laplacian
Smoothing
Gaussian

This grouping is determined by the convolution kernel contents or the weight assigned
to each pixel, which depends on the geographical position of that pixel in relation to
the central kernel pixel.

Vision features a set of standard convolution kernels for each family and for the usual
sizes (3x3,5x5,and 7 x 7). You also can create your own kernels and choose what to
putinto them. The size of the user-defined kernel is virtually unlimited. With this
capability, you can create filters with specific characteristics.

When to Use

Spatial filters serve a variety of purposes, such as detecting edges along a specific
direction, contouring patterns, reducing noise, and detail outlining or smoothing.
Filters smooth, sharpen, transform, and remove noise from an image so that you can
extract the information you need.

Nonlinear filters either extract the contours (edge detection) or remove the isolated
pixels. NI Vision has six different methods you can use for contour extraction
(Differentiation, Gradient, Prewitt, Roberts, Sigma, or Sobel). The Canny Edge
Detection filter is a specialized edge detection method that locates edges accurately,
even under low signal-to-noise conditions in an image.

To harmonize pixel values, choose between two filters, each of which uses a different
method: NthOrder and LowPass. These functions require that either a kernel size and
order number or percentage is specified on input.

Spatial filters alter pixel values with respect to variations in light intensity in their
neighborhood. The neighborhood of a pixel is defined by the size of a matrix, or mask,
centered on the pixel itself. These filters can be sensitive to the presence or absence of
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light-intensity variations.
Spatial filters fall into two categories:

« Highpass filters emphasize significant variations of the light intensity usually
found at the boundary of objects. Highpass frequency filters help isolate abruptly
varying patterns that correspond to sharp edges, details, and noise.

« Lowpass filters attenuate variations of the light intensity. Lowpass frequency
filters help emphasize gradually varying patterns such as objects and the
background. They have the tendency to smooth images by eliminating details and
blurring edges.

Concepts

The following table describes the different types of spatial filters.

Filter Type Filters

Linear Highpass Gradient, Laplacian

Linear Lowpass Smoothing, Gaussian

Nonlinear Highpass Gradient, Roberts, Sobel, Prewitt, Differentiation, Sigma
Nonlinear Lowpass Median, Nth Order, Lowpass

Linear Filters

A linear filter replaces each pixel by a weighted sum of its neighbors. The matrix
defining the neighborhood of the pixel also specifies the weight assigned to each
neighbor. This matrix is called the convolution kernel.

If the filter kernel contains both negative and positive coefficients, the transfer
function is equivalent to a weighted differentiation and produces a sharpening or
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highpass filter. Typical highpass filters include gradient and Laplacian filters.

If all coefficients in the kernel are positive, the transfer function is equivalent to a
weighted summation and produces a smoothing or lowpass filter. Typical lowpass
filters include smoothing and Gaussian filters.

Gradient Filter

A gradient filter highlights the variations of light intensity along a specific direction,
which has the effect of outlining edges and revealing texture.

Given the following source image:
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Kernel Definition

A gradient convolution filter is a first-order derivative. Its kernel uses the following
model:

a -b «c¢
b x -d
c d -a

where a, b, c,and d are integers and x=0or 1.
Filter Axis and Direction

This kernel has an axis of symmetry that runs between the positive and negative
coefficients of the kernel and through the central element. This axis of symmetry gives
the orientation of the edges to outline. For example,ifa=0,b=-1,c=-1,d=-1,and

x =0, the kernel is the following:

0 1 1
-1 '@ 1
-1-1 0

The axis of symmetry is located at 135°.

For a given direction, you can design a gradient filter to highlight or darken the edges
along that direction. The filter actually is sensitive to the variations of intensity
perpendicular to the axis of symmetry of its kernel. Given the direction D going from
the negative coefficients of the kernel towards the positive coefficients, the filter
highlights the pixels where the light intensity increases along the direction D, and
darkens the pixels where the light intensity decreases.

The following two kernels emphasize edges oriented at 135°.
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Source Image |Prewitt #10| Filtered Image

U -1 =3
1 0 -1
i 1. 0

Prewitt #10 highlights pixels where the light intensity increases along the direction
going from northeast to southwest. It darkens pixels where the light intensity
decreases along that same direction. This processing outlines the northeast front
edges of bright regions such as the ones in the illustration.

Source Image |Prewitt #2| Filtered Image

0-1-1
1 0-1
B

Prewitt #2 highlights pixels where the light intensity increases along the direction
going from southwest to northeast. It darkens pixels where the light intensity
decreases along that same direction. This processing outlines the southwest front
edges of bright regions such as the ones in the illustration.

\d : : : :
» Note Applying Prewitt #10 to an image returns the same results as applying
Prewitt #2 to its photometric negative because reversing the lookup table of
an image converts bright regions into dark regions and vice versa.

Edge Extraction and Edge Highlighting

The gradient filter has two effects, depending on whether the central coefficient x is
equaltolorO.
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« If the central coefficient is null (x = 0), the gradient filter highlights the pixels where
variations of light intensity occur along a direction specified by the configuration
of the coefficients a, b, ¢, and d. The transformed image contains black-white
borders at the original edges, and the shades of the overall patterns are darkened.

Source Image |Prewitt #14

Filtered Image

-1-1 0
-1 0 1
0 1 1

If the central coefficient is equal to 1 (x = 1), the gradient filter detects the same
variations as mentioned above, but superimposes them over the source image. The
transformed image looks like the source image with edges highlighted. Use this type of
kernel for grain extraction and perception of texture.

Source Image |Prewitt #15

Filtered Image

-1 -1 0
=1 X 3
o1 1

Notice that Prewitt #15 can be decomposed as follows:

-1-1 0 -1-1 0
-1 0 1 = -1 1 1
0 1 1 0 1 1

+

o o o
O = O

o o o

A\\’ Note The convolution filter using the second kernel on the right side of the
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equation reproduces the source image. All neighboring pixels are multiplied
by 0 and the central pixel remains equal to itself: (P j) =1 x P, j)).

This equation indicates that Prewitt #15 adds the edges extracted by the Kernel C to
the source image.

Prewitt #15 = Prewitt #14 + Source Image
Edge Thickness

The larger the kernel, the thicker the edges. The following image illustrates gradient
west-east 3 x 3.

Laplacian Filters

A Laplacian filter highlights the variation of the light intensity surrounding a pixel. The
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filter extracts the contour of objects and outlines details. Unlike the gradient filter, it is
omnidirectional.

Given the following source image:

Kernel Definition

The Laplacian convolution filter is a second-order derivative, and its kernel uses the
following model:
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where a, b, ¢, and d are integers.

Image Processing and Analysis

The Laplacian filter has two different effects, depending on whether the central
coefficient x is equal to or greater than the sum of the absolute values of the outer

coefficients.

Contour Extraction and Highlighting

If the central coefficient is equal to this sum x =2(|a| + |b| + |c| + |d|), the Laplacian filter
extracts the pixels where significant variations of light intensity are found. The

presence of sharp edges, boundaries between objects, modification in the texture of a
background, noise, or other effects can cause these variations. The transformed image
contains white contours on a black background.

Notice the following source image, Laplacian kernel, and filtered image.

Source Image

Laplacian #3

Filtered Image

-1 -1 -1
-1 8 -1
-1 -1 -1

If the central coefficient is greater than the sum of the outer coefficients (x>2(a+b+c
+d)), the Laplacian filter detects the same variations as mentioned above, but
superimposes them over the source image. The transformed image looks like the
source image, with all significant variations of the light intensity highlighted.
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Filtered Image

Laplacian #4
-1 -1 -1
-1 9 -1
-1 -1 -1

Image Processing and Analysis

Notice that the Laplacian #4 kernel can be decomposed as follows:

%% =
-1 9-1 =
-

Xk =1
-1 8 -1
-1 -1-1

+
o o o
o = O
o o o

A\\’ Note The convolution filter, using the second kernel on the right side of the
equation, reproduces the source image. All neighboring pixels are multiplied
by 0, and the central pixel remains equal to itself: (P, j) = 1 x P, j)).

This equation indicates that the Laplacian #2 kernel adds the contours extracted by
the Laplacian #1 kernel to the source image.

Laplacian #4 = Laplacian #3 + Source Image.

For example, if the central coefficient of Laplacian #4 kernel is 10, the Laplacian filter

adds the contours extracted by Laplacian #3 kernel to the source image times 2, and so
forth. A greater central coefficient corresponds to less-prominent contours and details
highlighted by the filter.

Contour Thickness

Larger kernels correspond to thicker contours. The following image is a Laplacian 3 x 3.
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The following image is a Laplacian 5 x 5.

Smoothing Filter

A smoothing filter attenuates the variations of light intensity in the neighborhood of a
pixel. It smooths the overall shape of objects, blurs edges, and removes details.

Given the following source image,

a smoothing filter produces the following image.
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Kernel Definition

A smoothing convolution filter is an averaging filter whose kernel uses the following
model:

a d c
b x b

c d a

where a, b, ¢, and d are positive integers, and x=0or 1.

Because all the coefficients in a smoothing kernel are positive, each central pixel
becomes a weighted average of its neighbors. The stronger the weight of a
neighboring pixel, the more influence it has on the new value of the central pixel.

For a given set of coefficients (a, b, ¢, d), a smoothing kernel with a central coefficient
equal to 0 (x = 0) has a stronger blurring effect than a smoothing kernel with a central
coefficient equalto 1 (x=1).

Notice the following smoothing kernels and filtered images. A larger kernel size
corresponds to a stronger smoothing effect.

© National Instruments 95



96

Kernel Filtered Image
Kernel A
0 1 0
1 0 1
0 1 0
Kernel B
2 2 2
2 1 2
2 2 2
Kernel C
i 1 1 1 1
1 ¥ 1 ¥ 1
i I 2 3 i
i ¥ I I 1
i I I 31 =
Kernel D
: 3 I I % 1
i 1. 1 1 41 1 1
: 3 I 3 % 4
i 1. 1 42 41 41 1
1 1. 13 I 2 1 2
i 4 3 @ 1 %I 1
1 2. £ I 2 1 2

Gaussian Filters

Image Processing and Analysis

A Gaussian filter attenuates the variations of light intensity in the neighborhood of a
pixel. It smooths the overall shape of objects and attenuates details. It is similar to a
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smoothing filter, but its blurring effect is more subdued.

Given the following source image,

a Gaussian filter produces the following image.

Kernel Definition

A Gaussian convolution filter is an averaging filter, and its kernel uses the model

a dc
b x b
c d a

where, a, b, ¢, and d are positive integers, and x> 1.

3x 3 5x5

1 2 32 1 2 4 2 1

2 4 2 2 4 8 4 2

1 2 1 4 8 16 8 4
2 4 8 4 2
1 2 2 1
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Because all the coefficients in a Gaussian kernel are positive, each pixel becomes a
weighted average of its neighbors. The stronger the weight of a neighboring pixel, the
more influence it has on the new value of the central pixel.

Unlike a smoothing kernel, the central coefficient of a Gaussian filter is greater than 1.
Therefore the original value of a pixel is multiplied by a weight greater than the weight
of any of its neighbors. As a result, a greater central coefficient corresponds to a more
subtle smoothing effect. A larger kernel size corresponds to a stronger smoothing
effect.

Nonlinear Filters

A nonlinear filter replaces each pixel value with a nonlinear function of its surrounding
pixels. Like the linear filters, the nonlinear filters operate on a neighborhood.

Nonlinear Prewitt Filter

The nonlinear Prewitt filter is a highpass filter that extracts the outer contours of
objects. It highlights significant variations of the light intensity along the vertical and
horizontal axes.

Each pixel is assigned the maximum value of its horizontal and vertical gradient
obtained with the following Prewitt convolution kernels:

Prewitt #0 Prewitt #12
-1 0 1 -1 =1 =1
-1 0 1 0 0 O
-1 0 1 -1 1 1

Nonlinear Sobel Filter

The nonlinear Sobel filter is a highpass filter that extracts the outer contours of
objects. It highlights significant variations of the light intensity along the vertical and
horizontal axes.

Each pixel is assigned the maximum value of its horizontal and vertical gradient
obtained with the following Sobel convolution kernels:
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Sobel #16 Sobel #28
-1 0 1 -1 -2 =1
-2 0 2 0 0 0
-1 0 1 -1 2 1

As opposed to the Prewitt filter, the Sobel filter assigns a higher weight to the
horizontal and vertical neighbors of the central pixel.

Nonlinear Prewitt and Nonlinear Sobel Example

This example uses the following source image.

Both filters outline the contours of the objects. Because of the different convolution
kernels they combine, the nonlinear Prewitt has the tendency to outline curved
contours while the nonlinear Sobel extracts square contours. This difference is
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noticeable when observing the outlines of isolated pixels.
Nonlinear Gradient Filter

The nonlinear gradient filter outlines contours where an intensity variation occurs
along the vertical axis.

Roberts Filter

The Roberts filter outlines the contours that highlight pixels where an intensity
variation occurs along the diagonal axes.

Differentiation Filter

The differentiation filter produces continuous contours by highlighting each pixel
where an intensity variation occurs between itself and its three upper-left neighbors.

Sigma Filter

The Sigma filter is a highpass filter. It outlines contours and details by setting pixels to
the mean value found in their neighborhood, if their deviation from this value is not
significant. The example on the left shows an image before filtering. The example on
the right shows the image after filtering.

Lowpass Filter

The lowpass filter reduces details and blurs edges by setting pixels to the mean value
found in their neighborhood, if their deviation from this value is large. The example on
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the left shows an image before filtering. The example on the right shows the image
after filtering.

Median Filter

The median filter is a lowpass filter. It assigns to each pixel the median value of its
neighborhood, effectively removing isolated pixels and reducing detail. However, the
median filter does not blur the contour of objects.

You can implement the median filter by performing an Nth order filter and setting the

order to (f2 -1)/2 for a given filter size of f x f.
Nth Order Filter

The Nth order filter is an extension of the median filter. It assigns to each pixel the Nth
value of its neighborhood when they are sorted in increasing order. The value N
specifies the order of the filter, which you can use to moderate the effect of the filter on
the overall light intensity of the image. A lower order corresponds to a darker
transformed image; a higher order corresponds to a brighter transformed image.

To see the effect of the Nth order filter, notice the example of an image with bright
objects and a dark background. When viewing this image with the Gray palette, the
objects have higher gray-level values than the background.
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For a Given Filter Size f x f

o IfN< (f2 - 1)/2, the Nth order filter has the tendency to
erode bright regions (or dilate dark regions).
« If N=0, each pixel is replaced by its local minimum.

o IfN= (f2 - 1)/2, each pixel is replaced by its local median
value. Dark pixels isolated in objects are removed, as well
as bright pixels isolated in the background. The overall
area of the background and object regions does not

change.

o IfN> (f2 - 1)/2, the Nth order filter has the tendency to
dilate bright regions and erode dark regions.

. IFN=f2- 1, each pixel is replaced by its local maximum.

In-Depth Discussion

Image Processing and Analysis

Example of a Filter Size 3 x 3

Order 0

(smooths
image,
erodes
bright
objects)

Order 4

(equivalent
toa
median
filter)

Order 8

(smooths
image,
dilates
bright
objects)

If P(i, j) represents the intensity of the pixel P with the coordinates (i, j), the pixels
surrounding P(j, ) can be indexed as follows (in the case of a 3 x 3 matrix):

P(i-1,j-1)

P(I - 17J)
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Pi-1,j+1) P(i,j+1) Pli+1,j+1)

A linear filter assigns to P(;, j) a value that is a linear combination of its surrounding
values.

For example:
P(i,j) =P(i,j-1) * Pi-1,j) + 2P(,j) + P(i+1,j) * P(i,j+1)

A nonlinear filter assigns to Py, j) a value that is not a linear combination of the
surrounding values.

For example:
P(i,j) = max(P(i-1,j-1), Pi+1,j-1), Pli-1,j+1), P(i+, 1+ 1))

In the case of a5 x 5 neighborhood, the i and j indexes vary from -2 to 2. The series of
pixels that includes P j) and its surrounding pixels is annotated as P(n, m).

Linear Filters

For each pixel P(j, j) in an image where i and j represent the coordinates of the pixel, the
convolution kernel is centered on Py, j). Each pixel masked by the kernel is multiplied
by the coefficient placed on top of it. P(j j) becomes either the sum of these products
divided by the sum of the coefficient or 1, depending on which is greater.

In the case of a 3 x 3 neighborhood, the pixels surrounding P;, j and the coefficients of
the kernel, K, can be indexed as follows:

P(i-1,j-1) P(i,j-1) Pli+1,j-1)
P(i-1,j) P, j) Pi+1,j)
P(i_l,j+1) P(i,j+1) P(i+1,j+l)
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Ki-1,j-1) K(i,j-1) Ki+1,j-1)
K(i- 1,j) Kii, j) K(i+1,j)
Kii-1,j+1) Kii,j+1) Kii+1,j+1)

The pixel P(j, j) is given the value (1 / N)X K(a, b)P(a, b), with a ranging from (i - 1) to (i + 1),
and b ranging from (j - 1) to (j + 1). N is the normalization factor, equal to ¥ K(a, b) or 1,
whichever is greater.

If the new value P, j) is negative, it is set to 0. If the new value Py, j) is greater than 255,
itis setto 255 (in the case of 8-bit resolution).

The greater the absolute value of a coefficient K(a, b), the more the pixel P(a, b)
contributes to the new value of P(; j). If a coefficient v is 0, the neighbor P(3, b) does not
contribute to the new value of P j) (notice that P(a, b) might be Py j itself).

If the convolution kernel is:

0 0 O
-2 1 2
0 0 O

then P, j) = (=2P(i- 1,j) + P(i, j) + 2P(i+1,j)

If the convolution kernel is:

0 1 0
0 1
0 1 0

then P, j) = (Pi,j- 1) + P(i-1,j) + P(i+1,j) + P(i,j+ 1))
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Nonlinear Prewitt Filter
Py = max ((P(f+1,f—1> Pt =) Pl - P Pt o) = Pm e (Ps o) = Pla o) * Pl o) = Pl * Poen, o) - P(m,f—l))

Nonlinear Sobel Filter

P(,’ j = max

(Pt -1 P,y * 2Pyio1, - 2P Pron o) = Pl o) (P10 = P o) * Pl jo) = Plijy* Pl o) = P(m,f—l))
Nonlinear Gradient Filter

The new value of a pixel becomes the maximum absolute value between its deviation
from the upper neighbor and the deviation of its two left neighbors.

P, j) = max[|P(,j-1) - P(i,j)s [Pi-1,j-1) = Pi-1,jl]

Pigit 4[4 P
D]

Pit,j Pii

Roberts Filter

The new value of a pixel becomes the maximum absolute value between the deviation
of its upper-left neighbor and the deviation of its two other neighbors.

P(i,j) =max[|P(-1,j-1) = Pi,j)ls [PG,j-1) = Pi-1,j)l]

Fij1 P j-1

R

Pit,i Pij

Differentiation Filter

The new value of a pixel becomes the absolute value of its maximum deviation from its
upper-left neighbors.

P(i,j) =max[|P¢-1,j) - Pi,jls IPG-1,j-1) = PG, )l IPG,j-1) - Pi-1,j)l]

Pitj1 Pi i1

;
Pui T P
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Sigma Filter
If P(i, ) -M>S5
Then P( = P(

i, J)
Else P( =M

i j)

i)~ M

Given M, the mean value of Pj j) and its neighbors, and S, their standard deviation,
each pixel P(j, j) is set to the mean value M if it falls inside the range [M - S, M + S].

Lowpass Filter
Then P(i, /) = P(
Else P(i, f) =M

Y

Given M, the mean value of Pj j) and its neighbors, and S, their standard deviation,
each pixel P(j j) is set to the mean value M if it falls outside the range [M - S, M +S].
Median Filter

P(i,j) = median value of the series [P(n, m)]

Nth Order Filter

P(i,j) = Nth value in the series [P(n, m)]

where the P(n, m) are sorted in increasing order.

The following example uses a 3 x 3 neighborhood.

13]10
12| 4
5

The following table shows the new output value of the central pixel for each Nth order
value.
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Nth Order 0 1 2 3 4 5 6 7 8
New Pixel Value 4 5 5 6 8 9 10 12 13

Notice that for a given filter size f, the Nth order can rank from 0 to f2- 1. For example,

in the case of afilter size 3, the Nth order ranges from 0 to 8 (32 -1).

Grayscale Morphology

Morphological transformations extract and alter the structure of particles in an
image. They fall into two categories:

« Binary morphology functions, which apply to binary images.
« Grayscale morphology functions, which apply to gray-level images.

In grayscale morphology, a pixel is compared to those pixels surrounding it in order to
keep the pixels whose values are the smallest (in the case of an erosion) or the largest
(in the case of a dilation).

When to Use

Use grayscale morphology functions to filter or smooth the pixel intensities of an
image. Applications include noise filtering, uneven background correction, and gray-
level feature extraction.

Concepts

The gray-level morphology functions apply to gray-level images. You can use these
functions to alter the shape of regions by expanding bright areas at the expense of
dark areas and vice versa. These functions smooth gradually varying patterns and
increase the contrast in boundary areas. This section describes the following gray-level
morphology functions:

« erosion,
« dilation,
« opening,
+ closing,
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« proper-opening,
+ proper-closing,
+ auto-median.

These functions are derived from the combination of gray-level erosions and dilations
that use a structuring element.

Erosion Function

A gray-level erosion reduces the brightness of pixels that are surrounded by neighbors
with a lower intensity. The neighborhood is defined by a structuring element.

Dilation Function

A gray-level dilation increases the brightness of each pixel that is surrounded by
neighbors with a higher intensity. The neighborhood is defined by a structuring
element. The gray-level dilation has the opposite effect of the gray-level erosion
because dilating bright regions also erodes dark regions.

Erosion and Dilation Examples

This example uses the following source image.

The following table provides example structuring elements and the corresponding
eroded and dilated images
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Structuring Element Erosion Dilation
I X 3
1 1 1
1 1 3
0 1 0
> §
0 1 0

Opening Function

The gray-level opening function consists of a gray-level erosion followed by a gray-
level dilation. It removes bright spots isolated in dark regions and smooths
boundaries. The effects of the function are moderated by the configuration of the
structuring element.

opening(l) = dilation(erosion (1))

This operation does not significantly alter the area and shape of particles because
erosion and dilation are morphological opposites. Bright borders reduced by the
erosion are restored by the dilation. However, small bright particles that vanish during
the erosion do not reappear after the dilation.

Closing Function

The gray-level closing function consists of a gray-level dilation followed by a gray-level
erosion. It removes dark spots isolated in bright regions and smooths boundaries. The
effects of the function are moderated by the configuration of the structuring element.

closing(l) = erosion(dilation (1))

This operation does not significantly alter the area and shape of particles because
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dilation and erosion are morphological opposites. Bright borders expanded by the
dilation are reduced by the erosion. However, small dark particles that vanish during
the dilation do not reappear after the erosion.

Opening and Closing Examples

This example uses the following source image.

 Note Consecutive applications of an opening or closing function always give
the same results.
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Proper-Opening Function

The gray-level proper-opening function is a finite and dual combination of openings
and closings. It removes bright pixels isolated in dark regions and smooths the
boundaries of bright regions. The effects of the function are moderated by the
configuration of the structuring element.

Proper-Closing Function

The proper-closing function is a finite and dual combination of closings and openings.
It removes dark pixels isolated in bright regions and smooths the boundaries of dark
regions. The effects of the function are moderated by the configuration of the
structuring element.

Auto-Median Function

The auto-median function uses dual combinations of openings and closings. It
generates simpler particles that have fewer details.

Erosion Concept and Mathematics
Each pixel in an image becomes equal to the minimum value of its neighbors.
For a given pixel P, the structuring element is centered on Po.

The pixels masked by a coefficient of the structuring element equal to 1 are then
referred as P;.

Py = min(P,-)

A gray-level erosion using a structuring element f x f with all its coefficients set to 1 is
equivalent to an Nth order filter with a filter size f x f and the value N equal to 0. Refer

to the nonlinear filters section for more information.
Dilation Concept and Mathematics

Each pixel in an image becomes equal to the maximum value of its neighbors.
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For a given pixel Py, the structuring element is centered on P.

The pixels masked by a coefficient of the structuring element equal to 1 are then
referred as P;.

P, = max( P,-)

,\\’ Note A gray-level dilation using a structuring element f x f with all its
coefficients set to 1 is equivalent to an Nth order filter with a filter size f x f

and the value N equal to f % - 1. Refer to the nonlinear filters section for
more information.

Proper-Opening Concept and Mathematics

If I is the source image, the proper-opening function extracts the minimum value of
each pixel between the source image | and its transformed image obtained after an
opening, followed by a closing, and followed by another opening.

proper - opening(l) = min(/, OCO(I))

or

proper - opening(l) = min DEEDDE(}))

where:

| is the source image,

« Eisanerosion,

D is a dilation,

O is an opening,

Cisaclosing,

F(l) is the image obtained after applying the function F to the image |,

GF(l) is the image obtained after applying the function F to the image | followed by
the function G to the image I.
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Proper-Closing Concept and Mathematics

If I is the source image, the proper-closing function extracts the maximum value of
each pixel between the source image | and its transformed image obtained after a
closing, followed by an opening, and followed by another closing.

proper - closing(/) = max(l, OCO(I))
or
proper - closing(/) = maX(EDDEED(I))

where:

+ listhe source image,

« Eisanerosion,

« Disadilation,

« Oisan opening,

« Cisaclosing,

« F(l) is the image obtained after applying the function F to the image |,

« GF(l) is the image obtained after applying the function F to the image | followed by
the function G to the image I.

Auto-Median Concept and Mathematics

If I is the source image, the auto-median function extracts the minimum value of each
pixel between the two images obtained by applying a proper-opening and a proper-
closing of the source image I.

auto - median(l) = min(OCO(l), COC(I))

or

auto - median(l) = min( DEEDDE(I), EDDEED(]))

where;
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l is the source image,

« Eisan erosion,

D is a dilation,

O is an opening,

Cisaclosing,

F(1) is the image obtained after applying the function F to the image |,

GF(l) is the image obtained after applying the function F to the image | followed by
the function G to the image I.

Related concepts:

« Spatial Filtering

Operators

This section contains information about arithmetic and logic operators, which mask,
combine, and compare images.

Introduction

Operators perform basic arithmetic and logical operations on images. Use operators to
add, subtract, multiply, and divide an image with other images or constants. You also
can perform logical operations, such as AND/NAND, OR/NOR, and XOR/XNOR, and
make pixel comparisons between an image and other images or a constant.

When to Use

Common applications of these operators include time-delayed comparisons,
identification of the union or intersection between images, correction of image
backgrounds to eliminate light drifts, and comparisons between several images and a
model. You also can use operators to threshold or mask images and to alter contrast
and brightness.

Concepts

An arithmetic or logical operation between images is a pixel-by-pixel transformation. It
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produces an image in which each pixel derives its value from the values of pixels with
the same coordinates in other images.

If Ais an image with a resolution XY, B is an image with a resolution XY, and Op is the

operator, then the image N resulting from the combination of A and B through the
operator Op is such that each pixel p of the resulting image N is assigned the value:

Pn = (Pa)(0p)(pb)
where

* paisthe value of pixel p inimage a,
+ pp is the value of pixel p inimage b.

™~
N
P {Op) — =
Pr

Py

Arithmetic Operators

The equations in the following table describe the usage of arithmetic operators with
two images a and b.

Operator Equation
Multiply Pn=PaXpb
Pn=Ppa/pb
Divide The divide operator section contains additional information about the divide

operation, including division by zero.

Add Pn=PatpPb
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Operator Equation
Subtract Pn=PpPa-Pb
Modulo Pn = pamodpp
Absolute _
Difference Pn=|Pa=po|

If the resulting pixel value pp, is lower than the minimum possible value for the given
image type, the pixel is set to the lowest possible value. If the resulting pixel value is
greater than the maximum possible value for the given image type, the pixel is set to
the maximum possible value. The following table lists the range of possible values for
each supported image type.

Image Type Range
8-bit Unsigned Grayscale 0<pn=255
16-bit Signed Grayscale -32,768 < pn = 32,767

32-bit Floating-Point Grayscale = - <pp<o

32-bit RGB Color 0 < pn =255, for each channel (red, green, blue) in the image

Divide Operator

Use of the divide operator can produce results that do not directly translate to
appropriate pixel values for an image. In such cases, Vision uses the methods
discussed in the following sections to resolve the result of a divide operation to a valid
pixel value for the image.

Rounding Results

Dividing two pixel values sometimes produces a non-integer result. Since most
common image types accept only integers for the value of a pixel, Vision applies the
round-to-even rounding method to the result to produce an integer result to the
operation. For the most part, the round-to-even method works like other traditional
rounding methods.

If the digit after the last digit you want to keep is greater than five, or a five followed by
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one or more non-zero numbers, the last digit is rounded up to the next number. If the
following digit is less than five, the last digit is rounded down.

The difference between the round-to-even method and other rounding methods
occurs when the digit after the last digit you want to keep is exactly equal to five. In

NI Vision, when the following digit is equal to five, the result is rounded to the nearest
even number. If the last digit is an odd number, the result is rounded up to the next
even number. If the last digit to keep is an even number, the result is truncated at the
last digit to keep.

Example

The following examples illustrate using the round-to-even method to round to the
nearest integer value:

2.7 is rounded to 3 because the next digit is 6 or greater,

2.4 isrounded to 2 because the next digit is 4 or less,

3.5isrounded to 4 because the next digit is 5, and the last digit to keep, 3, is odd,
2.5is rounded to 2 because the next digit is 5, and the last digit to keep, 2, is even,
2.501 is rounded to 3 because the next digit is 5, but the last digit to keep is
followed by one or more non-zero digits.

Division by Zero

The following table describes the effect of division by zero on pixels in an image.

Image Type Divide by Zero Case Result
8-bitUnsignedGrayscale 0/0 0
8-bitUnsignedGrayscale  pa/0,pa>0 255
16-bitSignedGrayscale 0/0 0
16-bitSignedGrayscale Pa/0,pa>0 32,767
16-bitSignedGrayscale Pa/0,pa<0 -32,768
PointGrayscot 0/ Na
32-bitFloating- Pa/0,pa>0 0o
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Divide by Zero Case Result
pa / 0) pa < 0 —00
Pa(r):0/0pa(g):0/0pa(b):0/0 0

pa(r): pa(r) /0, pa(r) > 0 pa(g): pa(g) / 0, pa(g) > 0 pa(b): pa(b) / 0,

255
pa(b) >0

Logic and Comparison Operators

Logic operators are bitwise operators. They manipulate gray-level values coded on one
byte at the bit level. The equations in the following table describe the usage of logical

operators. The truth tables for logic operators are presented in the truth tables

section.

Operator

Logical Operators
AND

NAND

OR

NOR

XOR

Logic Difference
Comparison Operators
Mask

Mean

Max

Min

Equation

Logical Operators
Pn=paAND pp

Pn = pPa NAND pp
Pn=paORpb
Pn=paNOR pp
Pn=PpaXOR pp

Pn =pPaAND (NOTpp)
Comparison Operators
if pp =0, then pn =0, else pnh=pa
Pn =mean(pa, pb)

Pn = max(pa, Pb)

Pn =min(pa, pb)

In the case of images with 8-bit resolution, logic operators are mainly designed to do

ni.com



Image Processing and Analysis
the following:

« Combine gray-level images with binary mask images, which are composed of
pixels equal to 0 or 255.
« Combine or compare images with binary or labeled contents.

The following table illustrates how logic operators can be used to extract or remove
information in an image.

For a given p; If pp =255, then If pp =0, then
AND pa AND 255 = p, paAND 0=0
NAND pa NAND 255 =NOT p, pa NAND 0 =255
OR pa OR 255 =255 pa NAND 0 =255
NOR pa NOR255=0 pa NOR 0=NOT pa
XOR Pa XOR 255 = NOT pa, paXOR0=pa
Logic Difference pa- NOT 255 =p;, pa-NOTO0=0
Truth Tables

The following truth tables describe the rules used by the logic operators. The top row
and left column give the values of input bits. The cells in the table give the output
value for a given set of two input bits.
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AND MNAND
b b
a=>0 a=0|1
as= a=1|1 0
OR NOR
b b b
a=0]|0 a=0
a=1 1 a=1|0
XOR XNOR
b b b=0
a =0|0 a=>0 0
as= 0 a=1|o
NOT
NOT a
a=0]|1
a=1|0
Example 1

The following figure shows the source grayscale image used in this example.

Regions of interest have been isolated in a binary format, retouched with
morphological manipulations, and finally multiplied by 255 to obtain the following
image mask.
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The source image AND mask image operation restores the original intensity of the
object regions in the mask.

The source image OR mask image operation restores the original intensity of the
background region in the mask.

Example 2

This example demonstrates the use of the OR operation to produce an image
containing the union of two binary images. The following image represents the first
image, with a background value of 0 and objects with a gray-level value of 128.
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The following figure shows the second image, featuring a background value of 0 and
objects with gray-level values of 255.

Frequency Domain Analysis

This section contains information about converting images into the frequency domain
using the Fast Fourier transform, and information about analyzing and processing
images in the frequency domain.

Introduction

Frequency filters alter pixel values with respect to the periodicity and spatial
distribution of the variations in light intensity in the image. Unlike spatial filters,
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frequency filters do not apply directly to a spatial image, but to its frequency
representation. The frequency representation of an image is obtained through the Fast
Fourier Transform (FFT) function, which reveals information about the periodicity and
dispersion of the patterns found in the source image.

You can filter the spatial frequencies seen in an FFT image. The inverse FFT function
then restores a spatial representation of the filtered FFT image.

FFT Filter Inverse FFT
f(XrY) ——™ F(U,.V) ——™ H(U,V} g g(xry)

Frequency processing is another technique for extracting information from an image.
Instead of using the location and direction of light-intensity variations, you can use
frequency processing to manipulate the frequency of the occurrence of these
variations in the spatial domain. This new component is called the spatial frequency,
which is the frequency with which the light intensity in an image varies as a function of
spatial coordinates.

Spatial frequencies of an image are computed with the FFT. The FFT is calculated in
two steps—a 1D Fast Fourier transform of the rows, followed by a 1D Fast Fourier
transform of the columns of the previous results. The complex numbers that compose
the FFT plane are encoded in a 64-bit floating-point image called a complex image.
The complex image is formed by a 32-bit floating point number representing the real
part and a 32-bit floating point number representing the imaginary part.

In an image, details and sharp edges are associated with moderate to high spatial
frequencies because they introduce significant gray-level variations over short
distances. Gradually varying patterns are associated with low spatial frequencies. By
filtering spatial frequencies, you can remove, attenuate, or highlight the spatial
components to which they relate.

Use a lowpass frequency filter to attenuate or remove, or truncate, high frequencies
present in the image. This filter suppresses information related to rapid variations of
light intensities in the spatial image. An inverse FFT, used after a lowpass frequency
filter, produces an image in which noise, details, texture, and sharp edges are
smoothed.
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A highpass frequency filter attenuates or removes, or truncates, low frequencies
present in the complex image. This filter suppresses information related to slow
variations of light intensities in the spatial image. In this case, an inverse FFT used after
a highpass frequency filter produces an image in which overall patterns are sharpened
and details are emphasized.

A mask frequency filter removes frequencies contained in a mask specified by the user.
Using a mask to alter the Fourier transform of an image offers more possibilities than
applying a lowpass or highpass filter. The image mask is composed by the user and
can describe very specific frequencies and directions in the image. You can apply this
technique, for example, to filter dominant frequencies as well as their harmonics in
the frequency domain.

When to Use

Because details and sharp edges introduce significant gray-level variations over short
distances, they are associated with moderate to high spatial frequencies in an image.
Gradually varying patterns are associated with low spatial frequencies.

An image can have extraneous noise introduced during the digitization process, such
as periodic stripes. In the frequency domain, the periodic pattern is reduced to a
limited set of high spatial frequencies. Truncating these particular frequencies and
converting the filtered FFT image back to the spatial domain produces a new image in
which the grid pattern has disappeared, while the overall features remain.

Concepts

The FFT of an image is a 2D array of complex numbers, also represented as a complex
image. It represents the frequencies of occurrence of light-intensity variations in the
spatial domain. The low frequencies correspond to smooth and gradual intensity
variations found in the overall patterns of the source image. The high frequencies
correspond to abrupt and short intensity variations found at the edges of objects,
around noisy pixels, and around details.

FFT Representation

There are two possible representations of the Fast Fourier transform of an image: the
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standard representation and the optical representation.
Standard Representation

In the standard representation, high frequencies are grouped at the center of the
image while low frequencies are located at the edges. The constant term, or null
frequency, is in the upper-left corner of the image.

The frequency range is as follows:

where M is the horizontal resolution of the image, and N is the vertical resolution of the
image.
Low

Low High

Low
Freqg u encies

H|gh

\ Frequen{ues High

High

Low
Frequencie

High

\ . : :
,\\ Note Vision uses the standard representation to represent complex images
in memory. Use this representation when building an image mask.

The illustration shows an original image:
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Optical Representation

In the optical representation, low frequencies are grouped at the center of the image
while high frequencies are located at the edges. The constant term, or null frequency,
is at the center of the image.

The frequency range is as follows:
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High

Low

High

j} Frequencies

D |

C
i)

Low | Frequencies | Low

NS
B

High

High A
\( Frequencies {

High Low High

The illustration shows an original image:
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,\\‘ Note Vision uses optical representation when displaying a complex image.

You can switch from standard representation to optical representation by permuting
the A, B, C, and D quarters.

Intensities in the FFT image are proportional to the amplitude of the displayed
component.

Lowpass FFT Filters

A lowpass frequency filter attenuates, or removes, high frequencies presentin the FFT
plane. This filter suppresses information related to rapid variations of light intensities
in the spatial image. In this case, an inverse FFT produces an image in which noise,
details, texture, and sharp edges are smoothed.

Hi{u, v)

v U

A lowpass frequency filter attenuates, or removes, spatial frequencies located outside
a frequency range centered on the fundamental (or null) frequency.

Lowpass Attenuation

Lowpass attenuation applies a linear attenuation to the full frequency range,
increasing from the null frequency fg to the maximum frequency fmax. This is done by
multiplying each frequency by a coefficient C, which is a function of its deviation from
the fundamental and maximum frequencies.

_ f max-f
Cr=7 A

max "~

where,

ni.com



Image Processing and Analysis

Ci

'fl} 'rma:l:

Lowpass Truncation

Lowpass truncation removes a frequency fif it is higher than the cutoff or truncation
frequency, fc. This is done by multiplying each frequency f by a coefficient C equal to 0
or 1, depending on whether the frequency f is greater than the truncation frequency fe.

Iff>fc.then C(f)=0else C(f)=1

cin

.I‘,:, 'rI: 'rm.a.t:

The following series of graphics illustrates the behavior of both types of lowpass filters.
They represent the 3D-view profile of the magnitude of the FFT.

This example uses the following original FFT.

After lowpass attenuation, the magnitude of the central peak is the same, and
variations at the edges almost have disappeared.
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After lowpass truncation with fc = fg + 20%( fmax - fo), spatial frequencies outside the
truncation range [ fo, fc] are removed. The part of the central peak that remains is
identical to the one in the original FFT plane.

Highpass FFT Filters

A highpass FFT filter attenuates, or removes, low frequencies present in the FFT plane.
It has the effect of suppressing information related to slow variations of light
intensities in the spatial image. In this case, the Inverse FFT command produces an
image in which overall patterns are attenuated and details are emphasized.

Hiu, v

¥ u

Highpass Attenuation

Highpass attenuation applies a linear attenuation to the full frequency range,
increasing from the maximum frequency fmax to the null frequency fo. This is done by
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multiplying each frequency by a coefficient C, which is a function of its deviation from
the fundamental and maximum frequencies.

where,

Highpass Truncation

Highpass truncation removes a frequency f if it is lower than the cutoff or truncation
frequency, fc. This is done by multiplying each frequency f by a coefficient C equal to 1
or 0, depending on whether the frequency f is greater than the truncation frequency fe.

If f<f,
Then C¢(=0
Else Ci=1
1| ¢

The following series of graphics illustrates the behavior of both types of highpass
filters. They represent the 3D-view profile of the magnitude of the FFT. This example

uses the following original FFT image.
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After highpass attenuation, the central peak has been removed, and variations present
at the edges remain.

After highpass truncation with fc = fo + 20%( fmax - fo), spatial frequencies inside the
truncation range [fo, fc] are set to 0. The remaining frequencies are identical to the
ones in the original FFT plane.

Mask FFT Filters

A mask FFT filter removes frequencies contained in a mask specified by the user.
Depending on the mask definition, this filter can act as a lowpass, bandpass, highpass,
or any type of selective filter.

H{u, v}
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In-Depth Discussion

Fourier Transform

The spatial frequencies of an image are calculated by a function called the Fourier
Transform.

Itis defined in the continuous domain as:

Fuy= 5 S fix y)e ™ dxdy

- o0 - o0

where,

« f(x,yis the light intensity of the point,
 (x,y,and (u+v) are the horizontal and vertical spatial frequencies.

The Fourier Transform assigns a complex number to each set (u, v).

Inversely, a Fast Fourier Transform F(u, v) can be transformed into a spatial image f(x,
y) of resolution NM using the following formula:

N-1 M-1

) pnux vy
F(x, y) :Wz z Flu, v)e

—_— ==

N M

where,
« N x Mis the resolution of the spatial image f (x, y).

In the discrete domain, the Fourier Transform is calculated with an efficient algorithm
called the Fast Fourier Transform (FFT).

N-1 M-1

Ay, @:ﬁz z Flx, y)é

x=0"y=0

Because e 2™ = cos 2mux - jsin2mux, F(u, v) is composed of an infinite sum of sine
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and cosine terms. Each pair (u, v) determines the frequency of its corresponding sine
and cosine pair. For a given set (u, v), notice that all values f(x, y) contribute to F(u, v).
Because of this complexity, the FFT calculation is time consuming.

Given an image with a resolution N x M and given Ax and Ay the spatial step
increments, the FFT of the source image has the same resolution NM and its frequency
step increments Au and Av, which are defined in the following equations:

Nx A x
1
Av= Mx By
FFT Display

An FFT image can be visualized using any of its four complex components: real part,
imaginary part, magnitude, and phase. The relation between these componentsiis
expressed by:

Flu, v) = R(u, v) +jl(u, V)
where,

« R(uisthe real part,
+ I(uis the imaginary part, and

Flu, v) = (Fu, v)) x oY
where,

« |F(u, v)|is the magnitude,
« ®(u,v)isthe phase.

The magnitude of F(u, v) is also called the Fourier spectrum and is equal to:

(F(u, v)) = \/R(u, v)2+ I(u, v)2

The Fourier spectrum to the power of two is known as the power spectrum or spectral
density.
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The phase ¢(u, v) is also called the phase angle and is equal to:
I(u, v)
R(u, v))

By default, when you display a complex image, the magnitude plane of the complex
image is displayed using the optical representation. To visualize the magnitude values
properly, the magnitude values are scaled by the factor m before they are displayed.
The factor mis calculated as

¢(u, v) = atan

128
wx h

where,

« wisthe width of the image,
+ histhe height of the image.

Texture Defect Detection

This section contains information about texture defect detection and analysis.

Introduction

Texture defect detection detects defects in a texture based on a texture classifier
trained with texture samples that do not contain defects. During inspection, the
texture defect detection algorithm identifies as defective any regions that do not
match the trained texture samples. The identified defects appear in the output image
as blobs. You can use the particle analysis tools in the Vision library to analyze the
properties of the detected defects. Texture defect detection is not designed for
continuous web or surface inspection applications.

Related concepts:

« Particle Analysis
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When to Use

Texture defect detection recognizes scratches, cracks, stains, and other defects that
may vary in size and shape on textured surfaces. Use texture defect detection when
traditional machine vision techniques such as dynamic thresholding and edge
detection are not adequate to find the defects on the parts being inspected.
Applications include the automated inspection of materials such as ceramic tiles,
textiles, lumber, paper, plastic surfaces and glass, which are often characterized by
irregular texture patterns.

The following figure shows examples of texture defects that traditional machine vision
techniques may not adequately detect.

What to Expect from Texture Defect Detection

Texture defect detection detects defects in a texture based on a texture classifier
trained with texture samples that do not contain defects. The texture classifier is
trained to recognize texture samples that are acceptable in the current inspection. The
texture defect detection algorithm accepts an image of a texture surface as an input,
identifies texture defects, and returns a binary image of the texture defects. The
following figure illustrates typical input and output images.
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Shift Variation

Texture defect detection is invariant to shift. For example, if the texture in the
inspection image shifts vertically or horizontally from the trained texture samples, the
texture defect detection algorithm continues to correctly identify any texture defects.

Rotation Variation

Texture defect detection is invariant to rotation of approximately 5 degrees. If the
texture under inspection can shift more than 5 degrees, you must train the classifier
with texture samples at every expected orientation. The following figures illustrate the
same texture at distinct orientations that require trained samples for each variation.
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Scale Variation

Texture defect detection is invariant to rotation of approximately +10 degrees. If the
texture under inspection can vary more than 10 degrees in scale, you must train the
classifier with texture samples at every expected scale variation. The following figures
illustrate a difference in scale that require trained samples for each variation.

T

doa

In-Depth Discussion

This section provides additional information you may need for building successful
texture defect detection applications.

« The texture defect detection algorithm uses discrete wavelet frame decomposition
and a statistical approach to characterize visual textures.

« The algorithm decomposes a texture inspection image into several subbands using
over-complete and shift-invariant wavelet frames.

+ The algorithm partitions each subband image into non-overlapping windows, and
uses a gray-level co-occurrence matrix (GLCM) to analyze the coefficient
distribution of each window. Second order statistics, or Haralick features, are
calculated from the GLCM representations.

+ The algorithm concatenates Haralick features extracted from all subbands in a high
dimensional feature space.

« Aone-class support vector machine (SVM) is trained with a general description
of the texture under inspection in the same high dimensional feature space. During
inspection, Haralick features extracted from the inspection image are classified
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using the previously trained texture defect classifier as texture or defective pixels.
Wavelet Frame Decomposition

The first step in texture defect detection is a multi-resolution analysis of the texture in
the inspection image, inspired by psycho-visual findings that humans perceive images
in a multi-scale manner. The texture defect detection algorithm uses discrete wavelet
frame transforms (DWFT) proposed by Unser® to obtain translation-invariant
characteristics from textures with minimum dependencies between the transform
coefficients. Wavelet frame transforms are wavelet transform variations in which the
output of the filter banks are not subsampled. As a result, each subband image has the
same size as the input image and performs better in texture classification and
segmentation.

For texture analysis, discrete wavelet transforms (DWT) for hierarchical signal analysis
and decomposition are implemented through an iterative filtering and downsampling
operation with lowpass and highpass filters h and g. The following figure illustrates
one stage of a 2-dimensional DWT where 241 denotes downsampling by a factor of 2.

o 5.
h = 2]1 {

e f2h D

B = 2p1 =D,
g |2 {

E | :+] —FDI-I
The filters h and g and their corresponding reconstruction counterparts satisfy the
general perfect reconstruction constraint h(z) " h(z-1) +g(z) " g(z-1) =1 in the z-

transform domain. At each iteration, the coefficients of the coarse approximation, s; + 1,
and the detail coefficients, d; + 1, are calculated from current coefficients, sj, by:

. For more information about discrete wavelet frame transforms see Unser, M. "Texture Classification
and Segmentation Using Wavelet Frames," Image Processing, IEEE Transactions on 4, no. 11 (1995)
1549-1560.
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siea(K) = (h s,-(k))w

dia(K) = (g d{K)) ,(i=0, ..., )

where,
« so(k) =f(k) is the input signal to the filter bank.

This concept is extended to 2-dimensional discrete signals (images) where
2-dimensional filters are obtained by the tensor product of 1-dimensional lowpass and
highpass filters h and g along the rows and columns. After one stage of decomposition
the image at resolution i is decomposed into four subband images—one coarse

approximation s i+ l|_|_ , and three detail images d i 1|_|-| ,d I+ 1|-||_ ,and sd I+ lHH .The
three detail subband images are referred to as the horizontal (H), vertical (V), and
diagonal (D) details, respectively.

Unser proposes an over-complete DWFT decomposition, showing that it constitutes a
tight frame of 12. Unser implements the following fast iterative decomposition
algorithm.

where,
« so(k) =f(k) is the input signal to the filter bank.

The following figure illustrates one stage of a 2-dimensional DWFT where the
1-dimensional filters [h]+2i and [g]+2j are used to perform successive convolution
along the rows and columns of the image.
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nf2 —'-5;1
e h1||;'~|: .
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L g-};'{

L) D"
The 1-dimensional filters [h]+2i and [g]42i are the filters h and g expanded by inserting
an appropriate number of zeroes (2i - 1) between taps of filter h. Because there is no

dyadic subsampling in this DWFT, the decomposed subband images are the same size
as the original image.

The texture defect detection algorithm performs two levels of decomposition for each
inspection image. The first decomposition step produces a coarse approximation A
and horizontal, vertical, and diagonal details H, V, and D. The coarse approximation A
is decomposed again to produce subbands AA, AV, AH, and AD. The following figure
illustrates the subband images derived from two-level decomposition.

s = .-r;_-na =1 i el
) . I-: 7 .:‘ ,
Original Image Low Low High Low Low High High High Low Low Low
Low High Low | Low Low High Low High High
Wavelet Types

By default, the texture defect detection algorithm uses biorthogonal wavelets for
subband decomposition, which means that the analysis filters h and g are different
from synthesis filters "h and “g. When compared to orthogonal wavelets, biorthogonal
wavelets have higher regularity, have finite impulse response, and preserve linear
phase better.

Statistical Feature Extraction

Psychological findings by Julesz? indicate that the human eye cannot make a
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preattentive discrimination of textures that have identical first and second order
statistics. Therefore, an automatic inspection system that competes with human
inspectors should consider second order statistics. Haralick et al.3 define second order
statistical features based on the gray-level co-occurrence matrix (GLCM). Haralick
features are commonly used for texture identification.

Gray-Level Co-Occurrence Matrix (GLCM)

To extract Haralick features, the texture defect detection algorithm constructs a GLCM
from a texture image I(x, y). The GLCM estimates the joint probability that a pixel value

occurs at a displacement vector d” from another pixel value. Given that a texture
image I(x, y) is an N x M matrix consisting of G different grey shades, the GLCM for its

GLCM for displacement vector d” = (dy, dy) is a G x G matrix:

N M

g [ ot

where,

« dftrue} =1 and &{false} =0,
« the number in element (i, j) of the GLCM matrix P4(i, j) indicates the number of

times pixel level i occurs at displacement vector d” from pixel level j.

The following figures illustrate a GLCM for a 4 x 4 pixel texture sample I(x, y) that
consists of 8 pixel values. Figure A illustrates the texture sample. Figure B illustrates the
pixel values for the texture sample. Figure C illustrates the corresponding GLCM for

displacement vector d” = (1, 0). The GLCM is an 8 x 8 matrix P(i, j) that represents the
number of times a pixel value j occurs to the right of a pixel value i. For example, the
pixel value 2 is twice located to the right of pixel value 1 in the texture sample. Thus,
P(0, 1)(1, 2) = 2. Similarly, P(0, 1)(8, 1) = 1 because only once does pixel value 1 occur to

. For more information about the role of second-order statistics in human perception see Julesz, B.,

Gilbert, E., Shepp, L., and Frisch, H. "Inability of Humans to Discriminate between Visual Textures that
Agree in Second-Order Statistics Revisited," Perception 2 (1973) 391-405.

. For more information about Haralick features see Haralick, R., Shanmugam, K., and Dinstein, I.

"Textural Features for Image Classification," Systems, Man and Cybernetics, IEEE Transactions on 3
no. 6 (1973) 610-621.
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the right of pixel value 8.
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In applications like texture classification, the co-occurrence matrix can be extracted
from the entire texture. In texture defect detection, however, it is better to extract the
co-occurrence matrix from local features. The co-occurrence matrix can be extracted
locally either by partitioning the texture into adjacent windows and calculating the
GLCM for each window, or by moving a single window over the texture and calculating
a GLCM that is associated with the center pixel in each instance of the window. By
default, the texture defect detection algorithm calculates co-occurrence matrices
locally from wavelet decomposed subband images using adjacent 15 x 15 windows;
however, you can change the size of the window and the overlap between windows.

Haralick Feature Extraction

The texture defect detection algorithm extracts five Haralick features—entropy,
dissimilarity, contrast, homogeneity, and correlation—from the GLCM calculated at
each partition of the subband texture.

Entropy = Z Z —InP; )
Dissimilarity = Z 12 Pi, (i
1=

Contrast :ZG 12 Pi, /
I
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« M= zGi,j =1iPjjand yj= zGi,j =1]Pj,jare the GLCM means, and

. 0= zGi,j =1Pjj(1- ui)z and oj= zGi,j =1Pij(1- uj)z are the GLCM variances.

The following figure illustrates the High Low wavelet subband and its five
corresponding Haralick feature maps. Note that the Haralick features clearly
distinguish the texture defect from the texture, with the entropy and contrast features
exhibiting the highest differentiation for this example.

Haralick Features

Dissimilarity

Entropy

Correlation

Contrast

Homogeneity
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The number of feature vector elements extracted to represent a texture sample is
equivalent to the number of selected wavelet subbands multiplied by 5 (the number of
Haralick features extracted from each wavelet subband). For example, if an application
uses all 8 subbands, the size of the resulting feature vector is 40.

Support Vector Machine Classifier

The final stage of texture defect detection involves classifying pixels as either texture
or defect, based on the texture features extracted from a neighborhood around the
pixel. This type of classification is an outlier detection or one-class classification
problem. In a one-class classification problem, a known class is represented by
numerous trained samples while an unknown class is represented by few or no
samples. For example, a known class may consist of texture samples and an unknown
class may consist of texture defects that vary so greatly in size, shape, or orientation
that they are impossible to document.

The texture defect detection uses a one-class SVM classifier. SVM classifiers identify
a separating surface, or hyperplane, located at the maximum possible distance from
the nearest data point in either of two classes®. SVM classifiers have very good
generalization capabilities and perform well in high dimensional feature spaces.

Related concepts:

« Support Vector Machines

Flat Field Correction

This section contains information about flat field correction.

Introduction to Flat Field Correction

Flat field correction is the process of correcting the non-uniform intensity in images.
Non-uniform intensity occurs in the images due to lens light fall off (also known as
vignetting), non-linear surfaces, and non-uniform lighting.

. For more information about texture inspection with SVM classifiers see Jahanbin, S., Bovik, A., Perez,
E., Nair, D. "Automated Inspection of Textured Surfaces by Support Vector Machines," SPIE
Conference on Optics and Photonics San Diego, California, August 2-6 (2009).
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Flat field correction requires flat field images, also called bright field images, and dark
field images from the imaging setup. Flat field images are mandatory for correcting the
images.

Flat field images need to be captured using the imaging setup with a bright
background or the flat field images can be estimated programmatically using a
mathematical model. Once flat field images are captured or estimated, they can be
used to correct the non-uniform intensity in the images.

The following illustracion shows an image with non-uniform intensity and the flat field
corrected image.

L IE

Non-uniform Intensity Image Flat Field Correctaed Image

When to Use Flat Field Correction

Use flat field correction to do the following:

« Correct non-uniform intensity in an image.

+ Pre-process an image before applying edge detection or pattern matching.
« Correctintensity fall off to emphasize a defect in the image.

+ Correct sensor dust and impurity.

The following illustration showssensor dust and lighting issues due to improper line
light setup.
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Sensor Dust Improper Lighting Setup

Flat Field Correction Concepts

Flat field correction uses the following equation to correct images:

(Image - DarkField Image)+Median of (Flat Field Image- DarkField Image)

- _ *+CorrectionFactor
(Flat Field Image- DarkField Image)

Corrected Image =

where,

Image is the image to be corrected,

Dark Field Image is the image that captures the dark currents in the sensor,
Flat Field Image is the image intensity profile image,

Correction Factor is a constant to bias the brightness of the corrected image.

Optimized Correction

The flat field correction algorithm provides an option to correct the image faster by
storing the following equation component in memory.

Median of (Flat Field Image- Dark Field Image)

- - #CorrectionFactor
{Flat Field Image - Dark Field Image)

Flat Field Stored Image =

When the optimized correction is enabled, the algorithm computes and stores the
above component when the flat field image is first used. The stored value is reused for
each image thereafter. The flat field correction equation with the optimization
enabled:

Corrected Image = (Image- DarkField Image) *#Flat Field Stored Imaage
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Flat Field Correction In-Depth Discussion

NI Vision provides two techniques to generate flat field images.

+ User-controlled—Capture images with a bright background using an actual
imaging setup.

« Estimation—Estimate the flat field image using the Estimate Flat Field Model
algorithm.

User-controlled Technique
Use this technique:

+ to achieve an accurate representation of back ground intensity,

« to remove sensor noise, such as dust,

« ifthe imaging setup is easily accessible in an industrial environment, and
recapturing the images are necessary due to lighting changes.

In this technique, use your imaging set up to capture flat field images with a bright
background after removing the object under inspection. Typically, multiple images are
captured (more than 10), and then averaged to create the flat field image. Capture the
dark field images by covering the camera lens.

This process should be be repeated whenever the imaging setup (lens, light, and
position) changes. It is important to capture multiple frames to nullify the texture of
the background. Use the IMAQ Compute Median Image VI and the IMAQ Compute
Average Image VI to obtain the median or average of multiple images. Pass the flat field
and dark field images to the IMAQ Flat Field Correction VI to create a corrected image.

Estimation Technique

The following images illustrate the flat field estimation process. Image A is an image to
estimate the flat field image. Image B illustrates the sampling points. Image C
illustrates the fitted 2D polynomial model. Image D is the estimated flat field image
using the surface fit.
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L[

Cc D

The flat field image can be estimated more accurately by enabling the Estimate
Background? boolean in the VI. This parameter detects the background region in the
image and performs a surface fit using only background pixels. The following figure
illustrates the detected background region by masking the foreground objects.

The .Es"timate Backgfound; option provides the following options to detect the
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background region:

+ Polynomial—Uses a polynomial algorithm with a specified Polynomial Degree to
estimate the background.

« Background Correction—Performs background correction to eliminate non-
uniform lighting effects and then performs thresholding using the interclass
variance thresholding algorithm.

+ NiBlack—Computes thresholds for each pixel based on its local statistics using the
NiBlack local thresholding algorithm.
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Particle Analysis

This section describes conceptual information about particle analysis, including
thresholding, morphology, and particle measurements.

Introduction

You can use particle analysis to detect connected regions or groupings of pixels in an
image and then make selected measurements of those regions. These regions are
commonly referred to as particles. A particle is a contiguous region of nonzero pixels.
You can extract particles from a grayscale image by thresholding the image into
background and foreground states. Zero valued pixels are in the background state, and
all nonzero valued pixels are in the foreground.

Particle analysis consists of a series of processing operations and analysis functions
that produce information about particles in an image. Using particle analysis, you can
detect and analyze any 2D shape in an image.

When to Use

Use particle analysis when you are interested in finding particles whose spatial
characteristics satisfy certain criteria. In many applications where computation is time-
consuming, you can use particle filtering to eliminate particles that are of no interest
based on their spatial characteristics, and keep only the relevant particles for further
analysis.

You can use particle analysis to find statistical information, such as the presence of
particles, their number and size, and location. This information allows you to perform
many machine vision inspection tasks, such as detecting flaws on silicon wafers,
detecting soldering defects on electronic boards, or web inspection applications such
as finding structural defects on wood planks or detecting cracks on plastics sheets. You
also can locate objects in motion control applications.

In applications where there is a significant variance in the shape or orientation of an
object, particle analysis is a powerful and flexible way to search for the object. You can
use a combination of the measurements obtained through particle analysis to define a
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feature set that uniquely defines the shape of the object.

Concepts

A typical particle analysis process scans through an entire image, detects all the
particles in the image, and builds a detailed report on each particle. You can use
multiple parameters such as perimeter, angle, area, and center of mass to identify and
classify these particles. Using multiple parameters can be faster and more effective
than pattern matching in many applications.

By using different sets of parameters, you can also uniquely identify a feature in an
image. For example, you could use the area of the template particle as a criterion for
removing all particles that do not match it within some tolerance. You then can
perform a more refined search on the remaining particles using another list of
parameter tolerances.

The following figure shows a sample list of parameters that you can obtain in a particle
analysis application. The binary image in this example was obtained by thresholding
the source image and removing particles that touch the border of the image. You can
use these parameters to identify and classify particles. The following figure shows the
values obtained for the particle enclosed in a rectangle.
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A. Source Image B. Binary Image
Particle Measurement|Values
Area 2456
Nurber of Holes 1
Bounding Rect

Left 127

Top 8

Right 200

Bottom 86
Center of Mass

X 167.51

Y 37.61
Crientation 82.360
Dimensions

Width 73

Height 78

To use particle analysis, first create a binary image using a thresholding process. You
then can improve the binary image using morphological transformations and make
measurements on the particles in the image.

Image Segmentation

This section contains information about segmenting images using global grayscale
thresholding, global color thresholding, local thresholding, and morphological
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segmentation. Image segmentation is the process of separating objects from the
background and each other so that each object can be identified and characterized.

Refer to particle measurements for information about characterizing objects after
segmentation.

Related concepts:

« Particle Measurements

Thresholding

Thresholding uses the pixel values in an image to segment the image into two regions:
a particle region, which contains the objects under inspection, and a background
region.

Arange of pixel values is defined, either by the user or automatically, as the threshold.
Any pixel value outside the range becomes 0, and any pixel value inside the range
becomes 1, or a user-defined value. Thresholding results in a binary image.

When to Use

Use thresholding to create a binary image and focus inspection on specific areas of
interest.

Thresholding is often the first step in machine vision applications such as particle
analysis, golden template comparison, and binary particle classification.

Vision supports the following thresholding methods:

+ Global Grayscale Thresholding—Use Global Grayscale Thresholding on grayscale
images with uniform lighting. Global Grayscale Thresholding can be performed
with the following methods:

« Manual Threshold—Enables the user to manually set the threshold range.
Recommended on images with good contrast and uniform lighting.

+ Clustering—Thresholds the image into more than two classes. This is the most
common automatic thresholding method.

« Entropy—Detects small areas of interest in the image. This method is used for
applications such as fault detection.
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« Inter Variance—Use for images in which classes are not overly
disproportionate, and when the object of interest and the background contain
a comparable number of pixels. For satisfactory results, the smallest class must
be at least 5% of the largest one.

« Metric—Calculates a value for each threshold that is determined by the
surfaces representing the initial gray scale. Use this method when the object of
interest and the background contain a comparable number of pixels.

« Moments—Use for images that have poor contrast.

+ Global Color Thresholding—Use Global Color Thresholding on color images with
uniform lighting.

+ Local Thresholding—Use Local Thresholding to isolate regions of interest in
images that exhibit non-uniform lighting changes, such as shadows or a strong
illumnination gradient. Local Thresholding can be performed with the following

methods:
« Niblack Algorithm—Effective for applications such as display inspection and
OCR images.
« Sauvola Algorithm—Results in less noise and preserves the shape of the
particles.

« Modified Sauvola Algorithm—Less computationally intensive than the
Sauvola algorithm.
« Background Correction Algorithm—Reduces noise in large, empty areas.

Global Grayscale Thresholding

Global grayscale thresholding includes manual thresholding and automatic
thresholding techniques.

When to Use

Global thresholding works best when the inspection images exhibit uniform lighting
both within each image and across multiple images.

Concepts

Particles are characterized by an intensity range. They are composed of pixels with
gray-level values belonging to a given threshold interval (overall luminosity or gray
shade). All other pixels are considered to be part of the background.
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Thresholding sets all pixels that belong to a range of pixel values, called the threshold
interval, to 1 or a user-defined value, and it sets all other pixels in the image to 0. Pixels
inside the threshold interval are considered part of a particle. Pixels outside the
threshold interval are considered part of the background.

The following figure shows the histogram of an image. All pixels in the image whose

values range from 166 to 255 are considered particle pixels.
Threshold Range

A NE

0 166 256
Image Histogram

Manual Threshold

The threshold interval in a manual threshold has two user-defined parameters: lower
threshold and upper threshold. All pixels that have gray-level values equal to or
greater than the lower threshold and equal to or smaller than the upper threshold are
selected as pixels belonging to particles in the image.

Manual Thresholding Example

This example uses the following source image.

Highlighting the pixels that belong to the threshold interval [166, 255] (the brightest
areas) produces the following image.
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Automatic Threshold

Vision has five automatic thresholding techniques.

Clustering
Entropy

Inter Variance
Metric
Moments

In contrast to manual thresholding, these techniques do not require that you set the
lower and upper threshold values. These techniques are well suited for conditions in
which the light intensity varies from image to image.

Clustering is the only multi-class thresholding method available. Clustering operates
on multiple classes so you can create tertiary or higher-level images.

The other four methods—entropy, metric, moments, and interclass variance—are
reserved for strictly binary thresholding techniques. The choice of which algorithm to
apply depends on the type of image to threshold.

Depending on your source image, it is sometimes useful to invert the original grayscale
image before applying an automatic threshold function, such as entropy and
moments. This is especially true for cases in which the background is brighter than the
foreground.

Clustering

Clustering is the most frequently used automatic thresholding method. Use the
clustering method when you need to threshold the image into more than two classes.
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Clustering sorts the histogram of the image within a discrete number of classes
corresponding to the number of phases perceived in an image. The gray values are
determined, and a barycenter is determined for each class. This process repeats until it
obtains a value that represents the center of mass for each phase or class.

Example of Clustering

This example uses a clustering technique in two and three phases on an image. Notice
that the results from this function are generally independent of the lighting conditions
as well as the histogram values from the image.

This example uses the following original image.

Clustering in three phases produces the following image.
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Entropy

Based on a classical image analysis technique, entropy is best for detecting particles
that are present in minuscule proportions on the image. For example, this function
would be suitable for fault detection.

Inter Variance

Inter variance is based on discriminant analysis. An optimal threshold is determined by
maximizing the interclass variation with respect to the threshold.

Metric

For each threshold, a value determined by the surfaces representing the initial gray
scale is calculated. The optimal threshold corresponds to the smallest value.

Moments

This technique is suited for images that have poor contrast. The moments method is
based on the hypothesis that the observed image is a blurred version of the
theoretically binary original. The blurring that is produced from the acquisition
process, caused by electronic noise or slight defocalization, is treated as if the
statistical moments of average and variance were the same for both the blurred image
and the original image. This function recalculates a theoretical binary image.

In-Depth Discussion

All automatic thresholding methods use the histogram of an image to determine the
threshold. The following figure explains the notations used to describe the parameters
of the histogram. These notations are used throughout this section to show how each
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automatic thresholding method calculates the threshold value for an image.

hii) Class 0 Class 1
A

Histogram Value

i

k
Gray Level Value

i represents the gray level value,

k represents the gray level value chosen as the threshold,

h(i) represents the number of pixels in the image at each gray level value,

N represents the total number of gray levels in the image (256 for an 8-bit image),
n represents the total number of pixels in the image.

Use the automatic thresholding techniques to determine the threshold pixel value k
such that all gray-level values less than or equal to k belong to one class 0 and the
other gray level values belong to another class 1.

Clustering

The threshold value is the pixel value k for which the following condition is true:

ity
— =

k

where;

« M1 is the mean of all pixel values that lie between 0 and k,
« and yy is the mean of all the pixel values that lie between k + 1 and 255.

Entropy

In this method, the threshold value is obtained by applying information theory to the
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histogram data. In information theory, the entropy of the histogram signifies the
amount of information associated with the histogram. Let

represent the probability of occurrence of the gray level i. The entropy of a histogram
of an image with gray levels in the range [0, N - 1] is given by

H= Z;V:_Ol p(i)log,pp(i)
If k is the value of the threshold, then the two entropies

Hp= - Zfzop(i)logzpb(i)

N-1 F 3
Hy = - Z,’: K+l pW(l)logsz(l)

represent the measures of the entropy (information) associated with the black and
white pixels in the image after thresholding. Pp(i) is the probability of the background,
and Pp(w) is the probability of the object.

The optimal threshold value is gray-level value that maximizes the entropy in the
thresholded image given by

Hb+HW

Simplified, the threshold value is the pixel value k at which the following expression is
maximized:

Kk N-1
By lh(f)z log, (h(i) + 1)h(i) - zN—ll h(ai g () + )1 + logz(sz=0h(i)zﬁ_kl*lh(i))
i=0 =0 i=k+1 iz k+1

Inter Variance

The threshold value is the pixel value k at which the following expression is maximized:
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2 (k) = (k)
0 =

B w(k)(1 - w(K)
where

is the Interclass Variance.
* H(K

is the mean of the class containing bins 0 to k.
* Ur

is the overall mean.
* w(k)

is the class probability.

Metric

Particle Analysis

The threshold value is the pixel value k at which the following expression is minimized:

zk 0 h(i)((i— ul)) ¥ ZN: 1 h(i)((i - n2))

where,

+ u1isthe mean of all pixel values in the image that lie between 0,

+ k,and py is the mean of all the pixel values in the image that lie between k + 1 and

255.

Moments

In this method the threshold value is computed in such a way that the moments of the
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image to be thresholded are preserved in the binary output image.

The kth moment m of an image is calculated as

where n is the total number of pixels in the image.

Global Color Thresholding

Color thresholding converts a color image into a binary image.
When to Use

Threshold a color image when you need to isolate features for analysis and processing
or to remove unnecessary features.

A\\’ Note Before performing a color threshold, you may need to enhance your
image with lookup tables or the equalize function.

Concepts

To threshold a color image, specify a threshold interval for each of the three color
components. A pixel in the output image is set to 1 if and only if its color components
fall within the specified ranges. Otherwise, the pixel value is set to 0.

The following figure shows the histograms of each plane of a color image stored in RGB
format. The gray shaded region indicates the threshold range for each of the color
planes. For a pixel in the colorimage to be set to 1 in the binary image, its red value
should lie between 130 and 200, its green value should lie between 100 and 150, and
its blue value should lie between 55 and 115.
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Green Plane Histogram

Red Plane Histogram . ! !

ED[J

Blue Plane Histogram ' l l

To threshold an RGB image, first determine the red, green, and blue values of the pixels
that constitute the objects you want to analyze after thresholding. Then, specify a
threshold range for each color plane that encompasses the color values of interest. You
must choose correct ranges for all three color planes to isolate a color of interest.

The following figure shows the histograms of each plane of a color image stored in HSL
format. The gray shaded region indicates the threshold range for each of the color
planes. For a pixel in the color image to be set to 1 in the binary image, its hue value
should lie between 165 and 215, its saturation value should lie between 0 and 30, and
its luminance value should lie between 25 and 210.
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Hue Plane Histogram

T
215 2585

Saturation Plane Histogram

255

Luminance Plane Histogram

A

0 25 210 255

The hue plane contains the main color information in an image. To threshold an HSL
image, first determine the hue values of the pixels that you want to analyze after
thresholding. In some applications, you may need to select colors with the same hue
value but various saturation values. Because the luminance plane contains only
information about the intensity levels in the image, you can set the luminance
threshold range to include all the luminance values, thus making the thresholding
process independent from intensity information.

Local Thresholding

Local thresholding, also known as locally adaptive thresholding, is like global
grayscale thresholding in that both create a binary image by segmenting a grayscale
image into a particle region and a background region. Unlike global grayscale
thresholding, which categorizes a pixel as part of a particle or the background based
on a single threshold value derived from the intensity statistics of the entire image,
local thresholding categorizes a pixel based on the intensity statistics of its
neighboring pixels.

When to Use

Use local thresholding to isolate objects of interest from the background in images
that exhibit nonuniform lighting changes. Nonuniform lighting changes, such as those
resulting from a strong illumination gradient or shadows, often make global
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thresholding ineffective.

The following figure shows the effect of global thresholding and local thresholding on
an image with nonuniform lighting changes. Figure A shows the original inspection
image of LCD digits. Figure B shows how a global threshold segments the inspection
image. Notice that many of the nondigit pixels in the bottom, right corner are
erroneously selected as particles. Figure C shows how a local threshold segments the
inspection image. Only pixels belonging to LCD digits are selected as particles.

Concepts

The local thresholding algorithm calculates local pixel intensity statistics—such as
range, variance, surface fitting parameters, or their logical combinations—for each
pixel in an inspection image. The result of this calculation is the local threshold value
for the pixel under consideration. The algorithm compares the original intensity value
of the pixel under consideration to its local threshold value and determines whether
the pixel belongs to a particle or the background.

A user-defined window specifies which neighboring pixels are considered in the
statistical calculation. The default window size is 32 x 32.

» Note Even-numbered window dimensions and odd-numbered window
dimensions produce the same center pixel. For example, in the following
figure, the pixel under consideration is the same for a 4 x 4 local thresholding
window as it is for a 3 x 3 local thresholding window.

The window size should be approximately the size of the smallest object you want to
separate from the background. The following figure shows a simplified local
thresholding window.
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1. Image
2. Local Thresholding Window
3. Pixel under Consideration

» Note The pixel intensities of all of the pixels in the window, including the
pixel under consideration, are used to calculate the local threshold value.

A typical local thresholding function requires a large amount of computation time.
Also, the time a typical local thresholding function takes to complete often varies
depending on the window size. This lack of determinism prevents local thresholding
from being used in real-time applications. The Vision local thresholding function uses
a fully optimized, efficient algorithm implementation whose computation speed is
independent of the window size. This significantly reduces the computation cost and
makes using the function in a real-time segmentation applications possible.

The following sections describe the algorithms available in the Vision local
thresholding function.

> Note You must specify whether you are looking for dark objects on a light
background or light objects on a dark background regardless of which
algorithm you use.
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Niblack Algorithm

This algorithm has been experimentally shown to be the best among eleven locally
adaptive thresholding algorithms, based on a goal-directed evaluation from OCR and
map image segmentation applications. The algorithm is effective for many image
thresholding applications, such as display inspection and OCR.

The Niblack algorithm is sensitive to the window size and produces noisy
segmentation results in areas of the image with a large, uniform background. To solve
this problem, the Vision local thresholding function computes a deviation factor that
the algorithm uses to correctly categorize pixels.

Background Correction Algorithm

This algorithm combines the local and global thresholding concepts for image
segmentation. The following figure illustrates the background correction algorithm.

r .
I\ Inspection Image )

Locking Yag
for Bright
Objects?
Mo
Subtract Pixel Value from Subtract Average Intensity

Average Intensity of Window of Window from Pixel Value

Iz: Background-corrected | mage)

v

Perform Global Threshold I

v

/ -
L Binary Image )

The background-corrected image is thresholded using the interclass variance
automatic thresholding method described in the automatic threshold section of this
chapter.

In-Depth Discussion

The following sections provide an in-depth discussion of the algorithms used by each
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thresholding method.

Niblack

In the Niblack algorithm, the local threshold value T(i, j) at pixel (i, ) is calculated as
T(i, j)=m(i, ) + k.w (i, )

where,

« m(i, j) is the local sample mean,
+ kisthe deviation Niblack/Sauvola factor,
« (i, j) is the standard deviation.

Each image pixel I(i, j) is categorized as a particle or background pixel based on the
following:

if 1(i,j) > T(i, j), 1(i, j) = particle

else I(i, j) = background

N 7
_/Q\_ Tip Setting k to 0 to increases the computation speed of the Niblack
~  algorithm.

Sauvola

In the Sauvola algorithm, the windowed standard deviation is normalized by dividing
the windowed standard deviation by the dynamic range of the standard deviation (R).
This results in less noise and preserves the shape of the particles. In the Sauvola
algorithm, the local threshold value T(i, j) at pixel (i, j) is calculated as

w(is J)
R

1+k*(1—

Ty = mli )

where:;

« m(i, j) and w(i, j) are the mean and standard deviation calculated in a window,
+ kisthe Niblack/Sauvola deviation factor,
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+ Risthe Sauvola deviation range.
Modified Sauvola

In the Modified Sauvola algorithm, the windowed mean deviation is normalized by
dividing it by the dynamic range of the standard deviation (R). This method uses mean
deviation instead of standard deviation, making it less computationally intensive than
the Sauvola algorithm. In the Modified Sauvola algorithm, the local threshold value T(i,
j) at pixel (i, j) is calculated as:

1+k*(1—M)

Tip= m(i, j)* R

d(i, ) = 1(i, ) = m(i, J
where

« m(i, j) is the local mean and d(i, j) are the local mean deviation,
« kisthe Niblack/Sauvola deviation factor,
+ Risthe Sauvola deviation range.

Background Correction

In the background correction algorithm, the background-corrected image B(i, j) is
calculated as:

B(i, ) =1(i, j) - m(i, )
where:

« m(i, j) is the local mean at pixel (i, j).
Thresholding Considerations

A critical and frequent problem in segmenting an image into particle and background
regions occurs when the boundaries are not sharply demarcated. In such a case, the
determination of a correct threshold interval becomes subjective. Therefore, you may
want to enhance your images before thresholding to outline where the correct borders
lie. You can use lookup tables, filters, FFTs, or equalize functions to enhance your
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images. Observing the intensity profile of a line crossing a boundary area is also
helpful in selecting a correct threshold value. Finally, keep in mind that morphological
transformations can help you retouch the shape of binary particles and, therefore,
correct unsatisfactory selections that occurred during thresholding.

Morphological Segmentation

In some image analysis and machine vision applications—such as industrial defect
inspection or biomedical imaging—segmentation based on thresholding or edge
detection is not sufficient because the image quality is insufficient or the objects under
inspection touch or overlap. In such applications, morphological segmentation is an
effective method of image segmentation. Morphological segmentation partitions an
image based on the topographic surface of the image. The image is separated into
non-overlapping regions with each region containing a unique particle.

When to Use

Thresholding can segment objects from the background only if the objects are well
separated from each other and have intensity values that differ significantly from the
background. Binary morphology operators, such as close or open, often return
inaccurate results when segmenting overlapping particles.

Use morphological segmentation to segment touching or overlapping objects from
each other and from the background. Also, use morphological segmentation when the
objects have intensity values similar to the background.

» Note The morphological segmentation process described in the following

section works best when the objects under inspection are convex.

Concepts

Morphological segmentation is a multiple-step process involving several Vision
functions. The following list describes each morphological segmentation step and
where to find more information about each step.

1. Use a global or local threshold to create a binary image. Refer to global
grayscale thresholding, global color thresholding, or local
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thresholding for more information about thresholding.

2. If necessary, use binary morphology operations to improve the quality of the
image by filling holes in particles or remove extraneous noise from the image.

3. Usethe Danielsson function to transform the binary image into a grayscale
distance map in which each particle pixel is assigned a gray-level value equal to its

shortest Euclidean distance from the particle border.
4. Perform a watershed transform on the distance map to find the watershed

separation lines.
5. Superimpose the watershed lines on the original image using an image mask.

The following figure summarizes the morphological segmentation process and shows
an example of each step.
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Particle Analysis

In geography, a watershed is an area of land from which all rain that falls on the land
flows into a specific body of water. In imaging, the watershed transform algorithm
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considers the objects under inspection to be the bodies of water. The following figure
illustrates this concept.

&, B s

« Figure A shows an inspection image after it has been thresholded.
« Figure B shows the distance map of objects in the image using the gradient palette.
« Figure C shows the topographic surface of the distance map.

Each object from the inspection image forms a deep, conical lake called a catchment
basin. The pixels to which the distance map function assigned the highest value
represent the deepest parts of each catchment basin. The image background
represents the land surrounding the catchment basins.

To understand how a watershed transform works, imagine that the catchment basins
are dry. If rain were to fall evenly across the image, the basins would fill up at the same
rate. Eventually, the water in the basins represented by the circle and square would
merge, forming one lake. To prevent the two lakes from becoming one, the watershed
transform algorithm builds a dam, or watershed line, where the waters would begin to
mix.

Figure A shows the same distance map as Figure B with a line through the bottom two
objects. Figure B shows the intensities of the pixels along the line in figure A. Notice the
watershed line preventing the waters from the two catchment basins from mixing.
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As the rainfall continues, the rising water in all three lakes would begin to flood the
land. The watershed transform algorithm builds dams on the land to prevent the flood
waters from each lake from merging. The following figure shows the watershed
transform image after segmentation is complete. The water from each catchment
basin is represented by a different pixel value. The black lines represent the watershed
lines.

In-Depth Discussion

Vincent and Soille's Algorithm

The Vincent and Soille's algorithm fills catchment basins from the bottom up. Imagine
that a hole is located in each local minimum. When the topographic surface is
immersed in water, water starts filling all the catchment basins, minima of which are
under the water level. If two catchment basins are about to merge as a result of further
immersion, the algorithm builds a vertical dam up to the highest surface altitude. The
dam represents the watershed line. The core algorithm of the Vision watershed
transform function is based on Vincent and Soille's algorithm. The concept behind the
Vision implementation of Vincent and Soille's algorithm is to sort the pixels in
decreasing order of their grayscale values, followed by a flooding step consisting of a
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fast breadth-first scanning of all pixels in the order of their grayscale values.

Related concepts:

+ Thresholding
« Binary Morphology

+ Advanced Morphology Operations
+ Image Masks

Binary Morphology

This section contains information about element structuring, connectivity, and
primary and advanced binary morphology operations.

Introduction

Binary morphological operations extract and alter the structure of particles in a binary
image. You can use these operations during your inspection application to improve the
information in a binary image before making particle measurements, such as the area,
perimeter, and orientation.

A binary image is an image containing particle regions with pixel values of 1 and a
background region with pixel values of 0. Binary images are the result of the
thresholding process. Because thresholding is a subjective process, the resulting
binary image may contain unwanted information, such as noise particles, particles
touching the border of images, particles touching each other, and particles with
uneven borders. By affecting the shape of particles, morphological functions can
remove this unwanted information, thus improving the information in the binary
image.

Structuring Elements

Morphological operators that change the shape of particles process a pixel based on
its number of neighbors and the values of those neighbors. A neighbor is a pixel whose
value affects the values of nearby pixels during certain image processing functions.
Morphological transformations use a 2D binary mask called a structuring element to
define the size and effect of the neighborhood on each pixel, controlling the effect of

ni.com



Particle Analysis

the binary morphological functions on the shape and the boundary of a particle.
When to Use

Use a structuring element when you perform any primary binary morphology
operation or the Separation advanced binary morphology operation. You can modify
the size and the values of a structuring element to alter the shape of particlesin a
specific way. However, study the basic morphology operations before defining your
own structuring element.

Concepts

The size and contents of a structuring element specify which pixels a morphological
operation takes into account when determining the new value of the pixel being
processed. A structuring element must have an odd-sized axis to accommodate a
center pixel, which is the pixel being processed. The contents of the structuring
element are always binary, composed of 1 and 0 values. The most common structuring
elementis a 3 x 3 matrix containing values of 1. This matrix, shown below, is the
default structuring element for most binary and grayscale morphological
transformations.

Three factors influence how a structuring element defines which pixels to process
during a morphological transformation: the size of the structuring element, the values
of the structuring element sectors, and the shape of the pixel frame.

Structuring Element Size

The size of a structuring element determines the size of the neighborhood surrounding
the pixel being processed. The coordinates of the pixel being processed are
determined as a function of the structuring element. In the following figure, the
coordinates of the pixels being processed are (1, 1), (2, 2), and (3, 3), respectively. The
origin (0, 0) is always the top, left corner pixel.
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Using structuring elements requires an image border. A 3 x 3 structuring element
requires a minimum border size of 1. In the same way, structuring elements of 5x 5
and 7 x 7 require a minimum border size of 2 and 3, respectively. Bigger structuring
elements require corresponding increases in the image border size.

,\\‘ Note Vision images have a default border size of 3. This border size enables
you to use structuring elements as large as 7 x 7 without any modification. If
you plan to use structuring elements larger than 7 x 7, specify a
correspondingly larger border when creating your image.

The size of the structuring element determines the speed of the morphological
transformation. The smaller the structuring element, the faster the transformation.

Structuring Element Values

The binary values of a structuring element determine which neighborhood pixels to
consider during a transformation in the following manner:

« If the value of a structuring element sector is 1, the value of the corresponding
source image pixel affects the central pixel's value during a transformation.

« Ifthe value of a structuring element sector is 0, the morphological function
disregards the value of the corresponding source image pixel.

The following figure illustrates the effect of structuring element values during a
morphological function. A morphological transformation using a structuring element
alters a pixel Pg so that it becomes a function of its neighboring pixel values.
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Pixel Frame Shape

Adigitalimage is a 2D array of pixels arranged in a rectangular grid. Morphological
transformations that extract and alter the structure of particles allow you to process
pixels in either a square or hexagonal configuration. These pixel configurations
introduce the concept of a pixel frame. Pixel frames can either be aligned (square) or
shifted (hexagonal). The pixel frame parameter is important for functions that alter the
value of pixels according to the intensity values of their neighbors. Your decision to use
a square or hexagonal frame affects how Vision analyzes the image when you process
it with functions that use this frame concept. Vision uses the square frame by default.

» Note Pixels in the image do not physically shift in a horizontal pixel frame.

Functions that allow you to set the pixel frame shape merely process the
pixel values differently when you specify a hexagonal frame.

The following figure illustrates the difference between a square and hexagonal pixel
frame whena3x3and a5 x5 structuring element are applied.
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Square 3 x 3 Hexagonal 3 x 3

Square 5 x 5 Hexagonal 5 x 5

If a morphological function uses a 3 x 3 structuring element and a hexagonal frame
mode, the transformation does not consider the elements [2, 0] and [2, 2] when
calculating the effect of the neighbors on the pixel being processed. If a morphological
function uses a 5 x 5 structuring element and a hexagonal frame mode, the
transformation does not consider the elements [0, 0], [4, 0], [4, 1], [4, 3], [0, 4], and
[4,4].

The following figure illustrates a morphological transformation usinga 3 x 3
structuring element and a rectangular frame mode.

Structuring Image
Element
0j110 Pi| P2] Pa

11|11 x | Pa]l Pol Ps| —» Py =T(Pg: P3e Pyr P P7)

oj1}]o0 Pe| P7] Ps

The following figure illustrates a morphological transformation usinga 3 x 3
structuring element and a hexagonal frame mode.
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The following table illustrates the effect of the pixel frame shape on a neighborhood
given three structuring element sizes. The gray boxes indicate the neighbors of each
black center pixel.

Structuring Element Size

Square Pixel Frame

Hexagonal Pixel Frame

i

2:%.3
II |
5x5 ] n ::H:E
il | 11
73T || ||

Square Frame

In a square frame, pixels line up normally. The following figure shows a pixel in a
square frame surrounded by its eight neighbors. If d is the distance from the vertical
and horizontal neighbors to the central pixel, then the diagonal neighbors are located
at a distance of

|2

d from the central pixel.

ved

ved

Jad

vZd

vZd

vZd
vZd

Square Frame

© National Instruments 18 1



182

Particle Analysis

In a hexagonal frame, the even lines of an image shift half a pixel to the right.
Therefore, the hexagonal frame places the pixels in a configuration similar to a true
circle. The following figure shows a pixel in a hexagonal frame surrounded by its six
neighbors. Each neighbor is an equal distance d from the central pixel, which results in
highly precise morphological measurements.

Hexagonal Frame

Related concepts:

« Image Borders

Connectivity

After you identify the pixels belonging to a specified intensity threshold, Vision groups
them into particles. This grouping process introduces the concept of connectivity. You
can set the pixel connectivity in some functions to specify how Vision determines
whether two adjoining pixels are included in the same particle.

When to Use

Use connectivity-4 when you want Vision to consider pixels to be part of the same
particle only when the pixels touch along an adjacent edge. Use connectivity-8 when
you want Vision to consider pixels to be part of the same particle even if the pixels
touch only at a corner.

Concepts

With connectivity-4, two pixels are considered part of the same particle if they are
horizontally or vertically adjacent. With connectivity-8, two pixels are considered part
of the same particle if they are horizontally, vertically, or diagonally adjacent. The
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following figure illustrates the two types of connectivity.

B HpE B

Connectivity-4 Connectivity-8

The following figure illustrates how connectivity-4 and connectivity-8 affect the way
the number of particles in an image are determined. In figure A, the image has two
particles with connectivity-4. In figure B, the same image has one particle with
connectivity-8.

A B

In-Depth Discussion

In a rectangular pixel frame, each pixel PO has eight neighbors, as shown in the
following graphic. From a mathematical point of view, the pixels P1, P3, P5, and P7 are
closer to Pg than the pixels P, P4, Pg, and Ps.

PB Pl PZ
P? PD P3
P, Ps P,

If D is the distance from Pg to P1, then the distances between Pg and its eight neighbors
can range from D to
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|2

D, as shown in the following figure.

vzZD D 2D
D 0 D
2D D vZD

Connectivity-4

A pixel belongs to a particle if it is located a distance of D from another pixel in the
particle. In other words, two pixels are considered to be part of the same particle if
they are horizontally or vertically adjacent. They are considered as part of two
different particles if they are diagonally adjacent. In the following figure, the particle
count equals 4.
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Connectivity-8

A pixel belongs to a particle if it is located a distance of D or
|2
D from another pixel in the particle. In other words, two pixels are considered to be

part of the same particle if they are horizontally, vertically, or diagonally adjacent. In
the following figure, the particle count equals 1.
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Primary Morphology Operations

Primary morphological operations work on binary images to process each pixel based
on its neighborhood. Each pixel is set either to 1 or 0, depending on its neighborhood
information and the operation used. These operations always change the overall size
and shape of particles in the image.

When to Use

Use the primary morphological operations for expanding or reducing particles,
smoothing the borders of objects, finding the external and internal boundaries of
particles, and locating particular configurations of pixels.

You also can use these transformations to prepare particles for quantitative analysis,
to observe the geometry of regions, and to extract the simplest forms for modeling and
identification purposes.

Concepts

The primary morphology functions apply to binary images in which particles have
been set to 1 and the background is equal to 0. They include three fundamental binary
processing functions: erosion, dilation, and hit-miss. The other transformations are
combinations of these three functions.

This section describes the following primary morphology transformations:

« Erosion

« Dilation

« Opening

+ Closing

+ Inner gradient
+ Outer gradient
« Hit-miss

« Thinning

« Thickening

« Proper-opening
 Proper-closing
+ Auto-median
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» Note In the following descriptions, the term pixel denotes a pixel equal to 1,
and the term particle denotes a group of pixels equal to 1.

Erosion and Dilation Functions

An erosion eliminates pixels isolated in the background and erodes the contour of
particles according to the template defined by the structuring element.

For a given pixel P, the structuring element is centered on Pg. The pixels masked by a
coefficient of the structuring element equal to 1 are then referred as P;.

« If the value of one pixel Pjis equal to 0, then Pg is set to 0, else Pg is set to 1.
« IfAND(Pj) =1,thenPg=1, else Pg=0.

A dilation eliminates tiny holes isolated in particles and expands the particle contours
according to the template defined by the structuring element. This function has the
opposite effect of an erosion because the dilation is equivalent to eroding the
background.

For any given pixel Pg, the structuring element is centered on Pg. The pixels masked by
a coefficient of the structuring element equal to 1 then are referred to as P;.

« If the value of one pixel Pjis equal to 1, then Pgis set to 1, else Pg is set to 0.
« IfOR(Pj)=1,thenPg=1,else Pp=0.

The following figure illustrates the effects of erosion and dilation. Figure A is the binary
source image. Figure B represents the source image after erosion, and figure C shows
the source image after dilation.
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The following figure is the source image for the examples in the following tables, in
which gray cells indicate pixels equal to 1.

The following tables show how the structuring element can control the effects of
erosion or dilation, respectively. The larger the structuring element, the more
templates can be edited and the more selective the effect.

Structuring

After Erosion Description
Element fter Erosio escriptio

HH A pixel is cleared if it is equal to 1 and if its three upper-left
neighbors do not equal 1.

a

The erosion truncates the upper-left particle borders.

A pixelis cleared if it is equal to 1 and if its lower and right

E # neighbors do not equal 1.

The erosion truncates the bottom and right particle borders but
retains the corners.

T

Structuring

Element After Erosion Description

A pixelissetto 1ifitisequalto 1 orif one of its three upper-left
neighbors equals 1.

a

The dilation expands the lower-right particle borders.

A pixelissetto 1ifitis equal to 1 orifitits lower or right neighbor
equals 1.
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Structuring

Element After Erosion Description

The dilation expands the upper and left particle borders.

Opening and Closing Functions

The opening function is an erosion followed by a dilation. This function removes small
particles and smooths boundaries. This operation does not significantly alter the area
and shape of particles because erosion and dilation are dual transformations, in which
borders removed by the erosion function are restored during dilation. However, small
particles eliminated during the erosion are not restored by the dilation. If | is an image,

opening(l) = dilation(erosion(l)).

The closing function is a dilation followed by an erosion. This function fills tiny holes
and smooths boundaries. This operation does not significantly alter the area and
shape of particles because dilation and erosion are morphological complements,
where borders expanded by the dilation function are then reduced by the erosion
function. However, erosion does not restore any tiny holes filled during dilation. If | is
an image,

closing(l) = erosion(dilation(l)).

The following figures illustrate examples of the opening and closing function.

1 1 1
1 1 1
1 1 1
Original Image Structuring Element After Opening After Closing
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Structuring Element After Opening Structuring Element After Closing

Inner Gradient Function

The internal edge subtracts the eroded image from its source image. The remaining
pixels correspond to the pixels eliminated by the erosion process. If | is an image,

internal edge(l) = | - erosion(l) = XOR(l, erosion(l)).
Outer Gradient Function

The external edge subtracts the source image from the dilated image of the source
image. The remaining pixels correspond to the pixels added by the dilation process. If |
isan image,

internal edge(l) = dilation(l) - I = XOR(l, dilation(l)).

Figure A shows the binary source image. Figure B shows the image produced from an
extraction using a 5 x 5 structuring element. The superimposition of the internal edge
is shown in white, and the external edge is shown in gray. The thickness of the
extended contours depends on the size of the structuring element.
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Hit-Miss Function

The hit-miss function locates particular configurations of pixels. This function extracts
each pixel located in a neighborhood exactly matching the template defined by the
structuring element. Depending on the configuration of the structuring element, the
hit-miss function can locate single isolated pixels, cross-shape or longitudinal
patterns, right angles along the edges of particles, and other user-specified shapes.
The larger the size of the structuring element, the more specific the researched
template can be. Refer to the following table for strategies on using the hit-miss
function.

In a structuring element with a central coefficient equal to 0, a hit-miss function
changes all pixels set to 1 in the source image to the value 0.

For a given pixel Po, the structuring element is centered on Pg. The pixels masked by
the structuring element are then referred to as P;.

« If the value of each pixel Pjis equal to the coefficient of the structuring element
placed on top of it, then the pixel Pg is set to 1, else the pixel Pg is set to 0.

+ Inother words, if the pixels Pj define the exact same template as the structuring
element, then Pg=1, else Pg=0.

Figures B, C, D, and E show the result of three hit-miss functions applied to the same
source image, represented in figure A. Each hit-miss function uses a different
structuring element, which is specified above each transformed image. Gray cells
indicate pixels equal to 1.
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B B = 5

A second example of the hit-miss function shows how, when given the binary image
shown in the following figure, the function can locate various patterns specified in the
structuring element. The results are displayed in the following table.

Structuring

Strategy Element Resulting Image
0O 0 0 0 O
Use the hit-miss function to locate pixels isolated in a
background. 00 0 00
, ' . 001 0 0
The structuring element on the right extracts all pixels
equal to 1 that are surrounded by at least two layers of 0 0 0 0 O
pixels that are equal to 0. 00 0 0 0
Use the hit-miss function to locate single pixel holes in
particles. 1 1 1
1 0 1

The structuring element on the right extracts all pixels
equal to 0 that are surrounded by at least one layer of 1 1 1
pixels that are equal to 1.
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Structuring

Strategy Element Resulting Image

Use the hit-miss function to locate pixels along a vertical . .

left edge. 1 1 0 ' '
1 1 0 '

The structuring element on the right extracts pixels
surrounded by at least one layer of pixels equal to 1 to 1 1 0
the left and pixels that are equal to 0 to the right.

Thinning Function

The thinning function eliminates pixels that are located in a neighborhood matching a
template specified by the structuring element. Depending on the configuration of the
structuring element, you also can use thinning to remove single pixels isolated in the
background and right angles along the edges of particles. A larger structuring element
allows for a more specific template.

The thinning function extracts the intersection between a source image and its
transformed image after a hit-miss function. In binary terms, the operation subtracts
its hit-miss transformation from a source image.

Do not use this function when the central coefficient of the structuring element is
equal to 0. In such cases, the hit-miss function can change only the value of certain
pixels in the background from 0 to 1. However, the subtraction of the thinning function
then resets these pixels back to 0.

If I'is an image,
thinning(l) = I - hit-miss(l) = XOR (I, hit-miss(l)).
Figure A shows the binary source image used in the following example of thinning.

Figure B illustrates the resulting image, in which single pixels in the background are
removed from the image. This example uses the following structuring element:
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Another thinning example uses the source image shown in figure A. Figures B, C,and D
show the results of three thinnings applied to the source image. Each thinning uses a
different structuring element, which is specified above each transformed image. Gray
cells indicate pixels equal to 1.

- ii £,

L un

8 B o D

Thickening Function

The thickening function adds to an image those pixels located in a neighborhood that
matches a template specified by the structuring element. Depending on the
configuration of the structuring element, you can use thickening to fill holes and
smooth right angles along the edges of particles. A larger structuring element allows
for a more specific template.

The thickening function extracts the union between a source image and its
transformed image, which was created by a hit-miss function using a structuring
element specified for thickening. In binary terms, the operation adds a hit-miss
transformation to a source image.

Do not use this function when the central coefficient of the structuring element is
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equal to 1. In such cases, the hit-miss function can turn only certain particle pixels
from 1 to 0. However, the addition of the thickening function resets these pixels to 1.

If I'is an image,
thickening(l) = I + hit-miss(l) = OR (I, hit-miss(l)).

Figure A represents the binary source file used in the following thickening example.
Figure B shows the result of the thickening function applied to the source image,
which filled single pixel holes using the following structuring element:

I 1 3
1 0 1
I ¥ 1

Figure A represents the source image for another thickening example. Figures B, C, and
D show the results of three thickenings as applied to the source image. Each
thickening uses a different structuring element, which is specified on top of each
transformed image. Gray cells indicate pixels equal to 1.

HH i A

A, B C O

Proper-Opening Function

The proper-opening function is a finite and dual combination of openings and
closings. It removes small particles and smooths the contour of particles according to
the template defined by the structuring element.

If I is the source image, the proper-opening function extracts the intersection between
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the source image | and its transformed image obtained after an opening, followed by a
closing, and then followed by another opening:

proper-opening(l) = AND(l, OCO(l))

or

proper-opening(l) = AND(l, DEEDDE(I))
where:

+ listhe source image,

« Eisanerosion,

« Disadilation,

« Oisan opening,

+ Cisaclosing,

« F(l) is the image obtained after applying the function F to the image I,

« GF(l) is the image obtained after applying the function F to the image | followed by
the function G to the image I.

Proper-Closing Function

The proper-closing function is a finite and dual combination of closings and openings.
It fills tiny holes and smooths the inner contour of particles according to the template
defined by the structuring element.

If I is the source image, the proper-closing function extracts the union of the source
image | and its transformed image obtained after a closing, followed by an opening,
and then followed by another closing:

proper-closing(l) = OR(I, COC(l))

or

proper-closing(l) = OR(l, EDDEED(I))
where:

+ listhe source image,
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« Eisanerosion,

D is a dilation,

O is an opening,

Cisaclosing,

F(l) is the image obtained after applying the function F to the image |,

GF(l) is the image obtained after applying the function F to the image | followed by
the function G to the image I.

Auto-Median Function

The auto-median function is a dual combination of openings and closings. It generates
simpler particles that contain fewer details.

If I is the source image, the auto-median function extracts the intersection between the
proper-opening and proper-closing of the source image I

auto-median(l) = AND(OCO(l), COC(l))

or

auto-median(l) = AND((DEEDDEI), EDDEED(1))
where:

+ listhe source image,

« Eisan erosion,

« Disadilation,

« Oisan opening,

« Cisaclosing,

« F(l) is the image obtained after applying the function F to the image |,

« GF(l) is the image obtained after applying the function F to the image | followed by
the function G to the image I.

Advanced Morphology Operations
The advanced morphology operations are built upon the primary morphological

operators and work on particles as opposed to pixels. Each of the operations have
been developed to perform specific operations on the particles in a binary image.
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When to Use

Use the advanced morphological operations to fill holes in particles, remove particles
that touch the border of the image, remove unwanted small and large particles,
separate touching particles, find the convex hull of particles, and more.

You can use these transformations to prepare particles for quantitative analysis,
observe the geometry of regions, extract the simplest forms for modeling and
identification purposes, and so forth.

Concepts

The advanced morphology functions are conditional combinations of fundamental
transformations, such as binary erosion and dilation. The functions apply to binary
images in which a threshold of 1 has been applied to particles and where the
background is equal to 0.

» Note In this section of the manual, the term pixel denotes a pixel equal to 1,
and the term particle denotes a group of pixels equal to 1.

Border Function

The border function removes particles that touch the border of the image. These
particles may have been truncated during the digitization of the image, and their
elimination them helps to avoid erroneous particle measurements and statistics.

Hole Filling Function
The hole filling functionfills the holes within particles.

Labeling Function

The labeling function assigns a different gray-level value to each particle. The
image produced is not a binary image, but a labeled image using a number of gray-
level values equal to the number of particles in the image plus the gray level 0 used in
the background area.
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The labeling function identifies particles using either connectivity-4 or connectivity-8
criteria. For more information on connectivity, refer to the connectivity section.

Lowpass and Highpass Filters

The lowpass filter removes small particles according to their widths as specified by a
parameter called filter size. For a given filter size N, the lowpass filter eliminates
particles whose widths are less than or equal to (N - 1) pixels. These particles
disappear after (N - 1) / 2 erosions.

The highpass filter removes large particles according to their widths as specified by a
parameter called filter size. For a given filter size N, the highpass filter eliminates
particles with widths greater than or equal to N pixels. These particles do not
disappear after (N /2 + 1) erosions.

Both the highpass and lowpass morphological filters use erosions to select particles
for removal. Since erosions or filters cannot discriminate particles with widths of 2k
pixels from particles with widths of 2k - 1 pixels, a single erosion eliminates both
particles that are 2 pixels wide and 1 pixel wide.

The following table shows the effect of lowpass and highpass filtering.

Filter Size (N) Highpass Filter Lowpass Filter

. + Removes particles with a width + Removes particles with a width
N is an even

N greater than or equal to 2k less than orequalto 2k - 1
number (N = 2k) . .
+ Uses k-1 erosions + Uses k-1 erosions

Nis an odd + Removes particles with a width + Removes particles with a width
number (N =2k + greater than or equal to 2k + 1 less than or equal to 2k
1) + Uses k erosions + Uses k erosions

Figure A represents the binary source image used in this example. Figure B shows how,
for a given filter size, a highpass filter produces the following image. Gray particles and
white particles are filtered out by a lowpass and highpass filter, respectively.
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Separation Function

The separation function breaks narrow isthmuses and separates touching particles
with respect to a user-specified filter size. This operation uses erosions, labeling, and
conditional dilations.

For example, after thresholding an image, two gray-level particles overlapping one
another might appear as a single binary particle. You can observe narrowing where the
original particles have intersected. If the narrowing has a width of M pixels, a
separation using a filter size of (M + 1) breaks it and restores the two original particles.
This applies to all particles that contain a narrowing shorter than N pixels.

For a given filter size N, the separation function segments particles with a narrowing
shorter than or equal to (N - 1) pixels. These particles are divided into two parts after
(N-1) /2 erosions.

The above definition is true when N is an odd number, but should be modified slightly
when N is an even number, due to the use of erosions in determining whether a
narrowing should be broken or kept. The function cannot discriminate a narrowing
with a width of 2k pixels from a narrowing with a width of (2k - 1) pixels, therefore, one
erosion breaks both a narrowing that is two pixels wide as well as a narrowing that is
one pixel wide.

The precision of the separation is limited to the elimination of constrictions that have a
width smaller than an even number of pixels:

« If Nisan even number (2k), the separation breaks a narrowing with a width smaller
than or equal to (2k - 2) pixels. It uses (k - 1) erosions.

« If Nisan odd number (2k + 1), the separation breaks a narrowing with a width
smaller than or equal to 2k. It uses k erosions.
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Skeleton Functions

A skeleton function applies a succession of thinnings until the width of each particle
becomes equal to one pixel. The skeleton functions are both time- and memory-
consuming. They are based on conditional applications of thinnings and openings that
use various configurations of structuring elements.

L-Skeleton uses the following type of structuring element:

? 1
1 1
? 1

M-Skeleton uses the following type of structuring element:

¢ 2 1
2 1
? 0?2 17

Skiz is an L-Skeleton performed on an inverse of the image.
L-Skeleton Function
The L-skeleton function indicates the L-shaped structuring element skeleton function.

Using the source image in figure A, the L-skeleton function produces the image in
figure B.

¢ X
I >
A o~
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M-Skeleton Function

The M-skeleton function extracts a skeleton with more dendrites or branches. Using
the source image from figure A, the M-skeleton function produces the image shown in
following figure.

.

Skiz Function

The skiz (skeleton of influence zones) function behaves like an L-skeleton function
applied to the background regions instead of the particle regions. It produces median
lines that are at an equal distance from the particles.

Using the source image from figure A, the skiz function produces the image in the
following figure, which is shown superimposed on the source image.

Segmentation Function

The segmentation function is applied only to labeled images. It partitions an image
into segments that are centered around a particle such that they do not overlap or
leave empty zones. Empty zones are caused by dilating particles until they touch one
another.

A\\ Note The segmentation function is time-consuming. Reduce the image to its
minimum significant size before selecting this function.
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In the following figure, binary particles, which are shown in black, are superimposed
on top of the segments, which are shown in gray shades.

=

When applied to an image with binary particles, the transformed image turns red
because it is entirely composed of pixels set to 1.

Comparisons Between Segmentation and Skiz Functions

The segmentation function extracts segments that contain only one particle. A
segment represents the area in which this particle can be moved without intercepting
another particle, assuming that all particles move at the same speed.

The edges of these segments give a representation of the external skeletons of the
particles. Unlike the skiz function, segmentation does not involve median distances.

You can obtain segments using successive dilations of particles until they touch each
other and cover the entire image. The final image contains as many segments as there
were particles in the original image. However, if you consider the inside of closed skiz
lines as segments, you may produce more segments than particles originally present
in the image. Consider the upper-right region in the following figure. This image shows
the following features:

« original particles in black,

« segments in shades of gray,
« skizlines.
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Distance Function

The distance function assigns a gray-level value to each pixel equal to the shortest
distance to the particle border. This distance may be equal to the distance to the outer
particle border or to a hole within the particle.

N 7
_/Q\_ Tip Use the Danielsson function instead of the distance function when
~  possible.

Danielsson Function

The Danielsson function also creates a distance map but is a more accurate algorithm
than the classical distance function. Because the destination image is 8-bit, its pixels
cannot have a value greater than 255. Any pixels with a distance to the edge greater
than 255 are set to 255.

For example, a circle with a radius of 300 yields 255 concentric rings whose pixel values
range from 1 to 255 from the perimeter of the circle inward. The rest of the circle is
filled with a solid circle whose pixel value is 255 and radius is 45.

Figure A shows the source threshold image used in the following example. The image

is sequentially processed with a lowpass filter, hole filling, and the Danielsson
function. The Danielsson function produces the distance map image shown in figure B.
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View the resulting image with a binary palette. In this palette, each level corresponds
to a different color. Thus, you easily can determine the relation of a set of pixels to the
border of a particle. The first layer, which forms the border, is red. The second layer,
closest to the border, is green, the third layer is blue, and so forth.

Circle Function

The circle function separates overlapping circular particles using the Danielsson
coefficient to reconstitute the form of an particle, provided that the particles are
essentially circular. The particles are treated as a set of overlapping discs that are then
separated into separate discs. This allows you to trace circles corresponding to each
particle.

Illustration A shows the source image for the following example. Figure B shows the
image after the circle function is applied to the image.
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Convex Hull Function

The convex hull function is useful for closing particles so that measurements can be
made on the particle, even when the particle contour is discontinuous.

The convex hull function calculates a convex envelope around each particle, effectively
closing the particle. The image to which you apply a convex hull function must be
binary.

Figure A shows the original labeled image used in this example. Figure B shows the
results after the convex hull function is applied to the image.

Related concepts:

« Connectivity

Morphological Reconstruction

Morphological reconstruction is useful for constructing an image from small
components or for removing features from an image, without altering the shape of the
objects in the image. Morphological reconstruction works on grayscale images and
binary images. Use morphological reconstruction for applications such as:

« Segmenting magnetic resonance images (MRI) of structures inside the body.

« H-dome extraction for detecting clustered microcalcifications in digital
mammograms.

« Removing shadows from images.

+ Identifying language scripts.
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+ Finding the connected paths in a network or map.
Concepts

The morphological reconstruction process is based on a source image, a marker
image, and marker points.

+ Source Image—The source image, which in some research papers is referred to as
the mask image, is the reference image used in the morphological reconstruction.

« Marker Image—The reconstruction process occurs on the marker image, which is
created by applying dilations or erosions on the source image. The marker
image can also be taken from existing images. The marker image should have the
same dimensions as the source image.

« Marker Points—Marker points are user-specified points in the image that specifiy
where the reconstruction process should start.

Reconstruction by Dilation

Reconstruction by dilation reconstructs bright regions in grayscale images and
reconstructs particles in binary images. Starting at the marker points, neighboring
pixels are reconstructed by spreading the brightness value. Reconstruction by dilation
starts with the maximal gray valued pixels of the marker and reconstructs the
neighboring pixels ranging from 0 to the maximal valued pixel. Refer to Primary

Morphology Operations for more information about dilation.
Reconstruction by Erosion

Reconstruction by erosion reconstructs dark regions in a grayscale image and holes in
a binary image. Starting at the marker points, neighboring pixels are reconstructed by
spreading the darkness value. Reconstruction by erosion starts with the minimal
valued pixels of the marker and reconstructs the neighboring pixels ranging from the
minimal valued pixel to the image maximum value (for example, the image maximum

value is 255 for U8 images). Refer to Primary Morphology Operations for more
information about erosion.

Connectivity

Grayscale morphological reconstruction uses a structuring element to determine
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the type of connectivity. In general, a 3 x 3 structuring element is used to specify the
connectivity. Higher order kernels are supported, but grayscale morphological
reconstruction is optimized for the 3 x 3 connectivity-4 and connectivity-8 kernels.

Binary morphological reconstruction supports connectivity-4 and connectivity-8.
Image border calculations are handled internally, unless the marker image and the
destination image are same size. In this case, the image should have a minimum
border size of half the kernel size.

Reconstruction with ROI

You can limit morphological reconstruction to the area bounded by an ROI. The image
reconstruction happens inside the ROl of the marker image and the parts of the image
outside of the ROl will remain unchanged. If marker points are used instead of a
marker image, the points inside the ROI are used to reconstruct the image.

Binary Morphological Reconstruction
Use binary morphological reconstruction to find connected particles or holesin a
binary image. It can also be used to extract the particles or holes which are connected

a set of pixels in a marker image.

The following example extracts the particles connected to a rectangle boundary.

Source Image Marker Image Reconstructed Image

The following example extracts the particles based on mophological properties.
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Source Image Marker Image Reconstructed Image

Grayscale Morphological Reconstruction

Use grayscale morphological reconstruction to segment an image based on its
grayscale values. This type of reconstruction is useful for counting the number of
objects in an image, removing shadows, and identifying language scripts.

The following examples segment the image based on its grayscale values. The marker
point, shown in red in the source image, is where the segmentation process begins.

Source Image Reconstructed Image Using Erosion Reconstructed Image Using Dilation

Creating Marker Images

The following examples show how to generate a marker image for morphological
reconstruction based on morphology and based on H-Dome extraction.

Creating a Marker Image Based on Morphological Properties

When performing reconstruction based on morphological properties, the goal is to
extract the particles which are thicker than the specified value. Figure A shows the
source image. Apply a distance transform on the image. Figure B shows the result
of the distance transform of the source image. Threshold the image based on the
specified thickness value, eliminating all particles that are narrower than the thickness
value. Figure C shows the threshold output, which is used as the marker image.
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A. Source Image B. Image After Distance Transform C. Image After Threshold

Creating a Marker Image for H-Dome Extraction

Grayscale morphological reconstruction can be used to count the number of objects in
a given image. Create the marker image by subtracting a constant value from the pixels
in the source image. The number of H-Domes in the output gives an estimate of the
total number of seeds in the source image. In the following example, a constant value
of 30 is used. The H-Dome image is created by subtracting the reconstructed image
from the source image.

In-Depth Discussion

The function OP(q) forms the basic operation of morphological reconstruction. OP(q)
is applied to each pixel during reconstruction. In general, if OP(q) is applied multiple
times on all the pixels of an image, the resultant will be the reconstructed image.

Reconstruction by dilation is characterized by the equation:
OP(q) = Min(Max(M(q), K), [(q)))

Reconstruction by erosion is characterized by the equation:
OP(q) = Max(Min(M(q), K), 1(q)))

where:

« Misthe markerimage,
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« Kisthe kernel,
« listhe source image.

The reconstruction process uses two algorithms: the downhill filter and the hyrid
reconstruction algorithm.

Downhill Filter

The downhill filter is used for binary, U8, U16, and 116 images. It operates through a
controlled process of region growing by ordered aggregation of surface pixels onto an
expanding shell. The maximum value of the marker image is determined and the
reconstruction is applied to all neighboring pixels of the maximal valued pixel until all
pixels are reconstructed.

Hybrid Algorithm

The hybrid algorithm is used on the SGL grayscale images. Hybrid reconstruction
combines a sequential and a queue-based algorithm. The sequential technique
applies the reconstruction of pixels by scanning the image in raster and anti-raster
order. The queue-based technique starts with the regional maximas and applies the
Breadth First Search (BFS) on them.

Related concepts:

« Primary Morphology Operations

« Structuring Elements

« Connectivity

+ Advanced Morphology Operations

Particle Measurements

This section contains tables that list and describe the NI Vision particle measurements.
The tables include definitions, symbols, and equations for particle measurements.

» Note Some equation symbols may be defined inside tables later in the
chapter.
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Introduction 13

A particle is a group of contiguous nonzero pixels in an image. Particles can be
characterized by measurements related to their attributes, such as particle location,
area, and shape.

When to Use

Use particle measurements when you want to make shape measurements on particles
in a binary image.

Pixel Measurements versus Real-World Measurements

In addition to making conventional pixel measurements, Vision particle analysis
functions can use calibration information attached to an image to make
measurements in calibrated real-world units. In applications that do not require the
display of corrected images, you can use the calibration information attached to the
image to make real-world measurements directly without using time-consuming
image correction.

In pixel measurements, a pixel is considered to have an area of one square unit,
located entirely at the center of the pixel. In calibrated measurements, a pixel is a
polygon with corners defined as plus or minus one half a unit from the center of the
pixel. The following illustrates this concept.

(25, 7.5) (3.5, 7.5) (52, 23)
(42, 27)
e - &>
Ne—" (51,30
(3,8) (2.5, 8.5) (3.5, 8.5) (46, 31)

1. Pointto Polygon
2. Pixel Coordinates to Real-World Coordinates

A pixel at (3, 8) is a square with corners at (2.5, 7.5), (3.5, 7.5), (3.5, 8.5), and (2.5, 8.5).
To make real-world measurements, the four corner coordinates are transformed from
pixel coordinates into real-world coordinates. Using real-world coordinates, the area

© National Instruments 2 1 1



212

Particle Analysis

and moments of the pixel can be integrated. Similarly, the area and moments of an
entire particle can be computed using the calibrated particle contour points.

Particle Measurements

This section contains tables that list and describe the Vision particle measurements.
The tables include definitions, symbols, and equations for particle measurements.

,\\’ Note Some equation symbols may be defined inside tables later in the
section.

Particle Concepts
The following table contains concepts relating to particle measurements.
Concept  Definition

Smallest rectangle with sides parallel to the x-axis and y-axis that completely encloses

the particle.
(0,0) Left Right

Bounding Top |

Rect
E
o
@
I

\

Width

Length of a boundary of a region. Because the boundary of a binary image is
comprised of discrete pixels, Vision subsamples the boundary points to approximate a
Perimeter smoother, more accurate perimeter. Boundary points are the pixel corners that form

the boundary of the particle. Refer to the introduction for an illustration of pixel
corners.

Particle Contiguous region of zero-valued pixels completely surrounded by pixels with nonzero
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Concept  Definition

hole values. Refer to the particle holes section for more information.
Angle Degrees of rotation measured counter-clockwise from the x-axis, such that 0 < 6 < 180.
Equivalent . . .
Rzchtlv Rectangle with the same perimeter and area as the particle.
Equivalent _, . . . .
Ellipse Ellipse with the same perimeter and area as the particle.
Line segment connecting the two perimeter points that are the furthest apart.
Max Feret
Diameter

1. Max Feret Diameter Start—Highest, leftmost of the two points defining the Max
Feret Diameter

2. Max Feret Diameter End—Lowest, rightmost of the two points defining the Max
Feret Diameter

3. Max Feret Diameter Orientation

© National Instruments 213



214

Concept

Convex
Hull

Max Horiz.
Segment
Length

Sum

Moment
of Inertia

Norm.
Moment
of Inertia

Hu
Moment

ni.com
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Definition

4. Particle Perimeter
5. Max Feret Diameter

Smallest convex polygon containing all points in the particle. The following figure
illustrates two particles, shown in gray, and their respective convex hulls, the areas
enclosed by black lines.

Longest row of contiguous pixels in the particle. This measurement is always given as a
pixel measurement.

Moments of various orders relative to the x-axis and y-axis.

Moments about the particle center of mass. Provides a representation of the pixel
distribution in a particle with respect to the particle center of mass. Moments of inertia
are shift invariant.

Moment of Inertia normalized with regard to the particle area. Normalized moments of
inertia are shift and scale invariant.

Moments derived from the Norm. Moment of Inertia measurements. Hu Moments are
shift, scale, and rotation invariant.
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Particle Holes

A particle hole is a contiguous region of zero-valued pixels completely surrounded by
pixels with nonzero values. A particle located inside a hole of a bigger particle is
identified as a separate particle. The area of a hole that contains a particle includes the
area covered by that particle.

B C E F G
Particle # Area Area of Hole Area of Particle& Holes
1 A B+C A+B+C
2 D 0 D
3 E F+G E+F+G
4 G 0 G

Hole measurements are valuable when analyzing particles similar to the one in figure
A. For example, if you threshold a cell with a dark nucleus (figure A) so that the nucleus
appears as a hole in the cell (figure B), you can make the following cell measurements:

« Area of Hole—Returns the size of the nucleus.

« Area of Particle and Hole—Returns the size of the entire cell.

« Area of Hole/Area of Particle and Hole—Returns the percentage of the cell that the
nucleus occupies.
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Coordinates

Particle Analysis

The following table lists the Vision particle measurements relating to coordinates.

Measurement Definition

Center of
Mass

First Pixel

Center of
Mass x

Center of
Massy

First Pixel x

ni.com

Point representing the average position of the total particle
mass, assuming every point in the particle has a constant
density. The center of mass can be located outside the particle
if the particle is not convex.

Highest, leftmost particle pixel. The first pixel is always given as
a pixel measurement. The black squares in the following figure
represent the first pixel of each particle.

X-coordinate of the particle Center of Mass. X

Y-coordinate of the particle Center of Mass. y

X-coordinate of the first particle pixel. —

Symbol Equation

> | M

> |
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Measurement Definition Symbol Equation

First Pixel y Y-coordinate of the first particle pixel. — —

Bounding

- 1 . . ) B B
Rect Left X-coordinate of the leftmost particle point L

Bounding

5 : : : int. B B
Rect Top Y-coordinate of highest particle point T

Bounding

Rect Right X-coordinate of the rightmost particle point. Br —

Bounding

- 1 . . ) B B
Rect Bottom Y-coordinate of the lowest particle point B

Max Feret
Diameter X-coordinate of the Max Feret Diameter Start. Fx1 —
Start x

Max Feret
Diameter Y-coordinate of the Max Feret Diameter Start. Fy1 —
Starty

Max Feret
Diameter End X-coordinate of the Max Feret Diameter End. Fy2 —
X

Max Feret
Diameter End Y-coordinate of the Max Feret Diameter End. Fy2 —

y
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Measurement Definition Symbol Equation
Max Horiz. X-coordinate of the leftmost pixel in the Max Horiz. Segment.
Segment Max Horiz. Segment Length Left is always given as a pixel — —

Length Left measurement.

Max Horiz. X-coordinate of the rightmost pixel in the Max Horiz. Segment.
Segment Max Horiz. Segment Length Right is always given as a pixel — —
Length Right measurement.

Max Horiz. Y-coordinate for all of the pixels in the Max Horiz. Segment. Max
Segment Horiz. Segment Length Row is always given as a pixel — —
LengthRow  measurement.

Lengths

the following table lists the Vision particle relating to length.

Measurement Definition Symbol Equation

. Distance between Bounding Rect Left and
Bounding

. . Bo-B
Rect Width Bounding Rect Right W R-BL
Bounding Distance between Bounding Rect Top and
. . H Bg - BT

Rect Height ~ Bounding Rect Bottom.
Bounding Distance between opposite corners of the

i i - \/W2 +H
Rect Diagonal Bounding Rect.

Perimeter Length of the outer boundary of the particle. P _
Because the boundary is comprised of discrete
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Measurement Definition Symbol Equation

pixels, Vision subsamples the boundary points
to approximate a smoother, more accurate

perimeter.
C Hull .
or?vex ! Perimeter of the Convex Hull. PcH —

Perimeter
Hole Sum of the perimeters of each hole in the . .
Perimeter particle.
Max Feret Distance between the Max Feret Diameter Start E F_F 2 clF —F 2
Diameter and the Max Feret Diameter End. \/( Z yl) ( X Xl)
Equivalent . . . 5 5

. . Length of the major axis of the Equivalent p°  2A p- 2A
Ellipse Major . Esa R L

. Ellipse. T T
Axis
Equivalent . . . 5 5

. . Length of the minor axis of the Equivalent P~ 2A p- 2A
Ellipse Minor . Eab Rl R

. Ellipse. T e T
AXis
Equivalent Length of the minor axis of the ellipse with the an
Ellipse Minor  same area as the particle, and Major Axisequal  EF2p HC:’
Axis (Feret) in length to the Max Feret Diameter.
Equivalent -
Rect Long Longest side of the Equivalent Rect. Ra %P+ \/P2 - 16A
Side
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Measurement Definition Symbol Equation
Equivalent -
Rect Short Shortest side of the Equivalent Rect. Rb %P— \/P2 - 16A
Side

Equivalent Distance between opposite corners of the Rq Ri N Ri

Rect Diagonal Equivalent Rect.

Equivalent Shortest side of the rectangle with the same )
Rect Short area as the particle, and longest side equal in RFp %
Side (Feret) length to the Max Feret Diameter.
Average Average length of a horizontal segment in the
Horizg particle. Sum of the horizontal segments that do |
Se m'ent not superimpose any other horizontal segment. — o
Leﬁ th Average Horiz. Segment Length is always given
& as a pixel measurement.

Average length of a vertical segment in the
Average Vert. particle. Sum of the vertical segments that do P
Segment not superimpose any other vertical segment. — 5,
Length Average Vert. Segment Length is always given as

a pixel measurement.
g:jirj:hc Particle area divided by the particle perimeter.  — %
Waddel Disk  Diameter of a disk with the same area as the . 5 A
Diameter particle. m
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Ellipses

+ Equivalent Ellipse Major Axis—Total length of the major axis of the ellipse that has
the same area and same perimeter as a particle. This length is equal to 2a.

This definition gives the following set of equations:

Area = Ttab

Perimeter = 11\/2(a2 + bz)
where:

N a=l/2 Eza
o a:l/2 EZa

I
EEa
For a given area and perimeter, only one solution (a, b) exists.

« Equivalent Ellipse Minor Axis—Total length of the minor axis of the ellipse that has
the same area and same perimeter as a particle. This length is equal to 2b.

+ Ellipse Ratio—Ratio of the major axis of the equivalent ellipse to its minor axis,
which is defined as

ellipse major axis , a
ellipse minor axis b

The more elongated the equivalent ellipse, the higher the ellipse ratio. The closer the
equivalent ellipse is to a circle, the closer the ellipse ratio is to 1.

Rectangles

+ Equivalent Rect Long Side—Length of the long side (Ra) of the rectangle that has
the same area and same perimeter as a particle.

This definition gives the following set of equations:
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A=Area=R3Rp

A= Area= R,R,
P = Perimeter = 2(RaRb)

Ry

Ry Ry

This set of equations can be expressed so that the sum R; + Rp and the product R3Rp
become functions of the parameters Particle Area and Particle Perimeter. R; and Rp
then become the two solutions of the following polynomial equation:

2% = Px+2A=0
Notice that for a given area and perimeter, only one solution (Ra, Rp) exists.

« Equivalent Rect Short Side—Length of the short side of the rectangle that has the
same area and same perimeter as a particle. This length is equal to Rp.

+ Equivalent Rect Diagonal—Distance between opposite corners of the Equivalent
Rect:
R R,

+ Rectangle Ratio—Ratio of the long side of the equivalent rectangle to its short

side, which is defined as:

rectangle long side _&

rectangle short side ~ R,

The more elongated the equivalent rectangle, the higher the rectangle ratio.
The closer the equivalent rectangle is to a square, the closer to 1 the rectangle ratio.
Hydraulic Radius

A disk with radius R has a hydraulic radius equal to

disk area  _ nR? _R

disk perimeter ~ 2mR ~ 2
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Areas

The following table lists the Vision particle area measurements.

Measurement Definition Symbol Equation
Area Area of the particle. A —

Area of Hole Sum of the areas of each hole in the particle. AH —

Area of Particle & Holes  Area of a particle that completely covers the image. At A+ Ay
Convex Hull Area Area of the particle Convex Hull. AcH —

Image Area Area of the image. Al —
Image Area

Figure A shows an image of a calibration grid. The image exhibits nonlinear distortion.
Figure B shows an image of coins taken with the same camera setup used in figure A.
The dashed line around figure B defines the image area in pixels. Figure Cillustrates
the image of coins after image correction. The dashed line around figure C defines the
image area in calibrated units.

Gdddoevennonssnns
deeceeRPBRBERBERRIRS

& B C

© National Instruments 223



224

Particle Analysis

Quantities

The following table lists the Vision particle measurements relating to quantity.

Measurement  Definition Symbol
Number of . .

umbero Number of holes in the particle. —
Holes
Number of Number of horizontal segments in the particle. Number of Horiz. S
Horiz. Segments Segments is always given as a pixel measurement. H
Number of Vert.  Number of vertical segments in the particle. Number of Vert. Segments S
Segments is always given as a pixel measurement. v

Angles

The following table lists the Vision particle angle measurements. The equations are
given in radians. The results are given in degrees that are mapped into the range 0 to
180, such that 0 <6 < 180.

Measurement Definition Equation
21
The angle of the line that passes through the particle Center of , -
Orientation Mass about which the particle has the lowest moment of %atan ’;X
inertia. o
Max Feret
. . Fyl_ FyZ
Diameter The angle of the Max Feret Diameter. atan Fl_FZ)
Orientation =

The Orientation angle is measured counterclockwise from the horizontal axis, as
shown in the following figure. The value can range from 0° to 180°. Angles outside this
range are mapped into the range. For example, a 190° angle is considered to be a 10°
angle.
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1. Line with Lowest Moment of Inertia
2. Orientation in Degrees
3. Horizontal Axis

\d . : : .
) Note Refer to the max feret diameter entry in the for an illustration of Max
Feret Diameter Orientation.

Ratios

The following table lists the Vision particle ratio measurements.

Measurement Definition Equation
A

% Area/lmage Area Percentage of the particle Area covering the Image Area. A 100 %

% Area/(Area of Particle & Percentage of the particle Area in relation to the Area of its A 100 %

Holes) Particle & Holes A

Ratio of Equivalent Equivalent Ellipse Major Axis divided by Equivalent Ellipse £,

Ellipse Axes Minor Axis. Ba

Ratio of Equivalent Rect  Equivalent Rect Long Side divided by Equivalent Rect Short = R,
Sides Side. Rp
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Factors

The following table lists the Vision particle factor measurements.

Measurement Definition

Elongation
Factor

Compactness

Factor

Heywood
Circularity
Factor

Type Factor

Sums

The following table lists the Vision particle sum measurements.

Measurement

Sum x
Sumy
Sum xx
Sum xy
Sumyy
Sum xxx
Sum xxy

Sum xyy

Sum yyy

ni.com

Max Feret Diameter divided by Equivalent Rect Short Side (Feret). The
more elongated the shape of a particle, the higher its elongation factor.

Area divided by the product of Bounding Rect Width and Bounding Rect
Height. The compactness factor belongs to the interval [0, 1].

Perimeter divided by the circumference of a circle with the same area.
The closer the shape of a particle is to a disk, the closer the Heywood

circularity factoris to 1.

Factor relating area to moment of inertia.

Symbol

2x
2y

2 xx
2xy
2yy
2 XXX
2xxy

nyy

2yyy

Particle Analysis

Equation

2y/mA

AZ

4] Jhy
Jxx ﬁy



Moments

The following table lists the Vision particle moment measurements.

Measurement Symbol

Moment of
Inertia xx

Moment of
Inertia xy

Moment of
Inertia yy

Moment of
Inertia xxx

Moment of
Inertia xxy

Moment of
Inertia xyy

Moment of
Inertia yyy

Norm.
Moment of
Inertia xx

Norm.
Moment of
Inertia xy

Norm.
Moment of
Inertia yy

Norm.
Moment of
Inertia xxx

Norm.
Moment of

I XXX

Ixxy

Ixyy

lyyy

NXX

N XXX

Nxxy

Equation

5

2ux ~ A
Sy 3y

E A

Xy

Z,

Yy o4

Particle Analysis
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Measurement Symbol Equation
Inertia xxy
Norm. |
Moment of Nxyy ;—y/yz
Inertia xyy A
Norm. |
Moment of Nyyy Z—y/yz
Inertia yyy A
Hu Momentl Hi Nyt Ny,

2 2
HuMoment2 H; (N + Nyy) "+ 4N,

2
HuMoment3 Hs (N = Nygy)~ + (3Nsxy = Ny
HuMoment4 Hs (N = nyy)z + (N = Nyyy)2
Hu Moment5 Hs (Nxx - 3nyy)(Nxxx+ 3nyy)((Nxxx+ ?’nyy)2 - 3(Nxxy+ 3Nyyy)2 + 3(Nxx - Nyyy)(Nxx - Nyyy)((3Nxxx+ nyy)
2 2 2
Hu Moment6 He (N = Nyy)((NXXX+ Nuy) = (Mg + Nyyy) | + 4Ny Ny + Nyg)™ = (N + Ny
2 2

HuMoment7 Hy 3Ny = Nyyy) (N + nyy)((Nyyy + Ney) = 3Ny + 3Nyy) |+ (3Ny = Ny ) Ny + Nyyy)(3(NXXX + Ny,

Related concepts:

« Introduction 13
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Machine Vision

This section describes conceptual information about high-level operations commonly
used in machine vision applications such as edge detection, pattern matching,
dimensional measurements, color inspection, binary particle classification, optical
character recognition, and instrument reading.

Edge Detection

This section describes edge detection techniques and tools that locate edges, such as
the rake, concentric rake, spoke, and caliper.

Introduction

Edge detection finds edges along a line of pixels in the image. Use the edge detection
tools to identify and locate discontinuities in the pixel intensities of an image. The
discontinuities are typically associated with abrupt changes in pixel intensity values
that characterize the boundaries of objects in a scene.

To detect edges in an image, specify a search region in which to locate edges. You can
specify the search region interactively or programmatically. When specified
interactively, you can use one of the line ROI tools to select the search path you want
to analyze. You also can programmatically fix the search regions based either on
constant values or the result of a previous processing step. For example, you may want
to locate edges along a specific portion of a part that has been previously located
using particle analysis or pattern matching algorithms. The edge detection software
analyzes the pixels along this region to detect edges. You can configure the edge
detection tool to find all edges, find the first edge, the best edge, or find the first and
last edges in the region.

When to Use

Edge detection is an effective tool for many machine vision applications. It provides
your application with information about the location of object boundaries and the
presence of discontinuities.
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Use edge detection in the following three application areas: gauging, detection, and
alignment.

Gauging

Gauging applications make to make critical dimensional measurements, such as
length, distance, diameter, angle, and quantity, to determine if the product under
inspection is manufactured correctly. Depending on whether the gauged parameters
fall inside or outside of the user-defined tolerance limits, the component or part is
either classified or rejected.

Gauging is often used both inline and offline in production. During inline processes,
each component is inspected as it is manufactured. Visual inline gauging inspection is
a widely used inspection technique in applications such as mechanical assembly
verification, electronic packaging inspection, container inspection, glass vial
inspection, and electronic connector inspection.

Similarly, gauging applications often measure the quality of products offline. First, a
sample of products is extracted from the production line. Next, measured distances
between features on the object are studied to determine if the sample falls within a
tolerance range. You can measure the distances separating the different edges located
in an image, as well as positions measured using particle analysis or pattern matching
techniques. Edges also can be combined in order to derive best fit lines, projections,
intersections, and angles. Use edge locations to compute estimations of shape
measurements such as circles, ellipses, or polygons.

The following figure shows a gauging application using edge detection to measure the
length of the gap in a spark plug.
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Detection

Part present/not present applications are typical in electronic connector assembly and
mechanical assembly applications. The objective of the application is to determine if a
part is present or not present using line profiles and edge detection. An edge along the
line profile is defined by the level of contrast between background and foreground and
the slope of the transition. Using this technique, you can count the number of edges
along the line profile and compare the result to an expected number of edges. This
method offers a less numerically intensive alternative to other image processing
methods such as image correlation and pattern matching.

The following figure shows a simple detection application in which the number of
edges detected along the search line profile determines if a connector has been
assembled properly. Detection of eight edges indicates that there are four wires. Any
other edge count means that the part has been assembled incorrectly.
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Use edge detection to detect structural defects, such as cracks, or cosmetic defects,
such as scratches, on a part. If the part is of uniform intensity, these defects show up as
sharp changes in the intensity profile. Edge detection identifies these changes.

Alignment

Alignment determines the position and orientation of a part. In many machine vision
applications, the object that you want to inspect may be at different locations in the
image. Edge detection finds the location of the object in the image before you perform
the inspection, so that you can inspect only the regions of interest. The position and
orientation of the part also can be used to provide feedback information to a
positioning device, such as a stage.

Figure 11-3 shows the detection of the left boundary of a disk in the image. You can use
the location of the edges to determine the orientation of the disk.
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Concepts

Definition of an Edge

An edge is a significant change in the grayscale values between adjacent pixelsin an
image. In Vision, edge detection works on a 1D profile of pixel values along a search
region, as shown in the following figure. The 1D search region can take the form of a
line, the perimeter of a circle or ellipse, the boundary of a rectangle or polygon, or a
freehand region. The software analyzes the pixel values along the profile to detect
significant intensity changes. You can specify characteristics of the intensity changes
to determine which changes constitute an edge.

1. Search Lines
2. Edges

Characteristics of an Edge

The following figure illustrates a common model that is used to characterize an edge.
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Gray Level
Intensities
A
o
4—@;—& )
A
3
©
0 v
= — Search
» Direction
p
®
1 Grayscale Profile 3 Edge Strength
2 Edge Length 4 Edge Location

The following list includes the main parameters of this model.

+ Edge strength—Defines the minimum difference in the grayscale values between
the background and the edge. The edge strength is also called the edge contrast.
The following figure shows an image that has different edge strengths. The
strength of an edge can vary for the following reasons:

o Lighting conditions—If the overall light in the scene is low, the edges in image
will have low strengths. The following figure illustrates a change in the edge
strength along the boundary of an object relative to different lighting
conditions.

o Objects with different grayscale characteristics—The presence of a very bright
object causes other objects in the image with lower overall intensities to have
edges with smaller strengths.

A B o
+ Edge length—Defines the distance in which the desired grayscale difference
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between the edge and the background must occur. The length characterizes the
slope of the edge. Use a longer edge length, defined by the size of the kernel used
to detect edges, to detect edges with a gradual transition between the background
and the edge.

« Edge location—The x, y location of an edge in the image.

+ Edge polarity—Defines whether an edge is rising or falling. A rising edge is
characterized by an increase in grayscale values as you cross the edge. A falling
edge is characterized by a decrease in grayscale values as you cross the edge. The
polarity of an edge is linked to the search direction. The following figure shows
examples of edge polarities.

Falling Edge Rising Edge
Negative Polarity Positive Polarity

Edge Detection Methods

Vision offers two ways to perform edge detection. Both methods compute the edge
strength at each pixel along the 1D profile. An edge occurs when the edge strength is
greater than a minimum strength. Additional checks find the correct location of the
edge. You can specify the minimum strength by using the Minimum Edge Strength or
Threshold Level parameter in the software.

Simple Edge Detection

The software uses the pixel value at any point along the pixel profile to define the edge
strength at that point. To locate an edge point, the software scans the pixel profile
pixel by pixel from the beginning to the end. A rising edge is detected at the first point
at which the pixel value is greater than a threshold value plus a hysteresis value. Set
this threshold value to define the minimum edge strength required for qualifying
edges. Use the hysteresis value to declare different edge strengths for the rising and
falling edges. When a rising edge is detected, the software looks for a falling edge. A
falling edge is detected when the pixel value falls below the specified threshold value.
This process is repeated until the end of the pixel profile. The first edge along the
profile can be either a rising or falling edge.

The simple edge detection method works well when there is little noise in the image
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and when there is a distinct demarcation between the object and the background.

The following figure illustrates the simple edge model.

Gray Level
Intensities

@
Grayscale Profile

Threshold Value

Hysteresis

Rising Edge Location

Falling Edge Location

oW

Advanced Edge Detection

The edge detection algorithm uses a kernel operator to compute the edge strength.
The kernel operator is a local approximation of a Fourier transform of the first
derivative. The kernel is applied to each point in the search region where edges are to
be located. For example, for a kernel size of 5, the operator is a ramp function that has
5 entries in the kernel. The entries are {-2, -1, 0, 1, 2}. The width of the kernel size is
user-specified and should be based on the expected sharpness, or slope, of the edges
to be located. The following figure shows the pixel data along a search line and the
equivalent edge magnitudes computed using a kernel of size 5. Peaks in the edge
magnitude profile above a user-specified threshold are the edge points detected by
the algorithm.
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To reduce the effect of noise in image, the edge detection algorithm can be configured
to extract image data along a search region that is wider than the pixels in the image.
The thickness of the search region is specified by the search width parameter. The data
in the extracted region is averaged in a direction perpendicular to the search region
before the edge magnitudes and edge locations are detected. A search width greater
than 1 also can be used to find a “best” or “average” edge location or a poorly formed
object. The following figure shows how the search width is defined.

s\

(r
5

1 Search Width 2 Search Line

Subpixel Accuracy

When the resolution of the image is high enough, most measurement applications
make accurate measurements using pixel accuracy only. However, it is sometimes
difficult to obtain the minimum image resolution needed by a machine vision
application because of limits on the size of the sensors available or the price. In these
cases, you need to find edge positions with subpixel accuracy.
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Subpixel analysis is a software method that estimates the pixel values that a higher
resolution imaging system would have provided. In the edge detection algorithm, the
subpixel location of an edge is calculated using a parabolic fit to the edge-detected
data points. At each edge position of interest, the peak or maximum value is found
along with the value of one pixel on each side of the peak. The peak position
represents the location of the edge to the nearest whole pixel.

Using the three data points and the coefficients a, b, and c, a parabola is fitted to the

data points using the expression ax® +bx +c.

The procedure for determining the coefficients a, b, and c in the expression is as
follows:

Let the three points which include the whole pixel peak location and one neighbor on
each side be represented by (xo, Yo), (X1, Y1), and (x2, y2). We will let xo = -1, x; =0, and
x2 = 1 without loss of generality. We now substitute these points in the equation for a
parabola and solve for a, b, andc. The result is:

(J/o tYy - Zyl)
= —
(yZ + yO)
2

a

C=N
1, which is not needed and can be ignored.

The maximum of the function is computed by taking the first derivative of the
parabolic function and setting the result equal to 0. Solving for x yields:

_-b
X=2a

This provides the subpixel offset from the whole pixel location where the estimate of
the true edge location lies.

The following illustrates how a parabolic function is fitted to the detected edge pixel
location using the magnitude at the peak location and the neighboring pixels. The
subpixel location of an edge point is estimated from the parabolic fit.
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1. Interpolated Peak Location
2. Neighboring Pixel
3. Interpolating Function

With the imaging system components and software tools currently available, you can
reliably estimate 1/25 subpixel accuracy. However, results from an estimation depend
heavily on the imaging setup, such as lighting conditions, and the camera lens. Before
resorting to subpixel information, try to improve the image resolution. Refer to

system setup and calibration for more information about improving images.
Signal-to-Noise Ratio

The edge detection algorithm computes the signal-to-noise ratio for each detected
edge point. The signal-to-noise ratio can be used to differentiate between a true,
reliable, edge and a noisy, unreliable, edge. A high signal-to-noise ratio signifies a
reliable edge, while a low signal-to-noise ratio implies the detected edge point is
unreliable.

In the edge detection algorithm, the signal-to-noise ratio is computed differently
depending on the type of edges you want to search for in the image.

When looking for the first, first and last, or all edges along search lines, the noise level

associated with a detected edge point is the strength of the edge that lies immediately
before the detected edge and whose strength is less than the user-specified minimum
edge threshold, as shown in the following figure.
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When looking for the best edge, the noise level is the strength of the second strongest
edge before or after the detected edge, as shown in the following figure.

Calibration Support for Edge Detection

The edge detection algorithm uses calibration information in the edge detection
process if the original image is calibrated. For simple calibration, edge detection is
performed directly on the image and the detected edge point locations are
transformed into real-world coordinates. For perspective and non-linear distortion
calibration, edge detection is performed on a corrected image. However, instead of
correcting the entire image, only the area corresponding to the search region used for
edge detection is corrected. Figure A and Figure B illustrate the edge detection process
for calibrated images. Figure A shows an uncalibrated distorted image. Figure B shows
the same image in a corrected image space.
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1. Search Line
2. Search Width
3. Corrected Area

Information about the detected edge points is returned in both pixels and real-world

units. Refer to system setup and calibration for more information about
calibrating images.

Extending Edge Detection to 2D Search Regions The edge detection tool in NI Vision
works on a 1D profile. The rake, spoke, and concentric rake tools extend the use of
edge detection to two dimensions. In these edge detection variations, the 2D search
area is covered by a number of search lines over which the edge detection is
performed. You can control the number of the search lines used in the search region by
defining the separation between the lines.

Rake

A Rake works on a rectangular search region, along search lines that are drawn parallel
to the orientation of the rectangle. Control the number of lines in the area by
specifying the search direction as left to right or right to left for a horizontally oriented
rectangle. Specify the search direction as top to bottom or bottom to top for a
vertically oriented rectangle. The following figure illustrates the basics of the rake
function.
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Spoke

A Spoke works on an annular search region, along search lines that are drawn from the
center of the region to the outer boundary and that fall within the search area. Control

the number of lines in the region by specifying the angle between each line. Specify
the search direction as either from the center outward or from the outer boundary to
the center. The following figure illustrates the basics of the spoke function.

1. Search Area
2. Search Line
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3. Search Direction
4. Edge Points

Concentric Rake

A Concentric Rake works on an annular search region. It is an adaptation of the rake to
an annular region. The following illustrates the basics of the concentric rake. Edge
detection is performed along search lines that occur in the search region and that are
concentric to the outer circular boundary. Control the number of concentric search
lines that are used for the edge detection by specifying the radial distance between the
concentric lines in pixels. Specify the direction of the search as either clockwise or
anti-clockwise.

Search Area
Search Line
Search Direction
Edge Points

W=

Finding Straight Edges

Finding straight edges is another extension of edge detection to 2D search regions.
Finding straight edges involves finding straight edges, or lines, in an image within a 2D
search region. Straight edges are located by first locating 1D edge points in the search
region and then computing the straight lines that best fit the detected edge points.
Straight edge methods can be broadly classified into two distinct groups based on how
the 1D edge points are detected in the image.
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Rake-Based Methods

A Rake is used to detect edge points within a rectangular search region. Straight lines
are then fit to the edge points. Three different options are available to determine the
edge points through which the straight lines are fit.

First Edges

A straight line is fit through the first edge point detected along each search line in the
Rake. The method used to fit the straight line is described in dimensional

measurements. The following figure shows an example of the straight edge
detected on an object using the first dark to bright edges in the Rake along with the
computed edge magnitudes along one search line in the Rake.

The following illustration shows the search direction:

—_—

Best Edges

A straight line is fit through the best edge point along each search line in the Rake. The
method used to fit the straight line us described in dimensional measurements.
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The following figure shows an example of the straight edge detected on an object
using the best dark to bright edges in the Rake along with the computed edge
magnitudes along one search line in the Rake.

The following illustration shows the search direction:

—_—

T

Hough-Based Methods

In this method, a Hough transform is used to detect the straight edges, or lines, in an
image. The Hough transform is a standard technique used in image analysis to find
curves that can be parameterized, such as straight lines, polynomials, and circles. For
detecting straight lines in an image, Vision uses the parameterized form of the line:

p = xcosB + ysinB

where, p is the perpendicular distance from the origin to the line and 6 is the angle of
the normal from the origin to the line. Using this parameterization, a point (x, y) in the
image is transformed into a sinusoidal curve in the (p, 8), or Hough space. The
following figure illustrates the sinusoidal curves formed by three image points in the
Hough space. The curves associated with colinear points in the image, intersect at a

© National Instruments 245



246

Machine Vision

unique pointin the Hough space. The coordinates (p, 8) of the intersection are used to
define an equation for the corresponding line in the image. For example, the
intersection point of the curves formed by points 1 and 2 represent the equation for
Linelin the image.

A
> X
1
Line 1 Hough space
Line2” _
2\
¥ —® B

The following figure illustrates how NI Vision uses the Hough transform to detect
straight edges in an image. The location (x, y) of each detected edge point is mapped
to a sinusoidal curve in the (p, 0) space. The Hough space is implemented as a two-
dimensional histogram where the axes represent the quantized values for p and 6. The
range for p is determined by the size of the search region, while the range for 6 is
determined by the angle range for straight lines to be detected in the image. Each edge
location in the image maps to multiple locations in the Hough histogram, and the
count at each location in the histogram is incremented by one. Locations in the
histogram with a count of two or more correspond to intersection points between
curves in the (p, 0) space. Figure B shows a two-dimensional image of the Hough
histogram. The intensity of each pixel corresponds to the value of the histogram at that
location. Locations where multiple curves intersect appear darker than other locations
in the histogram. Darker pixels indicate stronger evidence for the presence of a straight
edge in the original image because more points lie on the line. The following figure
also shows the line formed by four edge points detected in the image and the
corresponding intersection point in the Hough histogram.
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Straight edges in the image are detected by identifying local maxima, or peaks in the
Hough histogram. The local maxima are sorted in descending order based on the
histogram count. To improve the computational speed of the straight edge detection
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process, only a few of the strongest peaks are considered as candidates for detected
straight edges. For each candidate, a score is computed in the original image for the
line that corresponds to the candidate. The line with the best score is returned as the
straight edge. The Hough-based method also can be used to detect multiple straight
edges in the original image. In this case, the straight edges are returned based on their
scores.

Projection-Based Methods

The projection-based method for detecting straight edges is an extension of the 1D
edge detection process discussed in the advanced edge detection section. The
following figure illustrates the projection-based straight edge detection process. The
algorithm takes in a search region, search direction, and an angle range. The algorithm
first either sums or finds the medians of the data in a direction perpendicular to the
search direction. Vision then detects the edge position on the summed profile using
the 1D edge detection function. The location of the edge peak is used to determine the
location of the detected straight edge in the original image.

To detect the best straight edge within an angle range, the same process is repeated by
rotating the search ROI through a specified angle range and using the strongest edge
found to determine the location and angle of the straight edge.

ni.com



Machine Vision

Search Direction

1. Projection Axis
2. Best Edge Peak and Corresponding Line in the Image

The projection-based method is very effective for locating noisy and low-contrast
straight edges.

The projection-based method also can detect multiple straight edges in the search
region. For multiple straight edge detection, the strongest edge peak is computed for
each point along the projection axis. This is done by rotating the search region through
a specified angle range and computing the edge magnitudes at every angle for each
point along the projection axis. The resulting peaks along the projection axis
correspond to straight edges in the original image.

Straight Edge Score

NI Vision returns an edge detection score for each straight edge detected in an image.
The score ranges from 0 to 1000 and indicates the strength of the detected straight
edge.
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The edge detection score is defined as:

C
m+n

S

where;

+ sisthe edge detection score,

« cisthe sum of the gradients at the edge points that match the specified edge
polarity,

« misthe number of edge points on the straight line that match the specified edge
polarity,

« and nis the number of edge points on the straight line that do not match the
specified edge polarity.

Related concepts:

+ Spatial Calibration
+ Dimensional Measurements

Pattern Matching

This section contains information about pattern matching.

Introduction

Pattern matching quickly locates regions of a grayscale image that match a known
reference pattern, also referred to as a model or template.

A\\’ Note A template is an idealized representation of a feature in the image.
Refer to the pattern matching techniques section for the definition of an

image feature.

When using pattern matching, you create a template that represents the object for
which you are searching. Your machine vision application then searches for instances
of the template in each acquired image, calculating a score for each match. This score
relates how closely the template resembles the located matches.
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Pattern matching finds template matches regardless of lighting variation, blur, noise,
and geometric transformations such as shifting or rotation of the template.

Related concepts:

« Pattern Matching Techniques

When to Use

Pattern matching algorithms are some of the most important functions in machine
vision because of their use in varying applications. You can use pattern matching in the
following three general applications:

+ Alignment—Determines the position and orientation of a known object by locating
fiducials. Use the fiducials as points of reference on the object.

« Gauging—Measures lengths, diameters, angles, and other critical dimensions. If
the measurements fall outside set tolerance levels, the component is rejected. Use
pattern matching to locate the object you want to gauge.

+ Inspection—Detects simple flaws, such as missing parts or unreadable print.

Pattern matching provides your application with the number of instances and the
locations of template matches within an inspection image. For example, you can
search an image containing a printed circuit board (PCB) for one or more fiducials. The
machine vision application uses the fiducials to align the board for chip placement
from a chip mounting device. Figure A shows part of a PCB. Figure B shows a common
fiducial used in PCB inspections or chip pick-and-place applications.
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Gauging applications first locate and then measure, or gauge, the dimensions of an
object in an image. If the measurement falls within a tolerance range, the object
passes inspection. If it falls outside the tolerance range, the object is rejected.

Searching for and finding image features is the key processing task that determines the
success of many gauging applications, such as inspecting the leads on a quad pack or
inspecting an antilock-brake sensor. In real-time applications, search speed is critical.

In general, pattern matching works well on images where the template is primarily
characterized by grayscale information. Templates containing texture, or that have
dense, intricate data with no discernible pattern, are the most successful.

Limitations

Pattern matching provides a fast, general purpose algorithm to locate an objectin a
image. However, pattern matching is not well suited to applications where the object
to be detected is scaled (Figure A) or if more than 10% of the image is occluded (Figure
B). Non-uniform lighting (Figure C) of search images can reduce the effectivity of
pattern matching. Applications that are likely to encounter these conditions should

use Geometric Matching instead.
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Related concepts:

« Geometric Matching

What to Expect from a Pattern Matching Tool

Because pattern matching is the first step in many machine vision applications, it must
work reliably under various conditions. In automated machine vision applications, the
visual appearance of materials or components under inspection can change because
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of varying factors such as part orientation, scale changes, and lighting changes. The
pattern matching tool must maintain its ability to locate the reference patterns despite
these changes. The following sections describe common situations in which the
pattern matching tool needs to return accurate results.

Pattern Orientation and Multiple Instances

A pattern matching algorithm needs to locate the reference pattern in an image even if
the pattern in the image is rotated or scaled. When a pattern is rotated or scaled in the
image, the pattern matching tool can detect the following items in the image:

The pattern in the image.

The position of the pattern in the image.

The orientation of the pattern.

Multiple instances of the pattern in the image, if applicable.

Figure A shows a template image.

Figure B shows a template match shifted in the image.
Figure C shows a template match rotated in the image.
Figure D shows a template match scaled in the image.

Figures B, C, and D also illustrate multiple instances of the template.

Ambient Lighting Conditions

A pattern matching algorithm needs the ability to find the reference patternin an
image under conditions of uniform lighting changes in the lighting across the image.
The following figure illustrates the typical conditions under which pattern matching
works correctly.

+ Figure A shows the original template image.
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« Figure B shows a template match under bright light.
+ Figure C shows a template match under poor lighting.

Om(] o] O

A B C

Blur and Noise Conditions

A pattern matching algorithm needs the ability to find patterns that have undergone
some transformation because of blurring or noise. Blurring usually occurs because of
incorrect focus or depth of field changes. Refer to system setup and calibration
for more information about depth of field.

The following figure illustrates typical blurring and noise conditions under which
pattern matching works correctly.

+ Figure A shows the original template image.
+ Figure B shows the changes on the image caused by blurring.
+ Figure C shows the changes on the image caused by noise.

A B c

Related concepts:

« Spatial Calibration

Pattern Matching Techniques

Vision implements two pattern matching methods - pyramidal matching and image
understanding (low discrepancy sampling). Both methods use normalized cross-
correlation as a core technique.

The pattern matching process consists of two stages: learning and matching. During
the learning stage, the algorithm extracts gray value and/or edge gradient information
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from the template image. The algorithm organizes and stores the information in a
manner that facilitates faster searching in the inspection image. In Vision, the
information learned during this stage is stored as part of the template image.

During the matching stage, the pattern matching algorithm extracts gray value and/or
edge gradient information from the inspection image (corresponding to the
information learned from the template). Then, the algorithm finds matches by locating
regions in the inspection image where the highest cross-correlation is observed.

Normalized Cross-Correlation

Normalized cross-correlation is the most common method for finding a template in an
image. Because the underlying mechanism for correlation is based on a series of
multiplication operations, the correlation process is time consuming. Technologies
such as MMX allow for parallel multiplications and reduce overall computation time. To
increase the speed of the matching process, reduce the size of the image and restrict
the region of the image in which the matching occurs. Pyramidal matching and image
understanding are two ways to increase the speed of the matching process.

Challenges in Scale-Invariant and Rotation-Invariant Matching

Normalized cross-correlation is a good technique for finding patterns in an image
when the patterns in the image are not scaled or rotated. Typically, cross-correlation
can detect patterns of the same size up to a rotation of 5° to 10°. Extending correlation
to detect patterns that are invariant to scale changes and rotation is difficult.

For scale-invariant matching, you must repeat the process of scaling or resizing the
template and then perform the correlation operation. This adds a significant amount
of computation to your matching process. Normalizing for rotation is even more
difficult. If a clue regarding rotation can be extracted from the image, you can simply
rotate the template and perform the correlation. However, if the nature of rotation is
unknown, looking for the best match requires exhaustive rotations of the template.

By employing a coarse-to-fine approach to matching, and by using pyramids or image
understanding, we can eliminate a significant amount of computation and achieve
usable search times for handling rotated patterns. However, scale-invariant matching
is not supported even when using pyramids or image understanding.
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Pyramidal Matching

You can improve the computation time of pattern matching by reducing the size of the
image and the template. In pyramidal matching, both the image and the template are
sampled to smaller spatial resolutions using Gaussian pyramids. This method samples
every other pixel and thus the image and the template can both be reduced to one-
fourth of their original sizes for every successive pyramid level.

In the learning phase, the algorithm automatically computes the maximum pyramid
level that can be used for the given template, and learns the data needed to represent
the template and its rotated versions across all pyramid levels. The algorithm attempts
to find an optimal pyramid level (based on an analysis of template data) which would
give the fastest and most accurate match. Two kinds of data can be used - gray value
(based on pixel intensities) and gradients (based on select edge information).

Gray Value Method

This method makes use of the normalized pixel gray values as features. Doing so
ensures that no information is left out, which is helpful when the template does not
contain structured information, but has intricate textures or dense edges. However,
this method has the disadvantage of suffering when faced with occlusion and non-
uniform illumination changes. Despite these limitations, the method works over a
wide variety of scenarios and is suitable for general use.
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Gradient Method

This method makes use of filtered edge pixels as features. An edge image is computed
from the supplied grayscale image and a gradient intensity threshold is computed
based on image analysis of the template. All edge vectors which are stronger than the
threshold are retained as features. Matching is based on vector correlation rather than
normalized cross-correlation. This method is more resistant to occlusion and lighting
intensity changes as compared to the gray value based method, and is often faster,
since less data must be computed. However, as the strength and reliability of edges
reduces at very low resolutions, this method requires the user to work at higher
resolutions compared to the Gray Value method.

Coarse-to-Fine Matching

The matching phase makes use of a coarse-to-fine approach, starting our search at the
lowest resolution possible (the highest pyramid level). Since the sizes of the search
image and template have been significantly reduced at this resolution, we can carry
out an exhaustive correlation-based search. However, the sub-sampling process
introduces some loss of details, and the match locations are not completely reliable.
This problem is offset by maintaining a collection of promising candidate match
locations with the best scores, rather than choosing the exact number of matches to
look for.

We then iterate through each of the lower levels of the pyramid, refining our choice at
each stage by re-computing correlation scores. This approach limits all subsequent
searches to small localized regions around the best match candidates, achieving a
significant speed boost.

When searching for rotated matches, performing an exhaustive match for all possible
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rotations (from 0 to 360 degrees) is still prohibitively expensive, even at the lowest
resolutions. Consequently, we first exhaustively find the best locations at a coarse
angle step. The best locations among these coarse locations are then refined at a finer
angle step size. After this, we follow the same method as above by refining the match
location as well as angle over the subsequent lower pyramid levels.

Tips and Tricks

Follow these recommendations to obtain the best performance from pyramidal
matching:

+ Use the highest possible pyramid level while choosing the Max Match Pyramid
Level setting for the fastest execution times. In most cases, matching at level 0 or
level 1 might be too expensive.

« While searching for rotated patterns, use the Angle Ranges setting to limit the
search to the smallest angle range for faster performance and lesser memory
consumption. For example if the match is known to be only slightly rotated from
the base position, an angle range of -10° to 10° might suffice.

+ The algorithm automatically handles the coarse-to-fine matching based on the
Number of Matches Requested and Minimum Match Score. Configure them to
obtain the best mix of speed and accuracy for your application.

« The Minimum Contrast setting specifies a minimum contrast value a region must
exhibit to be considered as a candidate. Use this for getting a speed boost in cases
where there are significant areas of low or zero contrast (uniform regions) in the
image background.

« If you wish to find potential matches which may lie partially outside the image or
the Region of Interest, switch the Process Border Pixels setting to on. For larger
templates with a well-defined Region of Interest, you may get a slight speed boost
by turning this setting off.

+ Use the Min Match Separation Distance, Min Match Separation Angle and Max
Match Overlap settings to completely control the distance, angular resolution, and
overlap between found matches.

Image Understanding (Low Discrepancy Sampling)

A pattern matching feature is a salient pattern of pixels that describe a template.
Because most images contain redundant information, using all the information in the
image to match patterns is time-insensitive and inaccurate.
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Vision uses a non-uniform sampling technique that incorporates image understanding
to thoroughly and efficiently describe the template. This intelligent sampling
technique specifically includes a combination of edge pixels and region pixels as
shown in figure B. NI Vision uses a similar technique when the user indicates that the
pattern might be rotated in the image. This technique uses specially chosen template
pixels whose values—or relative changes in values—reflect the rotation of the pattern.

Intelligent sampling of the template both reduces the redundant information and
emphasizes the feature to allow for an efficient, yet robust, cross-correlation
implementation. NI Vision pattern matching is able to accurately locate objects that
vary in size (£5%) and orientation (between 0° and 360°) and that have a degraded
appearance.

A B

Pyramidal Matching

Similar to pyramidal matching, sampling based matching also employs a coarse-to-
fine approach to eliminate excessive computation. First, coarse features are extracted
based on region pixel samples. Then only a small number of probable candidate
locations are chosen where finer features (primarily using edge pixels) are computed.
The coarse match candidates are then refined using these fine features and a revised
list of matches is obtained.

Matching under rotation also follows a similar paradigm to pyramidal matching.
Intelligent sampling allows us to compactly represent template samples
corresponding to different angles. Initially, we find matches using coarse sampling and
at a coarse angle step size. The best coarse angle match locations are then refined at a
finer angle step size and using finer features.

Limitations

Low discrepancy sampling extracts the most significant information to represent an
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image. While this leads to a very sparse and efficient representation in most cases,
certain types of images are known to cause problems:

« Templates containing large regions of similar grayscale information, with very little
information, can sometimes exhibit inconsistent behavior due to a low number of
sample points.

« Templates with skewed or long aspect ratios (1:6) may suffer from inconsistent
results when searching for rotated matches.

« Very small templates are sometimes found to contain an insufficient number of
samples for reliable training.

If these limitations negatively impact the performance of your application, use a
pyramidal matching method.

Pyramid Pre-Processing
Pyramid Pattern Matching provides three types of Pre-Processing options:

+ Sobel and Log,
« Sobel,
« Non-Linear Diffusion Filter.

Sobel and Log

This filter applies Sobel kernel convolution on template and match image pyramid.
Use this option to enhance the low contrast region and to consider only the edge
features from the template.

The illustration shows the Original Image:
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Sobel

This filter applies Sobel kernel convolution on template and match image pyramid.
Use this filter to use only the edge feature from the template.

The illustration shows the Original Image:
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Non-Linear Diffusion Filter

This filter applies an anisotropic diffusion filter on the template and match image
pyramid. Use this filter to reduce noise and to enhance the edge contrast. The
following images illustrate that the Non-Linear Diffusion filter can reduce the noise
without sacrificing edge contrast.
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The illustration shows the Original Image:

The illustration shows the Gaussian Pyramid at Level 2:
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The illustration shows the Non-Linear Diffusion Pyramid at Level 2:
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Visit the Anisotropic wiki page for more reference.

Presets

Presets provide an easy and descriptive method to set advanced parameters for
different Pattern Matching algorithms. Pattern Matching algorithms have advanced
parameter settings which fine tune the algorithm to perform improved matching with
different match requirements. Presets are the set of advanced parameter values which
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have been tested to work with a broad range of match requirements.

A particular Preset (set of advanced parameter values) will be stored in a template
image based on the chosen requirement. The values will be used automatically during
matching. Hence, the matching results would be improved over the default results
without having to understand the advanced parameters and their implications for
matching. The Presets stored in the template is based on the selection of Use-Case
and Priority. These inputs should be selected based on the match requirement.

The following options are provided in Use-Case:

Preset

Option Description

Overlapping Usgs Advanced Options appropriate for match image that contain overlapping
objects.

Overlapping Us.es Advanced Options appropriate for match image that contain overlapping
objects.

Low Uses Advanced Options appropriate for templates with large dimensions

Contrast P Pprop P & '
Uses advanced options appropriate for screenshots or screen captures that are pixel
accurate in resolution (they are not captured via a camera) and usually have

Screenshot

templates with small dimensions. The match algorithm used should be Grayscale
Value Pyramid or Low Discrepancy Sampling when the Screenshot Preset is selected.

The following options are provided in Priority:

Preset

. Descrioti
Option escription
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Uses Advanced Options that give a higher priority to Match Accuracy than Match

Accurate Speed.

Fast Uses Advanced Options that gives equal priority to Match Accuracy and Match
Speed.

Very Fast Uses Advanced Options that gives a higher priority to Match Speed than Match

Accuracy.

The illustration shows the Workflow for Low Discrepancy, Grayscale, and Gradient
Pyramid Algorithms:

IMACQ Laarn
Pattarn

IMAQ Set Praset IMAC Match
Options Pattarn

The illustration shows the Workflow for Geometric Pattern Matching:

ILIAQ Leam IMAQ Set Presat

QOptions

IMAC Match

Geometric

Pattarn o Geometric Pattarn 2

Sub-pixel Refinement

In both pyramidal as well as low-discrepancy sampling-based pattern matching, the
user can choose to subject the refined match candidates to one last stage of

refinement to find sub-pixel accurate locations and sub-degree accurate angles. This
stage relies on specially-extracted edge and pixel information from the template and
employs interpolation techniques to get a highly accurate match location and angle.

Once the refined locations (with or without sub-pixel refinement) are obtained, both
pattern matching methods do a final and accurate score computation using most of
the significant information present in the template.

Related information:
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« Anisotropic

In-Depth Discussion 20

This section provides additional information you may need for building successful
searching applications.

Normalized Cross-Correlation

The following is the basic concept of correlation: Consider a subimage w(x, y) of size
K x L within an image f(x, y) of size M x N, where K< M and L < M. The correlation
between w(x, y) and f(x, y) at a point (i, j) is given by .

L-1 _K-1
Cijy= szozyzo w(x, y)fix+i, y+))

where,

«i=0,1,...M-1,i=0,1,...N-1,
+ the summation is taken over the region in the image where w and f overlap.

The following figure illustrates the correlation procedure. Assume that the origin of the
image f is at the top left corner. Correlation is the process of moving the template or
subimage w around the image area and computing the value C in that area. This
involves multiplying each pixel in the template by the image pixel that it overlaps and
then summing the results over all the pixels of the template. The maximum value of C
indicates the position where w best matches f. Correlation values are not accurate at
the borders of the image.
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Basic correlation is very sensitive to amplitude changes in the image, such as intensity,
and in the template. For example, if the intensity of the image fis doubled, so are the
values of c. You can overcome sensitivity by computing the normalized correlation
coefficient, which is defined as:

L-1_K-1

z z w(x, y) = w||f{x+i, y+j) - f(i,j))
s x=0%y=0
(i) = 1 1
-1 K-1 _olg[L-1_K-1 Ty
wix, y)-w fcvi v = £l )
x=0"y=0 'x=0"y=0

where w (calculated only once) is the average intensity value of the pixels in the
template w. The variable f is the average value of f in the region coincident with the
current location of w. The value of R lies in the range -1 to 1 and is independent of
scale changes in the intensity values of f and w.

Advanced Pattern Matching Concepts

Introduction

Advanced pattern matching contains low-level learning and matching options that
enable you to customize the pattern matching algorithm to your specific machine
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vision application. In order to be useful to a broad audience, a pattern matching
algorithm needs to process numerous diverse template images and search images.
Determining a set of default advanced pattern matching options that is optimal for all
possible applications is improbable. However, you can customize the IMAQ Vision
pattern matching algorithm for your application by configuring several advanced
options that affect the speed and accuracy of pattern matching.

When To Use

If the pattern matching portion of your application is not working as expected, make
sure you have defined a template with the following qualities:

« Good feature detail,

« Adequate positional data,

« Sufficient background information,

« Appropriate level of asymmetry (for rotation-invariant matching).

You can change the template slightly to remove excessive background information or
include additional feature information. You may also consider restricting the angle
ranges, if possible, or defining a search region. In addition, make sure your application
is running in optimal lighting conditions and that you are acquiring quality images.
Nonuniform lighting and poor image quality adversely affect other image processing
algorithms as well as pattern matching. If you have suitable template images and
search images but want to improve the speed and/or accuracy of the pattern matching
process, you can configure the advanced pattern matching options.

Pattern Matching Phases

Pattern matching consists of two stages: a learning stage, which is usually performed
offline, and a matching stage. For the purpose of discussing advanced pattern
matching options and the consequences of changing the default values, this
document divides the matching stage into the following four phases.

« Initial phase—The first phase of shift- and rotation-invariant pattern matching. The
algorithm makes steps larger than a pixel to locate potential matches.

+ Intermediate phase—The second phase of rotation-invariant pattern matching.
The algorithm makes coarse refinements to the location of matches found during
the initial phase. Normally, this phase is skipped during shift-invariant matching.
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« Final phase—The third, and often final, phase of shift- and rotation-invariant
pattern matching. The algorithm makes small refinements to the matches.

+ Subpixel refinement phase—The last phase of pattern matching if the Enable
Subpixel Accuracy parameter is set to 1 (TRUE). The algorithm refines the matches
to achieve subpixel and subangle accuracy.

Most advanced options influence only one phase of the pattern matching process. In
most cases, you control one phase of the pattern matching process using multiple
advanced options.

> Note Because of the additional power and complexity of advanced pattern
matching, suboptimal option values or sets of values can yield unpredictable
results.

Guidelines for Using Advanced Options

Since the process of learning the template is handled offline, the learning stage has
more time to optimize default options for a given template. Therefore, National
Instruments highly recommends that you configure the advanced match options first
to alter the speed and/or accuracy of pattern matching in your application.

A\\‘ Note Most advanced match options are available for both shift-invariant
matching and rotation-invariant matching. However, the impact of an option
on the matching process may differ considerably from shift-invariant
matching to rotation-invariant matching.

If you still require better results after configuring the advanced match options, try
changing the advanced learn options. The advanced learn options allow you to
manage the amount of data used in different segments of the matching process. You
have control of the number of data points and/or the angular accuracy of the data
points while the algorithm selects the points.

The results you get from changing the advanced learn options vary significantly from
one template to the next. At times, changing the options might produce undesired
results. For example, requesting more data points for a template could result in less
accurate matches because too many data points cause the algorithm to sample image
noise. This scenario is not unusual or unexpected.
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Advanced Match Options

The following list describes the advanced options you can configure for the match
process.

« Minimum Contrast—Specifies the minimum contrast value a potential match
region must have to contain a match. When used with templates having high
contrast, this option improves speed by excluding regions of an image.

« Enable Subpixel Accuracy—Enables the subpixel refinement phase applied to
matches at the end of the final phase. When the correct matches are found but
their location is less accurate than expected, set this option to 1 (TRUE).

+ Subpixel Iterations—Defines the number of refinements performed by the match
process using the subpixel information stored in the template. These refinement
iterations are applied to the number of matches requested.

+ Subpixel Tolerance—Specifies the control tolerance used during subpixel
refinement to stop processing when a match location has been improved to the
given accuracy. This option can improve the speed of the algorithm when you have
multiple matches because the amount of refinement for each match varies with
the accuracy of its location. For shift-invariant matching, this option represents the
tolerance, in pixels, for position. For rotation-invariant matching, this option
represents the tolerance, in degrees, for angular accuracy and indirectly sets a
lower tolerance using radian distances, in pixels, for position.

« Initial Match List Length—Specifies the number of match regions cached from the
initial phase of matching. The match algorithm focuses on these regions in later
processing. If the template is very distinct in the search images, reducing this
length improves speed significantly. If the application is missing matches,
increasing this value may solve the problem but processing becomes slower.

« Match List Reduction Factor—Controls how quickly the match list is shortened
from one matching phase to the next. The value is a divisor of the list length. For
example, a value of 2 cuts the list in half. If you increase the list length with Initial
Match List Length, you can recover some speed by increasing the Match List
Reduction Factor. In most instances, reduce the Match List Reduction Factor to
keep more match regions for later processing, which increases accuracy but
decreases speed.

« Initial Step Size—pecifies the number of pixels to shift the template across the
inspection image during the initial phase of matching. The optimal step size is
computed during the learning phase, stored with the template, and used by
default. You can reduce the step size to improve match accuracy, but doing so

© National Instruments 273



274

Machine Vision

greatly reduces speed. Do not increase this value to make larger steps.
Intermediate Angular Accuracy—Establishes the angular accuracy, in degrees,
used when refining rotated matches from the initial phase. Decreasing this value
causes higher accuracy in resulting matches but slows processing. If angular
accuracy is not important to the application or the template is symmetrical,
increase this value to get faster matching with less accurate angles. The angular
accuracy value is rounded down to a value that evenly divides 360 and provides at
least the accuracy requested.

Search Strategy—Specifies the matching strategy used to find the matches. The
default search strategy is Balanced (2), which initially searches the image using a
medium step size to improve speed and then uses the match refinement of the
Conservative strategy (1) to maintain accuracy. The Conservative strategy initially
searches the image with a small step size, which reduces speed but provides very
accurate matches. In general, avoid the Aggressive strategy (3) unless the center of
the template does not contain distinguishing characteristics or the template is
highly rectangular (3:1 or more in dimensions).

Advanced Learn Options

The following list describes the advanced options you can configure for the learning
process.

+ Initial Sample Size—Specifies the size of the sample, in pixels, used during the

initial phase of matching. When distinguishing template characteristics are not
defined by the edges in the template, increase this value to promote nonedge
characteristics during matching. A larger sample size reduces the match speed.
Increase the size by a multiple of 12 for the best possible match speed; a size of 60
is optimal. If you have a large template (for example, a template whose dimensions
exceed 200 pixels), try increasing the sample size to improve accuracy. Increasing
the sample size has less of an impact on match speed with large templates than
with small templates.

Initial Sample Size Factor—Determines the size of the sample, in percent of total
pixels, used during the initial phase of matching. Defining a sample size as a
percent of total pixels facilitates consistent sampling across templates of different
dimensions.

Final Sample Size—Specifies the size of the sample, in pixels, used during the final
phase of matching. When edges define the most unique template characteristics,
increase this value to promote edge characteristics during matching. Increase the
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size by a multiple of 12 for best match speed; a size of 60 is optimal.

» Note A large Final Sample Size does not reduce match speed as much as
a large Initial Sample Size.

If you have a large template (for example, a template whose dimensions exceed
200 pixels), increasing this sample size improves match accuracy with only small
speed degradation.

Final Sample Size Factor—Determines the size of the sample, in percent of total
pixels, used during the final phase of matching. Defining a sample size in percent
of total pixels facilitates consistent sampling across templates of different
dimensions.

Subpixel Sample Size—Specifies the size of the sample, in pixels, used during the
subpixel refinement phase of matching. The default sample size that the algorithm
determines during the learning process is conservative—slightly larger than the
initial or final sample sizes. Increasing this size may deteriorate match accuracy.
Although this sample is used primarily during subpixel refinement, it is used also
during final match processing. Therefore, the Subpixel Sample Size affects
matching even when Enable Subpixel Accuracy is set to 0 (FALSE).

Subpixel Sample Size Factor—Determines the size of the sample, in percent of
total pixels, used during the subpixel refinement phase of matching. Defining a
sample size in percent of total pixels facilitates consistent sampling across
templates of different dimensions.

Initial Angular Accuracy—Establishes the angular accuracy supported during the
initial phase of rotation-invariant matching. Use the advanced match option
Intermediate Angular Accuracy to limit the angular accuracy unless you do not
need the template to produce matches at this angular accuracy. Reducing the
initial accuracy reduces the template size by less than a third.

Final Angular Accuracy—Establishes the angular accuracy supported during the
intermediate and final phases of rotation-invariant matching. As with Initial
Angular Accuracy, increasing this value reduces the final accuracy by restricting the
template from generating more accurate match results regardless of the match
options used. However, reducing the accuracy significantly shrinks the template
size by as much as half.

Initial Step Size—Defines the initial jump size to support when searching for the
template. Because this value depends entirely on the pixel content and other
special characteristics of the template, avoid changing this value. If you set a lower
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Initial Step Size, the initial match phase rigorously searches more match regions
located closer together. A better approach to achieving a rigorous initial search is
to set Search Strategy Support to 1 (Conservative). This lowers the step size to an
optimal value based on the template and automatically adjusts other options
according to that value.

N\ . . :
,\\ Note The value of Initial Step Size is a recommendation for the learn
process. The actual step size may be smaller based on the content of the
template image.

+ Search Strategy Support—Defines the set of search strategies supported by the
template during matching. The Balanced and Conservative search strategies are
supported by default. If you intend to use this template with the advanced match
option Search Strategy set to 3 (Aggressive), set Search Strategy Support to 3
(Aggressive, Balanced & Conservative). Set this option to 1 (Conservative) if you are
performing matching only with the Conservative search strategy and want to
minimize the template size.

Options at a Glance

This section illustrates how the advanced pattern matching options effect the
accuracy, speed, and risk of pattern matching in your application. The following
illustration shows the impact that each advanced match option has on the accuracy
and speed of the matching process.
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The following figure shows the impact that each learn option has on the accuracy and
speed of the matching process.
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The following figure illustrates the risk of getting unexpected results when configuring
the advanced match and learn options. The risk levels shown for each option
correspond to setting more aggressive values for the option.
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Advanced Match Options Risk

Risk Level

IInitial Step Size

Search Strategy
Match List Reduction Factor
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Advanced Learn Options Risk

Risk Level

Search Strategy Support Initial Step Size

Subpixel Sample Size (Factor)
Final Sample Size (Factor)

Final Angular Accuracy
Initial Angular Accuracy

Initial Sample Size (Factor) -
Optimizing for Accuracy

Many advanced options impact the accuracy of match results. Accuracy may refer to
the following:

+ Orderin which multiple matches are returned,
« Number of matches returned,
« Match location(s) returned.

Each of these conditions requires a different usage of the advanced options. In general,
if you find a match with a lower score than expected or an inaccurate position, use
subpixel refinement to improve the results. First, set Enable Subpixel Accuracy to 1
(TRUE) to increase accuracy. Then, increase the number of subpixel iterations with

Subpixel Iterations if you need additional improvement.

If only one of several matches is inaccurate, you can set Subpixel Tolerance to the pixel
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accuracy desired, which is normally between 0.1 and 0.5. By setting this value, the
pattern matching algorithm spends time improving only those matches outside the
specified tolerance instead of refining all matches for the given number of iterations.
When providing a tolerance, set Subpixel Iterations to 0 (default) to allow the
refinement process choose when to stop, or set Subpixel Iterations to a maximum
iteration to cap the amount of refinement performed when the tolerance is
unreachable.

Altering subpixel refinement options is the last phase of the matching process you can
manipulate to improve accuracy. If altering subpixel refinement options does not
result in the expected match accuracy, you can adjust one or more of the following
options. Determining which options to adjust varies among applications, but the
following categorization of options provides a general order in which to proceed.

« Basic match options—Shift/rotation invariance, Minimum Contrast, Rotation
Angle Ranges:
o Low risk relative to other advanced options.
o Cansignificantly impact match results by impacting the entire match process.
« Advanced match options used in the intermediate and final phases of the match
process—Intermediate Angular Accuracy, Match List Reduction Factor:
o Usually low risk because they occur during pixel-level refinement,
° Impact on match speed is reduced because these options affect a later match
phase.
« Advanced match options used in the initial phase of the match process— Initial
Match List Length, Initial Step Size:
o Higher risk because these options alter match selection from the start,
o Slower match speed when more conservative values are selected because of
additional processing required.

A\\’ Note Changing Initial Step Size is not recommended because the
template contains the optimal initial step size to use. If you want to
perform an exhaustive search for the template, you can set this
option to 1, but doing so significantly reduces matching speed.

+ Advanced match option defining the match process—Search Strategy: Aggressive,
Balanced (default), and Conservative:
o High risk because changing this option alters most advanced match options
and sometimes alters the initial search approach.
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o Conservative works like Balanced but is more rigorous during the initial phase,
causing match speeds to double in many cases.

o Aggressive uses a different initial searching technique, so resulting matches
may differ significantly from the other strategies. Use the Aggressive option
when searching on very rectangular templates or when many of the
distinguishing characteristics are not in the center of the template.

« Advanced learn options used during the subpixel refinement phase—Subpixel

Sample Size, Subpixel Sample Size Factor:

o High risk relative to other advanced match options; low risk relative to other

advanced learn options.

o By default, Subpixel Sample Size is based on the size of the template, in pixels.
The following Tables show the relationship between template size and
Subpixel Sample Size. The first table depicts the sizes for Shift-Invariant
Matching while the second table depicts the sizes for Rotation-Invariant

Matching.

Template Size (in pixels)
greater than or equal to 600
greater than or equal to 2400
greater than or equal to 9600
greater than or equal to 42000

greater than or equal to 160000

Template Size (in pixels)
greater than or equal to 200
greater than or equal to 1200
greater than or equal to 4800
greater than or equal to 16800
greater than or equal to 60000

greater than or equal to 160000

Subpixel Sample Size
60

120

240

420

600

Subpixel Sample Size
60

120

240

420

600

840
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,\\‘ Note The subpixel refinement phase is very sensitive to the sample size;
therefore, do not change the default unless your application requires the
change. For example, increase the sample size if you have large templates
containing a lot of detailed information.

« Advanced learn options used during the final phase of matching—Final Sample
Size, Final Sample Size Factor, Final Angular Accuracy:

o High risk relative to other advanced match options; medium risk relative to
other advanced learn options.

° Final sample is used in the final phase of the match process and contains data
for refining match locations to within a pixel or degree of accuracy. This sample
includes, but is not limited to, locations around edges in the template.

o By default, the final sample produces an angular accuracy of 1°. If you do not
require this level of accuracy, you can increase the Final Angular Accuracy
value, which reduces accuracy, reduces the template size, and increases the
match speed. The accuracy value is always rounded down to a value that
divides 360 evenly.

« Advanced learn options used during the initial phase of matching—Initial Sample
Size, Initial Sample Size Factor, Initial Angular Accuracy :

o Among the highest risk advanced options because they affect the entire match
process from start to finish.

o Initial sample contains representatives from regions having roughly the same
pixel values.

o By default, the initial sample produces an angular accuracy of 6°. This initial
accuracy default is necessary to find matches in the final phase of matching
with an accuracy of 1°. If you set the final accuracy to be less accurate, you can
increase the Initial Angular Accuracy value to reduce accuracy, as well. The
accuracy value is always rounded down to a value that divides 360 evenly.

Object Tracking

This section contains information about object tracking.

Introduction

Object tracking tracks the location of an object over a sequence of images. Itis a
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method of following the object through successive frames to determine how it is
moving relative to other objects in the image.

When using object tracking, the user must locate and specify the object to be tracked.
The object tracking methods then track the object in each acquired frame the object is
presentin.

When to Use

Object tracking is an essential machine vision function, and has many uses in the
following application areas:

« Security and surveillance—In the surveillance industry, objects of interest such as
people and vehicles can be tracked. Object tracking can be used for detecting
trespassing or observing anomalies like unattended baggage.

« Traffic management—The flow of traffic can be analyzed, and collisions detected.

+ Medicine—Cells can be tracked in medical images.

« Industry—Defective items can be detected and tracked.

+ Robotics and navigation—Robots can follow the trajectory of an object. Robotic
assistance can maneuver in a factory (de-palletizing objects).

« Human-computer interaction (HCI)—Users can be tracked in a gaming
environment.

+ Object modeling—An object tracked from multiple perspectives can be used to
create a partial 3D model of the object.

+ Bio-mechanics—Tracking body parts to interpret gestures or movements.

What to Expect from Object Tracking

A well-configured object tracking application tracks objects regardless of blur, noise,
or partial occlusion of the object. Object tracking in Vision is tolerant of gradual
changes in the tracked object, including geometric transformations such as shifting,

rotation, or scaling. Object tracking in Vision can be used in grayscale (U8, U16, and
116) and color (RGB32).

Object Tracking Techniques

NI Vision implements two object tracking algorithms:
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« Mean shift—A simple algorithm that tracks the user-defined objects by iteratively
updating the location of the object.

« EM-based mean shift (shape adapted mean shift)—An extended version of the
mean shift algorithm in which not only the location but also the shape (including
scale) of the object is adapted frame after frame.

To track an object, the target object must first be characterized over a feature space.
The color histogram is a very robust representation of the object appearance, and is
chosen as the feature space. Moving objects are characterized by their histograms. The
feature-histogram-based target representations are regularized by spatial masking
with an isotropic kernel.

Understanding Mean Shift

The mean shift algorithm is a is a simple method for finding the position of a local
mode (local maximum) of a kernel-based estimate of a probability density function.
Object tracking for an image frame is performed by a combination of histogram
extraction, weight computation and derivation of new location.

There are three stages to the mean shift algorithm:

« Target model—Choose the target object in the given frame. Represent the target
model in the given feature space (color histogram) with a kernel.

+ Mean shift convergence—In the next frame, search with the current histogram and
spatial data for the best target match candidate by maximizing the similarity
function. In the mean shift algorithm, the object center moves from current
location to a new location as shown in the figure below. The kernel is moved until
the convergence of the similarity function, then the location of the object is
updated.
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+ Update location and model—Update the target model, and the location of the
target, based on the blending parameter.

frame1 frame 2

Understanding EM-Based Mean Shift

The mean shift algorithm is not scale or geometric-shift invariant. To track an object
that may appear to change in size or shape, the EM-based mean shift algorithmis
required.

The EM-based mean shift, or shape adapted mean shift, algorithm is an extension of
the standard algorithm already described. The EM-based mean shift algorithm
simultaneously estimates the position of the local mode and the covariance matrix
that describes the approximate shape of the local mode. The covariance matrix that
defines the shape and scale of the region (that defines the object) is updated every
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frame to adapt to the shape and scale of the object in that frame.
There are three stages to the mean shift algorithm:

« Target model—Choose the target object in the given frame. Represent the target
model in the given feature space (color histogram) with a kernel.

+ Mean shift convergence—In the next frame, search with the current histogram and
spatial data for the best target match candidate by maximizing the similarity
function. In the mean shift algorithm, the object center moves from current
location to a new location, essentially the center of mass, as shown in the figure
below. The magnitude and direction of the move is represented by the mean shift
vector. The kernel is moved until the convergence of the similarity function, then
the location of the object is updated along with the covariance of the kernel.

« Update location and model—Update the target model (including the scale and
shape), and the location of the target, based on the blending parameter and
maximum acceptable scale and shape changes.

frame 1 frame 2

Kalman Prediction

EM-based mean shift also features a Kalman Filter implementation. A Kalman filter
uses the history of measurements of the target to build a model of the state of the
system. The history of measurements is used to accurately predict the location of the
target.

Histogram Back Projection

Back projection is one method used to improve the convergence of the target
candidate's size and location with the actual size and location of an object. Back
projection is a way of recording how well the pixels of a target candidate fit the
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distribution of pixels that the target models. This allows the user to gauge how well the
model of the object matches its appearance.

A histogram of an image known to contain the object of interest is created, and is then
back projected over the image. Proper thresholding of the resulting image should
isolate the object from the background.

Each pixel value in the resulting image represents the likelihood that the pixel is part of
the object. The minimum pixel value of 0 indicates the pixel does not belong to the
object, while the maximum value of 255 verifies that the pixel belongs to the object.
This back projected image is a good indication of how well the tracking algorithm has
been able to identify the pixels that belong to the object to be tracked.

Background Subtraction

A second method used to improve the convergence of the target model is background
subtraction. This method is a process that extracts foreground objects in a particular
scene. This helps reduce false positives and creates a better match between the target
model and the target candidates.

Choosing the Right Parameters

The following parameters can be set by the user to create an object tracking
applications suited to their needs:

+ Histogram bins—Defines the number of bins needed to represent the histogram
that characterizes the object. As the number of bins decreases, the number of
colors that fall into a given range expands, thus subtle color differentiation will not
be possible. Increasing the number of bins allows greater differentiation between
very similar colors. Generally, using more bins results in faster matching. By
default, 16 bins are used for grayscale images, while RGB images use 8 bins.

+ Blending parameter—Defines the degree to which the target model is based on
the previous frame. This parameter falls between 1 and 100. For very high values,
the model relies heavily on the current frame. As a result, if the target object is
occluded or out of frame, it will be unable to locate the object in the next frame.
For very low values, the model relies heavily on the previous frame. As a result, the
model will not adapt to new changes in the appearance of the object. This may be
desired in surveillance applications where the target may be frequently occluded.
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The default value is 10%.

« Max iterations—Specifies the maximum number of iterations until a match is
found. Matching iterates until the similarity of the target object and target model
converges, or the maximum number of iterations is reached. The default value is
15.

The following additional parameters can be used to configure the EM-based mean shift
algorithm.

« Max scale change—The maximum percentage that the size of the region defining
the object can change between frames.

« Max rotation change—The maximum number of degrees that the region defining
the object can rotate between frames.

« Max shape change—The maximum percentage that the shape of the region
defining the object can change between frames.

In-Depth Discussion

This section provides additional information you may need for building successful
object tracking applications.

Target Model

Let {xi*}izl___n be the pixel locations of the target model, centered at 0. We define a

function b: Rze{l...m} which associates the pixel at location xi* to the histogram bin
that corresponds to the color of that pixel. The probability of the occurrence of the
color uin the target model is derived by employing a convex and monotonically
decreasing kernel profile k which assigns a smaller weight to the locations that are
farther from the center of the target.

;u = Cf: k((xi*)Z)a(b(x,*) - u)

where 0 is the Kronecker delta function.

The normalization constant C is derived by imposing the condition:
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on the equation:
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Target Candidate

Let {xj}i=1..nh be the pixel locations of the target model, centered aty. Using the same
kernel profile, the probability of the color u in the target candidate is given by,

where Ch is the normalization constant.
Mean-Shift Convergence

The Bhattacharyya coefficient is a similarity function that is used to calculate the
similarity between the target model and target candidate.

M

w; = X \/A Ju S(b(x,— u))
Loy | Pul¥o)

The weights are recalculated every iteration using the above formula, followed by the
update to the target model and candidates.

Updating the Model

« Mean-Shift—In the mean-shift tracking algorithm, the object center moves from
the current location, y, to a new location, y; according to the mean-shift iteration
equation:
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where,

« gi=g(lly-xil)),
« g(x) =kix),
+ k(x) is the kernel function.

« EM-Based Mean-Shift—In this method, the position is calculated as described

above. Additionally, the covariance is calculated with the following equation:

nh
AT

Xi— Y1

A

Xi— Y1 Wigj

h
Z,l L g

Geometric Matching

This section contains information about geometric matching.

Introduction

Geometric matching locates regions in a grayscale image that match a model, or
template, of a reference pattern. Geometric matching is specialized to locate
templates that are characterized by distinct geometric or shape information.

When using geometric matching, you create a template that represents the object for
which you are searching. Your machine vision application then searches for instances
of the template in each inspection image and calculates a score for each match. The
score relates how closely the template resembles the located matches.

Geometric matching finds template matches regardless of lighting variation, blur,

noise, occlusion, and geometric transformations such as shifting, rotation, or scaling of
the template.
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When to Use

Geometric matching helps you quickly locate objects with good geometric information
in an inspection image. The following figure shows examples of objects with good
geometric or shape information.

You can use geometric matching in the following application areas:

« Gauging—Measures lengths, diameters, angles, and other critical dimensions. If
the measurements fall outside set tolerance levels, the object is rejected. Use
geometric matching to locate the object, or areas of the object, you want to gauge.
Use information about the size of the object to preclude geometric matching from
locating objects whose sizes are too big or small.

« Inspection—Detects simple flaws, such as scratches on objects, missing objects, or
unreadable print on objects. Use the occlusion score returned by geometric
matching to determine if an area of the object under inspection is missing. Use the
curve matching scores returned by geometric matching to compare the boundary
(or edges) of a reference object to the object under inspection.

+ Alignment—Determines the position and orientation of a known object by locating
points of reference on the object or characteristic features of the object.

+ Sorting—Sorts objects based on shape and/or size. Geometric matching returns
the location, orientation, and size of each object. You can use the location of the
object to pick up the object and place it into the correct bin. Use geometric
matching to locate different types of objects, even when objects may partially
occlude each other.

The objects that geometric matching locates in the inspection image may be rotated,
scaled, and occluded in the image. Geometric matching provides your application with
the number of object matches and their locations within the inspection image.
Geometric matching also provides information about the percentage change in size
(scale) of each match and the amount by which each object in the match is occluded.
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For example, you can search an image containing multiple automotive parts for a
particular type of part in a sorting application.

« Figure A shows an image of the part that you need to locate.
« Figure B shows an inspection image containing multiple parts and the located part
that corresponds to the template.
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When Not to Use Geometric Matching

The geometric matching algorithm is designed to find objects that have distinct
geometric information. The fundamental characteristics of some objects may make
other searching algorithms more optimal than geometric matching. For example, the
template image in some applications may be defined primarily by the texture of an
object, or the template image may contain numerous edges and no distinct geometric
information. In these applications, the template image does not have a good set of
features for the geometric matching algorithm to model the template. Instead, the

pattern matching algorithm described in pattern matching, would be a better
choice.

In some applications, the template image may contain sufficient geometric
information, but the inspection image may contain too many edges. The presence of
numerous edges in an inspection image can slow the performance of the geometric
matching algorithm because the algorithm tries to extract features using all the edge
information in the inspection image. In such cases, if you do not expect template
matches to be scaled or occluded, use pattern matching to solve the application.

Related concepts:

« Pattern Matching

What to Expect from a Geometric Matching Tool

Because geometric matching is an important tool for machine vision applications, it
must work reliably under various, sometimes harsh, conditions. In automated
machine vision applications—especially those incorporated into manufacturing
processes—the visual appearance of materials or components under inspection can
change because of factors such as varying part orientation, scale, and lighting. The
geometric matching tool must maintain its ability to locate the template patterns
despite these changes. The following sections describe common situations in which
the geometric matching tool needs to return accurate results.

Part Quantity, Orientation, and Size

The geometric matching algorithm can detect the following items in an inspection
image:
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« One or more template matches,

Position of the template match,

Orientation of the template match,

Change in size of the template match compared to the template image.

You can use the geometric matching algorithm to locate template matches that are
rotated or scaled by certain amounts. Figure A shows a template image. Figure B
shows the template match rotated and scaled in the image.

A B

Non-Linear or Non-Uniform Lighting Conditions

The geometric matching algorithm can find a template match in an inspection image
under conditions of non-linear and non-uniform lighting changes across the image.
These lighting changes include light drifts, glares, and shadows. Figure A shows a
template image. Figure B shows the typical conditions under which geometric
matching correctly finds template matches.
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Contrast Reversal

The geometric matching algorithm can find a template match in an inspection image
even if the contrast of the match is reversed from the original template image. The
following figure illustrates a typical contrast reversal. Figure A shows the original
template image. Figure B shows an inspection image with the contrast reversed. The
geometric matching algorithm can locate the part in figure B with the same accuracy
as the partin figure A.

Partial Occlusion

The geometric matching algorithm can find a template match in an inspection image
even when the match is partially occluded because of overlapping parts or the part
under inspection not fully being within the boundary of the image. In addition to
locating occluded matches, the algorithm returns the percentage of occlusion for each
match.

In many machine vision applications, the part under inspection may be partially
occluded by other parts that touch or overlap it. Also, the part may seem partially
occluded because of degradations in the manufacturing process. The following figure
illustrates different scenarios of occlusion under which geometric matching can find a
template match. The figure below represents the template image for this example.
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Different Image Backgrounds

The geometric matching algorithm can find a template match even if the inspection
image has a background that is different from the background in the template image.
The following figure shows examples of geometric matching locating a template match
in inspection images with different backgrounds. Figure A represents the template
image for this example.

Geometric Matching Technique

Searching and matching algorithms, such as the pattern matching algorithm or
geometric matching algorithm, find regions in the inspection image that contain
information similar to the information in the template. This information, after being
synthesized, becomes the set of features that describes the image. Pattern matching
and geometric matching algorithms use these sets of features to find matches in
inspection images.

Pattern matching algorithms use the pixel intensity information present in the
template image as the primary feature for matching. Geometric matching algorithms
uses geometric information present in the template image as the primary features for
matching. Geometric features can range from low-level features, such as edges or
curves, to higher-level features, such as the geometric shapes made by the curves in
the image.

The geometric matching process consists of two stages: learning and matching. During
the learning stage, the geometric matching algorithm extracts geometric information
from the template image. The algorithm organizes and stores the information and the
spatial relationships between these features in a manner that facilitates faster
searching in the inspection image. In NI Vision, the information learned during this
stage is stored as part of the template image.
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During the matching stage, the geometric matching algorithm extracts geometric
information from the inspection image that correspond to the information in the
template image. Then, the algorithm finds matches by locating regions in the
inspection image where features align themselves in spatial patterns similar to the
spatial patterns of the features in the template.

Vision includes two geometric matching methods. Both geometric matching

techniques rely on curves extracted from image to perform the matching. The
two geometric matching techniques differ in how the curve information is used to
perform the matching. The edge-based geometric matching method computes the
gradient value of the edge at each point along the curves found in the image and uses
the gradient value and the position of the point from the center of the template to
perform the matching. The feature-based geometric matching method extracts
geometric features from the curves and uses these geometric features to perform the
matching.

The following figure shows the information from the template image that the
geometric matching algorithm may use as matching features. Figure A shows the
curves that correspond to edges in the template image. These curves form the
underlying information that is used by the edge-based geometric matching technique.
Figure B shows higher-level shape features that the feature-based geometric algorithm
uses for matching. Refer to the Choosing The Right Geometric Matching Technique
section to select the best geometric matching method for your application.

Curves

Circular Features
Rectangular Features
Linear Features
Corners

Al A
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Curve Extraction

A curve is a set of edge points that are connected to form a continuous contour. Curves
typically represent the boundary of the part in the image. In geometric matching,
curves are the underlying information used to represent a template and to match the
template in an inspection image. This section describes how curves are extracted from
animage.

The curve extraction process consists of three steps: finding curve seed points, tracing
the curve, and refining the curves.

Finding Curve Seed Points

A seed point is a point on a curve from which tracing begins. To qualify as a seed point,
a pixel cannot be part of an already existing curve. Also, the pixel must have an edge
contrast greater than the user-defined Edge Threshold. The edge contrast at a pixel is
computed as a function of the intensity value at that pixel and the intensities of its
neighboring pixels. If P(j, j) represents the intensity of the pixel P with the coordinates
(i, j), the edge contrast at (i, j) is defined as:

\/(Pw—l, ) Plivy, /))2 ¥ (Po;f—l) B P(f,m))z

For an 8-bit image, the edge contrast may vary from 0 to 360.

To increase the speed of the curve extraction process, the algorithm visits only a
limited number of pixels in the image to determine if the pixel is a valid seed point. The
number of pixels to visit is based on the values that the user provides for the Row Step
and Column Step parameters. The higher these values are, the faster the algorithm
searches for seed points. However, to make sure that the algorithm finds a seed point
on all of the curves, Row Step must be smaller than the smallest curve in they
direction, and Column Step must be smaller than the smallest curve in the x direction.

The algorithm starts by scanning the image rows from the top left corner. Starting at
the first pixel, the edge contrast of the pixel is computed. If the edge contrast is greater
than the given threshold, the curve is traced from this point. If the contrast is lower
than the threshold, or if this pixel is already a member of an existing curve previously
computed, the algorithm analyzes the next pixel in the row to determine if it qualifies
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as a seed point. This process is repeated until the end of the current row is reached.
The algorithm then skips Row Step rows and repeats the process.

After scanning all of the rows, the algorithm scans the image columns to locate seed
points. The algorithm starts at the top left corner and analyzes each column that is
Column Step apart.

Tracing the Curve

When it finds a seed point, the curve extraction algorithm traces the rest of the curve.
Tracing is the process by which a pixel that neighbors the last pixel on the curve is
added to the curve if it has the strongest edge contrast in the neighborhood and the
edge contrast is greater than acceptable edge threshold for a curve point. This process
is repeated until no more pixels can be added to the curve in the current direction. The
algorithm then returns to the seed point and tries to trace the curve in the opposite
direction. The following figure illustrates this process.

ok
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4. Curve Seeds
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» Note To simplify the figure, Row Step and Column Step are not smaller than
the smallest feature.

Refining the Curve

During the final stage of curve extraction, the algorithm performs the following tasks
to refine the extracted curves:

« Combines curves into one large curve if their end points are close together.

+ Closes a curve if the end points of the curve are within a user-defined distance of
each other.

« Removes curves that fall below a certain size threshold defined by the user.

Edge-Based Geometric Matching

This section describes the learning and matching stages of the edge-based geometric
matching technique. The edge-based technique utilizes the generalized Hough
transform method for matching. The generalized Hough transform is an extension of
the Hough transform to detect arbitrary shapes.5

Learning
The learning stage consists of two steps: edge point extraction and R-table generation.
Edge Point Extraction

During the edge point extraction stage, the algorithm detects curves in the image and
computes the gradient value (@) at each edge point along the contours. The gradient
value specifies the orientation of the tangential line at each point along the contour.

R-Table Generation

The generalized Hough transform uses a lookup table called an R-table to store the
shape of the object. The R-table allows the generalized Hough transform to represent
any arbitrary shape and does not require a parametric description of the object.

. For more information about the Hough transform, see Ballard, D.H. "Generalizing the Hough

Transform to Detect Arbitrary Shapes," Pattern Recognition 13, no. 2 (1981) 111-122.
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The algorithm uses the following steps to compute the R-Table of a given shape
(specified by the curves that are detected along the boundary of the shape).

1. The algorithm selects the center of the template image as the reference point
(Xc, Ye).

2. Foreach point (xj yi) along the curves in the template image, the algorithm
calculates the distance and orientation (rj, 0j) from the reference point as shown in
the figure below:

x1=xc + r.eosid)
¥i= o + rsin(E)

3. The algorithm stores the (ri, 6i) value for each point in a R-table as a function of g,
as shown in the following table:

Gradient Value (o) r, 0 Values

1 (r1,01), (ra, 84)
@2 (r2, 82), (r10, 810)
n (rn, Bn), (ri, 6i)

After the algorithm adds all points along the curves in the template image, the R-table
represents the information that is learned from the template. The R-table can be used
to regenerate the contour edge points and gradient angles at any point in the image
during the matching phase.

An R-table stores the shift-invariant representation of the template object. Because
each combination of scale and rotation requires a unique R-table, a template that
allows variance in scale and rotation can occupy a large amount of memory. To reduce
the size of the template and improve the speed of the matching process, NI Vision may
sample the template image before computing the R-tables. By default, the software
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automatically determines the sampling factor. Use the advanced learn options to
manually specify a sampling factor.

Matching

The matching stage consists of three steps. The first step is edge point extraction,
which is similar to the edge point extraction that occurs during the learning stage. The
final two steps are generalized Hough matching and match refinement.

Edge Point Extraction

The edge points in the image are detected using the curve extraction process
described in the learning section. If the size of the template image was reduced by
sampling, then the inspection image is reduced by the same sampling factor before
the curves are detected. The gradient value is computed and stored at each edge point
along the detected curves.

Generalized Hough Matching

The matching process begins after the algorithm finds edge points and their gradient
values in the inspection image. The matching process consists of the following steps:

1. The algorithm creates an accumulator, which stores candidate match locations in
the inspection image.
2. The algorithm performs the following actions for each edge point (x, y):
a. The algorithm uses the gradient value @ to index into the R-table and retrieve
all the (r, ©) values.
b. The algorithm computes the candidate reference point for each (r, 8) value as
follows:

Xc =X - r cos(B)
Yc=y-rsin(0)

c. The algorithm increases the count in the accumulator for the location of the
candidate reference point.
3. The algorithm finds the local peaks in the accumulator. These peaks represent
possible match locations.
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4. If matching for variation in rotation or scale, the algorithm builds an accumulator
for each possible combination of rotation and scale, and performs steps 1-3 for
each accumulator.

5. The algorithm processes the peaks in each accumulator to find the best matches.

Match Refinement

Match refinement is the final step in the matching stage. The algorithm uses curves
extracted from both the template image and inspection image to ensure increased
positional, scalar, and angular accuracy. Feature-Based Geometric Matching This
section describes the learning and matching stages of the feature-based geometric
matching technique.

Learning

Following curve extraction, the learning stage consists of two steps: feature extraction
and representation of the spatial relationships between the features.

Feature Extraction

Feature extraction is the process of extracting high-level geometric features from the
curves obtained from curve extraction. These features can be lines, rectangles,
corners, or circles.

First, the algorithm approximates each curve using polygons. Then, the algorithm uses
the line segments forming these polygons to create linear and corner features. These
linear features are used to compose higher-level rectangular features. The curves or
segments of curves that cannot be approximated well with polygons or lines are used
to create circular features.

After the algorithm extracts high-level geometric features from the template image, the
features are ordered based on the following criteria:

« Type—Lines, rectangles, corners, or circles
+ Strength—How accurately the features portray a given geometric structure
« Saliency—How well the features describe the template

After the features have been ordered, the best are chosen to describe the template.
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Representation of Spatial Relationships

Given two features, the algorithm learns the spatial relationship between the features,
which consists of the vector from the first feature to the second feature. These spatial
relationships describe how the features are arranged spatially in the template in
relationship to one another. The algorithm uses these relationships to create a model
of features that describes the template. The algorithm uses this template model during
the matching stage to create match candidates and to verify that matches are properly
found.

Matching

The matching stage consists of five main steps. The first two steps performed on the
inspection image are curve extraction and feature extraction, which are similar to the
curve extraction and feature extraction that occur during the learning stage. The final
three steps are feature correspondence matching, template model matching, and
match refinement.

Feature Correspondence Matching

Feature correspondence matching is the process of matching a given template feature
to a similar type of feature in the inspection image, called a target feature. The
algorithm uses feature correspondence matching to do the following:

+ Create aninitial set of potential matches in the inspection image.
« Update potential matches with additional information or refined parameters, such
as position, angle, and scale.

Template Model Matching

Template model matching is the process of superimposing the template model from
the learning step onto a potential match in the inspection image to confirm that the
potential match exists or to improve the match. After superimposing the template
model onto a potential match, the presence of additional target features found in
accordance with the template model and its spatial relationships to existing features
confirms the existence of the potential match and yields additional information that
the algorithm uses to update and improve the accuracy of the match.
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Match Refinement

Match refinement is the final step in the matching stage. Match refinement carefully
refines known matches for increased positional, scalar, and angular accuracy. Match
refinement uses curves extracted from both the template image and inspection image
to ensure that the matches are accurately and precisely found.

Choosing The Right Geometric Matching Technique

The edge-based geometric matching technique works on any arbitrary shape and is
guaranteed to find the object in the inspection image as long as a significant portion of
the shape remains similar to the shape of the template object. There are no
restrictions on the shape of the object in the template. As long as the curves detected
around the object in the inspection image duplicate the curves that were extracted in
the template image, the edge-based geometric matching technique will find the
match.

The feature-based geometric matching technique works on the assumption that the
shape of the pattern in the template can be reliably represented by a set of geometric
features. This technique should be employed only when the pattern in the template
and in the inspection images can be consistently and reliably represented by
geometric shapes such as circles, rectangles and lines.

The memory and performance requirements of your application may influence which
geometric matching technique you use. In general, an edge-based geometric template
uses more memory than a feature-based geometric template. The size disparity
between the template types increases with the permitted variance in scale. The more
scale changes you want to match for, the larger the size of the edge-based template.
The edge-based geometric matching technique is also slower than the feature-based
geometric matching technique when matching at different scale ranges.

Follow these recommendations to choose the best geometric matching technique for
your application:

« Always start with the edge-based geometric matching algorithm. The edge-based
geometric matching algorithm provides the best recognition results.

+ If the performance or memory requirements of the edge-based geometric
matching algorithm and template do not meet the requirements of your
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application, carefully adjust the match ranges for variance in scale or rotation. For
example, if the match object in the inspection image is always the same size and
rotates +10 degrees, then learn the template only for a scale range of 100% and a
rotation range of -10 to 10 degrees. The performance of the edge-based method
can also be improved by setting the factor by which the template and inspection
are sampled at before the matching is done. Use the advanced learn options to
specify a sampling factor.

« If you still cannot reach the performance or memory requirements of your
application, and the object you need to match contains geometric features that
can be reliably extracted, use the feature-based geometric matching algorithm.

Related concepts:

« Pattern Matching
« Geometric Matching Technique

Geometric Matching Using Calibrated Images

During matching, the geometric matching algorithm uses calibration information
attached to the inspection image to return the position, angle, and bounding rectangle
of a match in both pixel and real-world units. In addition, if the image is calibrated for
perspective or nonlinear distortion errors, geometric matching uses the attached
calibration information directly to find matches in the inspection image without using
time-consuming image correction.

Simple Calibration or Previously Corrected Images

If an inspection image contains simple calibration information, or if the inspection
image has been corrected prior to being used by geometric matching, the matching
stage performs the same way that it does with uncalibrated images. However, each
match result is returned in both pixel and real-world units. The pixel-unit results are
identical to the results that would have been returned from matching the same,
uncalibrated image. Geometric matching converts the pixel units to real-world units
using the simple calibration information attached to the inspection image.

Perspective or Nonlinear Distortion Calibration

If an inspection image contains calibration information for perspective or nonlinear
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distortions, the first step in the matching process is different than it would be with
uncalibrated images. In the first step, curves extracted from the inspection image are
corrected for distortion errors using calibration information. The remaining four steps
in the matching process are performed on the corrected curves. Each match result is
returned in pixel and real-world units.

Match results in pixel units are returned to be consistent with the inspection image. As
a result, the bounding rectangle of a match in pixel units may not be rectangular, as
shown in the following figure.

« Figure A shows the template image of a metallic part.

« Figure B shows an image of a calibration grid. The image exhibits nonlinear
distortion.

« Figure C shows an image of metallic parts taken with the same camera setup used
in Figure B. The gray lines depict the bounding rectangle of each match found by
geometric matching.

In-Depth Discussion

This section provides additional information you may need for building successful
geometric matching applications.

Geometric Matching Report

The geometric matching algorithm returns a report about the matches found in the
inspection image. This report contains the location, angle, scale, occlusion percentage,
and accuracy scores of the matches. The following sections explain the accuracy
scores in greater detail.
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Score

The general score ranks the match results on a scale of 0 to 1000, where 0 indicates no
match and 1000 indicates a perfect match. The general score takes the following
factors into consideration:

« The number of geometric features in the template image that matched the target.

« Theindividual scores obtained from matching template features to their
corresponding features in the inspection image.

« The score obtained by comparing the edge strengths of the curves in the template
image to the edge strengths of the corresponding curves in the inspection image.

When geometric matching is used to find objects, the score is computed using only the
curves and features in the template that were matched in the inspection image.
Therefore, a partially occluded match could have a very high score if the features in the
non-occluded regions of the part matched perfectly with the template features.

+ Figure A shows the learned template curves of a part.
+ Figure B shows the template match curves of a non-occluded part.
« Figure C shows the template match curves of an occluded part.

Score = 1000; Occlusion % = 0 Score = 1000; Occlusion % = 65
A B C

\ . : . :

» Note The general score is the score that the algorithm uses during matching
to remove matches that fall below a user-defined Minimum Match Score
value.

Template Target Curve Score

The template target curve score specifies how closely the curves in the template image
match the curves in the match region of the inspection, or target, image. Score values
can range from 0 to 1000, where a score of 1000 indicates that all template curves have
a corresponding curve in the match region of the inspection image.

ni.com



Machine Vision

The template target curve score is computed by combining the match scores obtained
by comparing each curve in the template to its corresponding curve in the target
match region. Unlike the general score, the template target curve score is computed
using all of the template curves. A low score implies one or both of the following:

« Some curves, or parts of curves, that are present in the template were not found in
the inspection image, perhaps because of occlusion.

« The curves found in the inspection image were deformed and did not perfectly
match the template curves.

You can use the template target curve score in inspection tasks to determine if the
located part has flaws caused by anomalies such as process variations or printing
errors. These flaws appear as deformed or missing curves in the inspection image. The
following figure shows template target curve scores obtained for different scenarios.

Target Template Curve Score

The target template curve score specifies how closely the curves in the match region of
the inspection, or target, image match the curves in the template. Score values can
range from 0 to 1000, where a score of 1000 indicates that all curves in the match
region of the inspection image have a corresponding curve in the template image.

The target template curve score is computed by combining the match scores obtained
by comparing each curve in the match region to the curves in the template image.

A low score implies one or both of the following:

« Some curves, or parts of curves, that are present in the match region of the
inspection image were not found in the template image.

+ The curves found in the inspection image were deformed and did not perfectly
match the template curves.

You can use the target template curve score in inspection tasks to determine if there
were additional curves in the inspection image because of flaws, such as scratches, or
because of spurious objects in the match region that were not present in the template
image. The following figure shows target template curve scores obtained for different
scenarios.
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Template-Target Score = 700 Template-Target Score = 1000
Target-Template Score = 1000 Target-Template Score = 800
A B C

Correlation Score

The correlation score is obtained by computing the correlation value between the pixel
intensities of the template image to the pixel intensities of the target match. The
correlation score is similar to the score returned by the pattern matching algorithm

described in pattern matching.

The correlation score ranges from 0 to 1000. A score of 1000 indicates a perfect match.
The value of the correlation score is always positive. The algorithm returns the same
correlation score for a match whose contrast is similar to that of the template and for a
match whose contrast is a reversed version of the template.

\ : : :

) Note The Contrast Reversed or inverse outputs of geometric matching
indicate whether the contrast in the match region is the inverse of the
contrast in the template.

You can specify regions in the template image that you do not want to use when
computing the correlation score. Use the Vision Template Editor to specify regions in
the template that you want to exclude from the computation of the correlation score.

Related concepts:

« Pattern Matching

Dimensional Measurements

This section contains information about coordinate systems, analytic tools, and
clamps.
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Introduction

You can use dimensional measurements or gauging tools in Vision to obtain
quantifiable, critical distance measurements such as distances, angles, areas, line fits,
circular fits, and quantities. These measurements can help you to determine if a
product was manufactured correctly.

Components such as connectors, switches, and relays are small and manufactured in
high quantity. Human inspection of these components is tedious, time consuming,
and inconsistent. Vision can quickly and consistently measure certain features on
these components and generate a report of the results. If the gauged distance or count
does not fall within user-specified tolerance limits, the component or part fails to meet
production specifications and should be rejected.

When to Use

Use gauging for applications in which inspection decisions are made on critical
dimensional information obtained from image of the part. Gauging is often used in
both inline and offline production. During inline processes, each component is
inspected as it is manufactured. Inline gauging inspection is often used in mechanical
assembly verification, electronic packaging inspection, container inspection, glass vile
inspection, and electronic connector inspection.

You also can use gauging to measure the quality of products off-line. First, a sample of
products is extracted from the production line. Then, using measured distances
between features on the object, Vision determines if the sample falls within a tolerance
range. Gauging techniques also allow you to measure the distance between particles
and edges in binary images and easily quantify image measurements.

Concepts
The gauging process consists of the following four steps:

Locate the component or part in the image

Locate features in different areas of the part

Make measurements using these features

Compare the measurements to specifications to determine if the part passes

=
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inspection
Locating the Part in the Image

A typical gauging application extracts measurements from ROIs rather than from an
entire image. To use this technique, the necessary parts of the object must always
appear inside the ROIs you define.

Usually, the object under inspection appears shifted or rotated within the images you
want to process. When this occurs, the ROIs need to shift and rotate in the same way as
the object. In order for the ROIs to move in relation to the object, you must locate the
object in every image. Locating the object in the image involves determining the x, y
position and the orientation of the object in the image using the reference coordinate
system functions. You can build a coordinate reference using edge detection or pattern
matching.

Locating Features

To gauge an object, you need to find landmarks or object features on which you can
base your measurements. In most applications, you can make measurements based
on points detected in the image or geometric fits to the detected points. Object
features that are useful for measurements fall into two categories:

+ Edge points along the boundary of an object located by the edge detection
method
« Shapes or patterns within the object located by pattern matching

Making Measurements

You can make different types of measurements from the features found in the image.
Typical measurements include the distance between points; the angle between two
lines represented by three or four points; the best linear, circular, or elliptical fits; and
the areas of geometric shapes, such as circles, ellipses, and polygons, that fit detected
points. For more information about the types of measurements you can make, refer to
your Vision user manual.
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Qualifying Measurements

The last step of a gauging application involves determining the quality of the part
based on the measurements obtained from the image. You can determine the quality
of the part using either relative comparisons or absolute comparisons.

In many applications, the measurements obtained from the inspection image can be
compared to the same measurements obtained from a standard specification or a
reference image. Because all the measurements are made on images of the part, you
can compare them directly.

In other applications, the dimensional measurements obtained from the image must
be compared with values that are specified in real units. In this case, convert the
measurements from the image into real-world units using the calibration tools

described in system setup and calibration.
Related concepts:

« Spatial Calibration

Coordinate System

In a typical machine vision application, measurements are extracted from an ROI
rather than from the entire image. The object under inspection must always appear in
the defined ROl in order to extract measurements from that ROI.

When the location and orientation of the object under inspection is always the same in
the inspection images, you can make measurements directly without locating the
object in every inspection image.

In most cases, the object under inspection is not positioned in the camera field of view
consistently enough to use fixed search areas. If the object is shifted or rotated within
an image, the search areas should shift and rotate with the object. The search areas are
defined relative to a coordinate system. A coordinate system is defined by a
reference point (origin) and a reference angle in the image or by the lines that make up
its two axes.
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When to Use

Use coordinate systems in a gauging application when the object does not appear in
the same position in every inspection image. You also can use a coordinate system to
define search areas on the object relative to the location of the object in the image.

Concepts

All measurements are defined with respect to a coordinate system. A coordinate
system is based on a characteristic feature of the object under inspection, which is
used as a reference for the measurements. When you inspect an object, first locate the
reference feature in the inspection image. Choose a feature on the object that the
software can reliably detect in every image. Do not choose a feature that may be
affected by manufacturing errors that would make the feature impossible to locate in
images of defective parts.

You can restrict the region of the image in which the software searches for the feature
by specifying an ROI that encloses the feature. Defining an ROl in which you expect to
find the feature can prevent mismatches if the feature appears in multiple regions of
the image. A small ROl may also improve the locating speed.

Complete the following general steps to define a coordinate system and make
measurements based on the new coordinate system.

1. Define a reference coordinate system.

a. Define a search area that encompasses the reference feature or features on
which you base your coordinate system. Make sure that the search area
encompasses the features in all your inspection images.

b. Locate an easy-to-find reference feature of the object under inspection. That
feature serves as the base for a reference coordinate system in a reference
image. You can use two primary techniques to locate the feature: edge
detection or pattern matching.

The software builds a coordinate system to keep track of the location and
orientation of the object in the image.

2. Setup measurement areas within the reference image in which you want to make
measurements.

314  ni.com



Machine Vision

3. Acquire an image of the object to inspect or measure.

4, Update the coordinate system. During this step, Vision locates the features in the
search area and builds a new coordinate system based on the new location of the
features.

5. Make measurements within the updated measurement area.

Vision computes the difference between the reference coordinate system and the
new coordinate system. Based on this difference, the software moves the new
measurement areas with respect to the new coordinate system.

Figure Aillustrates a reference image with a defined reference coordinate system.
Figure Billustrates an inspection image with an updated coordinate system.
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In-Depth Discussion

You can use four different strategies to build a coordinate system. Two strategies are
based on detecting the reference edges of the object under inspection. The other two
strategies involve locating a specific pattern using a pattern matching algorithm.

Edge-Based Coordinate System Functions

These functions determine the axis of the coordinate system by locating edges of the
part under inspection. Use an edge-based method if you can identify two straight,
distinct, non-parallel edges on the object you want to locate. Because the software
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uses these edges as references for creating the coordinate system, choose edges that
are unambiguous and always present in the object under inspection.

Single Search Area

This method involves locating the two axes of the coordinate system—the main axis
and secondary axis—in a single search area based on an edge detection algorithm.
First, the function determines the main, vertical, axis of the coordinate system, as

illustrated in figure A. NI Vision uses the straight edge detection algorithm to
locate the main axis in the image. The straight edge detected by the algorithm defines
the main axis. The function then searches for a secondary, horizontal, axis using the
straight edge detection algorithm on a search area perpendicular to the main axis. The
detected straight edge defines the secondary axis of the coordinate system. Figure B
shows the location of the secondary axis in a sample image. The secondary axis must
not be parallel to the main axis. The intersection between the main axis and secondary
axis defines the origin of the reference coordinate system.

Figure A illustrates a reference image with a defined reference coordinate system.
Figure Billustrates an inspection image with an updated coordinate system.

WY

A

Search Area for the Coordinate System
Search Lines

Main Axis

Secondary Axis

Origin of the Reference Coordinate System

s

Two Search Areas

This method uses the same operating mode as the single search area method.

ni.com



Machine Vision

However, the two edges used to define the coordinate system axes are located in two
distinct search areas.

The function first determines the position of the main axis of the coordinate system. It
locates the main axis using the straight edge detection algorithmin the primary
search area. The detected straight edge defines the primary axis. The process is
repeated perpendicularly in the secondary search area to locate the secondary axis.
The intersection between the primary axis and secondary axis is the origin of the
coordinate system.

Figure A illustrates a reference image with a defined reference coordinate system.
Figure B illustrates an inspection image with an updated coordinate system.
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Pattern Matching-Based Coordinate System Functions

Using pattern matching techniques to locate a reference feature is a good
alternative to edge detection when you cannot find straight, distinct edges in the
image. The reference feature, or template, is the basis for the coordinate system.

The software searches for a template image in a rectangular search area of the
reference image. The location and orientation of the located template is used to create
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the reference position of a coordinate system or to update the current location and
orientation of an existing coordinate system.

The same constraints on feature stability and robustness that apply to the edge-
detection techniques also apply to pattern matching. Pattern matching uses one of
two strategies: shift-invariant pattern matching and rotation-invariant pattern
matching. Shift-invariant pattern matching locates a template in an ROl or in the entire
image with a maximum tolerance in rotation of +5°. The rotation-invariant strategy

locates a template in the image even when the template varies in orientation between
0° and 360°.

The following illustration shows how to locate a coordinate system using a shift-
invariant pattern matching strategy. Figure A shows a reference image with a defined

reference coordinate system. Figure B shows an inspection image with an updated
coordinate system.

1. Located Feature
2. Coordinate System
3. Measurement Area

The following illustration shows how to locate a coordinate system using a rotation-
invariant pattern matching strategy. Figure A shows a reference image with a defined

reference coordinate system. Figure B shows an inspection image with an updated
coordinate system.
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Related concepts:

« Concepts

« Concepts
+ Pattern Matching

Finding Features or Measurement Points

Before making measurements, you must locate features that you can use to make the
measurements. There are many ways to find these features on an image. The most
common features used to make measurements are points along the boundary of the
part you want to gauge.

Edge-Based Features

Use edge detection techniques to find edge points along a single search contour or
along multiple search contours defined inside a 2D search area.

Line and Circular Features

Use the line detection functions in Vision to find vertically or horizontally oriented
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lines. These functions use the rake and concentric rake functions to find a set of
points along the edge of an object and then fit a line through the edge. The following
figure illustrates how a rake finds a straight edge.

(4

.
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Search Region

Search Lines

Detected Edge Points
Line Fit to Edge Points
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Use the circle detection function to locate circular edges. This function uses a spoke to
find points on a circular edge, and then fits a circle on the detected points. The
following figure illustrates how a spoke finds circular edges.
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Shape-Based Features

Use pattern matching or color pattern matching to find features that are better
described by the shape and grayscale or color content than the boundaries of the part.

Related concepts:

« Edge Detection

« Concepts
« Making Measurements on the Image

Making Measurements on the Image

After you have located points in the image, you can make distance or geometrical
measurements based on those points.

Distance Measurements
Make distance measurements using one of the following methods:

« Measure the distance between points found by one of the feature detection
methods
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+ Measure the distance between two edges of an object using the clamp functions
available in Vision

Clamp functions measure the separation between two edges in a region of interest.
Use the clamp functions to find the smallest or largest separation between two edges
at the same orientation.

Vision includes two clamp functions: one which uses rake-based edge detection, and
one which uses contour detection.

Clamp (Rake-Based)

The rake-based clamp function supports both min and max distance calculations. The
clamp function detects points along the two edges using the rake function, then
computes the distance between the detected points and returns the largest or smallest
distance.

The following figure illustrates how a rake-based clamp function finds the minimum
distance between the edges of an object.

Rectangular Search Region
Search Lines for Edge Detection
Detected Edge Points

Line Fit to Edge Points
Measured Distance

a s wbdH=
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Clamp (Contour Extraction Based)

The contour extraction based clamp function supports only max distance calculations.
The clamp searches for contours within a user-specified angle range relative to the
search axis of a rectangular region of interest. You can also specify the desired edge
polarity for the clamp boundaries. The edge polarity for the entire boundary is defined
by the initial edge polarity of the boundary along the search direction. For more

information about edge polarity, refer to Edge Detection Concepts.

A\\’ Note The clamp function treats each extracted contour as a single boundary.
For example, if the object under inspection is a white disc, the function will
identify a single rising polarity boundary. Create an ROI that does not include
the entire object to force the function to identify multiple boundaries.

After extracting a contour, the clamp selects opposing points with parallel tangents
and computes the distance between the points.

The following figure illustrates how a contour extraction based clamp function finds
the maximum distance between edges of an object. Refer to Contour Analysis
Concepts for more information about contour extraction.

e

7

=

. Rotated rectangle search region
2. Found clamp points
3. Measured distance, within angle tolerance
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Analytic Geometry

You can make the following geometrical measurements from the feature points
detected in the image.

« The area of a polygon specified by its vertex points

« The line that fits to a set of points and the equation of that line

« The circle that fits to a set of points and its area, perimeter, and radius

« The ellipse that fits to a set of points and its area, perimeter, and the lengths of its
major and minor axis

« Theintersection point of two lines specified by their start and end points

+ The line bisecting the angle formed by two lines

+ The line midway between a point and a line that is parallel to the line

« The perpendicular line from a point to a line, which computes the perpendicular
distance between the point and the line

Line Fitting

The line fitting function in Vision uses a robust algorithm to find a line that best fits a
set of points. The line fitting function works specifically with the feature points
obtained during gauging applications.

In a typical gauging application, a rake or a concentric rake function finds a set of
points that lie along a straight edge of the object. In an ideal case, all the detected
points would make a straight line. However, points usually do not appear in a straight
line for one of the following reasons:

« The edge of the object does not occupy the entire search region used by the rake
« The edge of the object is not a continuous straight line
+ Noise in the image causes points along the edge to shift from their true positions

The following figure illustrates an example of a set of points located by the rake
function. As shown in the figure, a typical line fitting algorithm that uses all of the
points to fit a line returns inaccurate results. The line fitting function in NI Vision
compensates for outlying points in the dataset and returns a more accurate result.
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1. Edge Points
2. Standard Line Fit
3. Vision Fit Line

Vision uses the following process to fit a line. Vision assumes that a point is part of a
line if the point lies within a user-defined distance—or pixel radius—from the fitted
line. Then the line fitting algorithm fits a line to a subset of points that fall along an
almost straight line. Vision determines the quality of the line fit by measuring its mean
square distance (MSD), which is the average of the squared distances between each
point and the estimated line.

The following figure illustrates how the MSD is calculated. Next, the line fitting function
removes the subset of points from the original set. Vision repeats these steps until all
points have been fit. Then, the line fitting algorithm finds the line with the lowest MSD,
which corresponds to the line with the best quality. The function then improves the
quality of the line by successively removing the furthest points from the line until a
user-defined minimum score is obtained or a user-specified maximum number of
iterations is exceeded.
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1. Perpendicular Distance from an Edge Point to the Line
2. LineFit
3. Points Used to Fit the Line

The result of the line fitting function is a line that is fit to the strongest subset of the
points after ignoring the outlying points, as shown in the following figure.

The pixel radius, minimum score, and maximum iteration parameters control the
behavior of the line fit function.

The pixel radius defines the maximum distance allowed, in pixels, between a valid
point and the estimated line. The algorithm estimates a line where at least half the
points in the set are within the pixel radius. If a set of points does not have such a line,
the function attempts to return the line that has the most number of valid points.
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1. Strongest Line Returned by the Line Fit Function
2. Alternate Line Discarded by the Line Fit Function

Increasing the pixel radius increases the distance allowed between a point and the
estimated line. Typically, you can use the imaging system resolution and the amount
of noise in your system to gauge this parameter. If the resolution of the imaging system
is very high, use a small pixel radius to minimize the use of outlying points in the line
fit. Use a higher pixel radius if your image is noisy.

The minimum score allows you to improve the quality of the estimated line. The line
fitting function removes the point furthest from the fit line, and then refits a line to the
remaining points and computes the MSD of the line. Next, the function computes a line
fit score (LFS) for the new fit using the following equation:

1-MSD

LFS= 2122
PR’

x1000

where PR is the pixel radius.

Vision repeats the entire process until the score is greater than or equal to the
minimum score or until the number of iterations exceeds the user-defined maximum
number of iterations.

Use a high minimum score to obtain the most accurate line fit. For example, combining
a large pixel radius and a high minimum score produces an accurate fit within a very
noisy data set. A small pixel radius and a small minimum score produces a robust fit in
a standard data set.
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The maximum number of iterations defines a limit in the search for a line that satisfies
the minimum score. If you reach the maximum number of iterations before the
algorithm finds a line matching the desired minimum score, the algorithm stops and
returns the current line. If you do not need to improve the quality of the line in order to
obtain the desired results, set the maximum iterations value to 0 in the line fit function.

Related concepts:

« Concepts
« Contour Analysis Concepts

Contour Analysis

This section contains information about contour analysis.

Introduction

A contour represents a series of edge points that define the outline of an object in the
image. Contour analysis locates and extracts contours in grayscale images. After
extracting the contour the contour analysis algorithm can calculate the curvature
along the contour, fit the contour with an equation of known type, or compare
multiple contours.

When to Use

Contour analysis locates and extracts contours in grayscale images and allows you to
compare extracted contours with a template contour or a fitted equation. The
following figure shows examples of objects with good contour information.

You can use contour analysis in the following application areas:
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« Gauging—Measures lengths, diameters, angles, and other critical dimensions. If
the measurements fall outside set tolerance levels, the object is rejected. Use
geometric matching to locate the object, or areas of the object, you want to gauge.
Use information about the size of the object to preclude contour analysis from
analyzing objects that are too big or small.

+ Inspection—Detects flaws or missing elements. Compare an extracted contour to a
fitted contour or template contour to detect flaws in edges or determine if a
portion of the object under inspection is missing.

Contour Analysis Concepts

Contour extraction involves the following steps:

1. Curves are extracted from the ROI

2. Optionally, multiple curves are connected according to settings stored in
connection parameters

3. Asingle connected curve is selected to represent the contour

Curve Extraction

A curve is a set of edge points that are connected to form a continuous contour. Curves
typically represent the boundary of the part in the image. In curve extraction, curves
are the underlying information used to represent a template and to match the
template in an inspection image. This section describes how curves are extracted from
an image.

The curve extraction process consists of finding curve seed points and tracing the
curve.

Finding Curve Seed Points

A seed pointis a point on a curve from which tracing begins. To qualify as a seed point,
a pixel cannot be part of an already existing curve and must have an edge contrast
greater than the user-defined edge threshold. The edge contrast at a pixel is computed
as a function of the intensity value at that pixel and the intensities of its neighboring
pixels. If P, j) represents the intensity of the pixel P with the coordinates (i, j), the edge

contrast at (i, j) is defined as
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For an 8-bit image, the edge contrast may vary from 0 to 360.

To increase the speed of the curve extraction process, the algorithm visits only a
limited number of pixels in the image to determine if the pixel is a valid seed point. The
number of pixels to visit is based on the values that the user provides for the Search
Step and ROI parameters. The larger the Search Step and the smaller the ROI, the
faster the algorithm searches for seed points. However, to make sure that the
algorithm finds a seed point on all of the curves, Search Step must be smaller than the
smallest curve along the search direction.

The algorithm scans from the selected side of the ROI. Starting at the first pixel, the
edge contrast of the pixel is computed. If the edge contrast is greater than the given
threshold, the curve is traced from this point. If the contrast is lower than the
threshold, or if this pixel is already a member of an existing curve previously
computed, the algorithm analyzes the next pixel in the row to determine if it qualifies
as a seed point. This process is repeated until the opposite side of the ROl is reached.
The algorithm then skips Search Step pixels along the side of the ROl and repeats the
process.

Tracing the Curve

When it finds a seed point, the curve extraction algorithm traces the rest of the curve.
Tracing is the process by which a pixel that neighbors the last pixel on the curve is
added to the curve if it has the strongest edge contrast in the neighborhood and the
edge contrast is greater than acceptable edge threshold for a curve point. This process
is repeated until no more pixels can be added to the curve in the current direction. The
algorithm then returns to the seed point and tries to trace the curve in the opposite
direction. The following figure illustrates this process.
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,\\‘ Note To simplify the figure, Search Step is not smaller than the smallest
curve.

Curve connection parameters specify how the contour extraction algorithm connects
individual curves to produce contours. There are two methods for building curves into
a contour. For both methods, all possible connections are limited by the input ranges
for the connection metrics below. If a range is not entered, the connection metric is not
evaluated when considering connections. For example, if only a distance and angle
metric are provided, gradient angle and connectivity are not evaluated and will not
affect connection choices. For both methods, once the curve that is being built is
connected to itself, it is considered a closed curve and no more connections are made.

When selecting the closest contour, the extraction algorithm starts with the curve that
is closest to the ROl side that curves were scanned from. The extraction algorithm
builds onto each end of the closest curve by selecting the next curve that continues
along the object boundary. This is defined as the candidate curve, whose end requires
the smallest magnitude of rotation from the closest curve end, through the direction of
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the ROl side.

When selecting for the longest or strongest contour, the extraction algorithm connects
curves with the minimum cost for all of the considered metrics. The cost is defined as
the sum of each metric normalized to the range of that metric. For example, if the
angle range is 0 to 30 degrees, and a possible connection has as 15 degree change
between curves, the angle metric will contribute 0.5 to the cost of that connection. The
extraction algorithm calculates the cost of all connections that fall within the metric
ranges, then makes the connections in order from the least to most costly.

When selecting the closest contour, the closest contour is always built as described
above. When selecting for the longest or strongest contour, and no connection
parameters are entered, no connections that increase performance will be made. In
any case where connections are made, the default metrics are distance with a range of
0 to 10 pixels, and angle distance with a range of 0 to 180 degrees. Input metrics will
override these defaults.

Distance
Distance is the euclidean distance, in pixels, between the endpoints. Modify the
Distance range parameters to only connect curves with end points separated by a

distance within the specified range.

The following figure illustrates distance between end points:

(9//

1. Distance
Angle Distance

Angle distance is the amount, in degrees, that one curve endpoint must rotate for two
curves to be parallel at the endpoints. Modify the Angle Distance range parameters to
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only connect curves when the difference between the angle of the curves, measured at
the end points, is within the specified range. The following figures illustrate how the
angle of a curve is calculated:

‘5&\ E
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B

In Figure A, the difference between angle A and angle B is close to 0. In Figure B, the
difference between angle A and angle C is close to 90 degrees.

Connectivity Distance

Connectivity distance is determined by projecting the endpoint of one curve as a line
and finding the minimum distance from the projected line to the other endpoint. If the
distance to the projection from either endpoint is within the range, the endpoints are
connected. Modify the Connectivity Distance range parameters to only connect curves
when a line extended from the end point of one curve passes the end point of another
curve within the specified distance. The following figure illustrates how connectivity is
calculated:
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1. Distance between end point A and aline extended from end point B
2. Distance between end point A and endpoint C

End point A is closer to end point C than to end point B. Specify a connectivity range to
connect end point A to end point B instead of end point C.

Gradient Difference

Gradient difference is calculated by determining the gradient angle at each endpoint,
then taking the absolute difference of the two angles in degrees. Modify the Gradient
Difference range parameters to only connect curves when the difference between the
gradient angle of each curve is within the specified range. The following figure
illustrates two curves with opposite gradient angles:

Contour Selection

After the curves have been extracted from the image and optionally connected, a
single contour is selected from this set of curves based on contour selection
parameters. You can select the first contour detected along the search direction, the
longest contour, or the contour with the highest edge strength averaged from each
point on the curve.
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In-Depth Discussion

Curvature

The curvature of a contour is calculated from the edge points of the contour and by the
input kernel size. For each point along the contour the algorithm selects two
additional points at half the kernel width before and half the kernel width after the
current point. The algorithm fits a cubic b-spline to the three points. Curvature
represents the inverse radius of the circle inscribed by the cubic b-spline at the current
point. Curvature can be negative. A negative curvature indicate a curve to the left
along the search direction. If the current point is too close to either end of the array to
choose the additional points, the curvature is calculated as 0.

Distances

When comparing two contours, the algorithm generates pairs of corresponding points
between the contours. At each point along the template contour the algorithm
examines the target contour for a matching point. Ideally, the matching point is
normal to the curve of the template contour, as when the target contour is a fitted line,
circle, or ellipse. However, when the target contour is defined by a discrete set of
points, a point along the target contour may not be normal to the point on the
template curve.

To compare a template contour and a target contour defined by a discrete set of
points, the algorithm applies a Gaussian averaging kernel to smooth the target contour
points. Then, for each point along the template contour, the algorithm examines a line
segment formed by consecutive points on the smoothed target contour points. If a line
segmentincludes a point that is normal to the template point, the algorithm pairs the
points. Otherwise, the algorithm approximates a normal point by pairing the template
point with the closest point on the target contour. Finally, for unpaired sections of the
target contour, the algorithm pairs each unmatched target contour point with a point
on the template contour between the matched points on either side of the unmatched
point.

For calibrated contour images, the algorithm first performs the distance computation
in the calibrated space of the target image, then transforms the points into pixel
coordinates.
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Color Inspection

This section contains information about color spaces, the color spectrum, color
matching, color location, and color pattern matching.

Color Spaces

Color spaces allow you to represent a color. A color space is a subspace within a 3D
coordinate system where each color is represented by a point. You can use color
spaces to facilitate the description of colors between persons, machines, or software
programs.

Various industries and applications use a number of different color spaces. Humans
perceive color according to parameters such as brightness, hue, and intensity, while
computers perceive color as a combination of red, green, and blue. The printing
industry uses cyan, magenta, and yellow to specify color. The following is a list of
common color spaces:

+ RGB—Based on red, green, and blue. Used by computers to display images.

« HSL—Based on hue, saturation, and luminance. Used in image processing
applications.

+ CIE—Based on brightness, hue, and colorfulness. Defined by the Commission
Internationale de 'Eclairage (International Commission on Illumination) as the
different sensations of color that the human brain perceives.

« CMY—Based on cyan, magenta, and yellow. Used by the printing industry.

« YIQ—Separates the luminance information (Y) from the color information (I and Q).
Used for TV broadcasting.

When to Use

You must define a color space every time you process color images. With NI Vision, you
specify the color space associated with an image when you create the image. NI Vision
supports the RGB and HSL color spaces.

If you expect the lighting conditions to vary considerably during your color machine
vision application, use the HSL color space. The HSL color space provides more
accurate color information than the RGB space when running color processing
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functions, such as color matching, color location, and color pattern matching.
NI Vision's advanced algorithms for color processing—which perform under various
lighting and noise conditions—process images in the HSL color space.

If you do not expect the lighting conditions to vary considerably during your
application, and you can easily define the colors you are looking for using red, green,
and blue, use the RGB space. Also, use the RGB space if you want only to display color
images, but not process them, in your application. The RGB space reproduces an
image as you would expect to see it. NI Vision always displays color images in the RGB
space. If you create an image in the HSL space, NI Vision automatically converts the
image to the RGB space before displaying it.

Concepts

Because color is the brain's reaction to a specific visual stimulus, color is best
described by the different sensations of color that the human brain perceives. The
color-sensitive cells in the retina sample color using three bands that correspond to
red, green, and blue light. The signals from these cells travel to the brain where they
combine to produce different sensations of colors. The Commission Internationale de
I'Eclairage has defined the following sensations:

+ Brightness—The sensation of an area exhibiting more or less light.

« Hue—The sensation of an area appearing similar to a combination of red, green,
and blue.

+ Colorfulness—The sensation of an area appearing to exhibit more or less of its hue.

+ Lightness—The sensation of an area's brightness relative to a reference white in
the scene.

« Chroma—The colorfulness of an area with respect to a reference white in the
scene.

+ Saturation—The colorfulness of an area relative to its brightness.

The trichromatic theory describes how three separate lights—red, green, and
blue—can be combined to match any visible color. This theory is based on the three
color sensors that the eye uses. Printing and photography use the trichromatic theory
as the basis for combining three different colored dyes to reproduce colors in a scene.
Similarly, computer color spaces use three parameters to define a color.

Most color spaces are geared toward displaying images with hardware, such as color
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monitors and printers, or toward applications that manipulate color information, such
as computer graphics and image processing. Color CRT monitors, the majority of color-
video cameras, and most computer graphics systems use the RGB color space. The HSL
space, combined with RGB and YIQ, is frequently used in applications that manipulate
color, such as image processing. The color picture publishing industry uses the CMY
color space, also known as CMYK. The YIQ space is the standard for color TV broadcast.

RGB Color Space

The RGB color space is the most commonly used color space. The human eye receives
color information in separate red, green, and blue components through cones—the
color receptors present in the human eye. These three colors are known as additive
primary colors. In an additive color system, the human brain processes the three
primary light sources and combines them to compose a single colorimage. The three
primary color components can combine to reproduce most possible colors.

You can visualize the RGB space as a 3D cube with red, green, and blue at the corners
of each axis, as shown in the following figure. Black is at the cube origin, while white is
at the opposite corner of the cube. Each side of the cube has a value between 0 and 1.
Along each axis of the RGB cube, the colors range from no contribution of that
component to a fully saturated color. Any point, or color, within the cube is specified
by three numbers: an R, G, B triple. The diagonal line of the cube from black (0, 0, 0) to
white (1, 1, 1) represents all the grayscale values or where all of the red, green, and
blue components are equal. Different computer hardware and software combinations
use different color ranges. Common combinations are 0 -255 and 0 -65,535 for each
component. To map color values within these ranges to values in the RGB cube, divide
the color values by the maximum value that the range can take.
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The RGB color space lies within the perceptual space of humans. In other words, the
RGB cube represents fewer colors than we can see.

The RGB space simplifies the design of computer monitors, but it is not ideal for all
applications. In the RGB color space, the red, green, and blue color components are all
necessary to describe a color. Therefore, RGB is not as intuitive as other color spaces.
The HSL color space describes color using only the hue component, which makes HSL
the best choice for many image processing applications, such as color matching.

HSL Color Space

The HSL color space was developed to put color in terms that are easy for humans to
quantify. Hue, saturation, and brightness are characteristics that distinguish one color
from another in the HSL space. Hue corresponds to the dominant wavelength of the
color. The hue component is a color, such as orange, green, or violet. You can visualize
the range of hues as a rainbow. Saturation refers to the amount of white added to the
hue and represents the relative purity of a color. A color without any white is fully
saturated. The degree of saturation is inversely proportional to the amount of white
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light added. Colors such as pink, composed of red and white, and lavender composed
of purple and white, are less saturated than red and purple. Brightness embodies the
chromatic notion of luminance, or the amplitude or power of light. Chromaticity is the
combination of hue and saturation. The relationship between chromaticity and
brightness characterizes a color. Systems that manipulate hue use the HSL color space.

The coordinate system for the HSL color space is cylindrical. Colors are defined inside

a hexcone, as shown in the color space used to generate the spectrum section.
The hue value runs from 0 to 360°. The saturation ranges from 0 to 1, where 1
represents the purest color without any white. Luminance also ranges from 0 to 1,
where 0 is black and 1 is white.

Overall, two principal factors—the de-coupling of the intensity component from the
color information and the close relationship between chromaticity and human
perception of color—make the HSL space ideal for developing machine vision
applications.

CIE XYZ Color Space

The CIE color space system classifies colors according to the human vision system. This
system specifies colors in CIE coordinates and is a standard for comparing one color in
the CIE coordinates with another.

Visible light is electromagnetic energy that occupies approximately the 400 nm to 700
nm wavelength part of the spectrum. Humans perceive these wavelengths as the
colors violet through indigo, blue, green, yellow, orange, and red. The following figure
shows the amounts of red, green, and blue light needed by an average observer to
match a color of constant luminance for all values of dominant wavelengths in the
visible spectrum. The dominant wavelength is the wavelength of the color humans see
when viewing the light. The negative values between 438.1 nm and 546.1 nm indicate
that all visible colors cannot be specified by adding together the three positive
primaries R, G, and B in the RGB color space.
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In 1931, the CIE developed a system of three primary colors (XYZ) in which all visible
colors can be represented using a weighted sum of only positive values of X, Y, and Z.
The following figure shows the functions used to define the weights of the X, Y, and Z

components.
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CIE L*a*b* Color Space

CIE 1976 L*a*b*, one of the CIE-based color spaces, is a way to linearize the
perceptibility of color differences. The nonlinear relations for L*, a*, and b* mimic the
logarithmic response of the eye.

CMY Color Space

CMY is another set of familiar primary colors: cyan, magenta, and yellow. CMY is a
subtractive color space in which these primary colors are subtracted from white light
to produce the desired color. The CMY color space is the basis of most color printing
and photography processes. CMY is the complement of the RGB color space because
cyan, magenta, and yellow are the complements of red, green, and blue.

YIQ Color Space

The YIQ space is the primary color space adopted by the National Television System
Committee (NTSC) for color TV broadcasting. It is a linear transformation of the RGB
cube for transmission efficiency and for maintaining compatibility with monochrome
television standards. The Y component of the YIQ system provides all the video
information that a monochrome television set requires. The main advantage of the YIQ
space for image processing is that the luminance information (Y) is de-coupled from
the color information (I and Q). Because luminance is proportional to the amount of
light perceived by the eye, modifications to the grayscale appearance of the image do
not affect the color information.

Related concepts:

« Color Spectrum

Color Spectrum

The color spectrum represents the 3D color information associated with an image or a
region of an image in a concise 1D form that can be used by many of the Vision color
processing functions. Use the color spectrum for color matching, color location, and
color pattern matching applications with Vision.

The color spectrum is a 1D representation of the 3D color information in an image. The
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spectrum represents all the color information associated with that image or a region of
the image in the HSL space. The information is packaged in a form that can be used by
the color processing functions in Vision.

Color Space Used to Generate the Spectrum

The color spectrum represents the color distribution of an image in the HSL space, as
shown in the following figure. If the input image is in RGB format, the image is first
converted to HSL format and the color spectrum is computed from the HSL space.
Using HSL images directly—those acquired with an image acquisition device with an
onboard RGB to HSL conversion for color matching—improves the operation speed.

White

8
=
g
E
4

Black

Colors represented in the HSL model space are easy for humans to quantify. The
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luminance—or intensity—component in the HSL space is separated from the color
information. This feature leads to a more robust color representation independent of
light intensity variation. However, the chromaticity—or hue and saturation—plane
cannot be used to represent the black and white colors that often comprise the

background colors in many machine vision applications. Refer to the color pattern
matching section for more information about color spaces.

Generating the Color Spectrum

Each element in the color spectrum array corresponds to a bin of colors in the HSL
space. The last two elements of the array represent black and white colors,
respectively. The following figure illustrates how the HSL color space is divided into
bins. The hue space is divided into a number of equal sectors, and each sector is
further divided into two parts: one part representing high saturation values and
another part representing low saturation values. Each of these parts corresponds to a
color bin—an element in the color spectrum array.

1. Sector
2. Saturation Threshold
3. ColorBins

The color sensitivity parameter determines the number of sectors the hue space is
divided into. Figure A shows the hue color space when luminance is equal to 128.
Figure B shows the hue space divided into a number of sectors, depending on the
desired color sensitivity. Figure C shows each sector divided further into a high
saturation bin and a low saturation bin. The saturation threshold determines the
radius of the inner circle that separates each sector into bins.

The following figure illustrates the correspondence between the color spectrum
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elements and the bins in the color space. The first element in the color spectrum array
represents the high saturation part in the first sector; the second element represents
the low saturation part; the third element represents the high saturation part of the
second sector and so on. If there are n bins in the color space, the color spectrum array
contains n +2 elements. The last two components in the color spectrum represent the
black and white color, respectively.

‘l Element #1
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g 24 "
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A color spectrum with a larger number of bins, or elements, represents the color
information in an image with more detail, such as a higher color resolution, than a
spectrum with fewer bins. In NI Vision, you can choose between three color sensitivity
settings—low, medium, and high. Low divides the hue color space into seven sectors,
giving a total of 2 x 7+ 2 =16 bins. Medium divides the hue color space into 14 sectors,
giving a total of 2 x 14 + 2 =30 bins. High divides the hue color space into 28 sectors,
giving a total of 2 x 28 + 2 =58 bins.

The value of each element in the color spectrum indicates the percentage of image
pixels in each color bin. When the number of bins is set according to the color
sensitivity parameter, the machine vision software scans the image, counts the
number of pixels that fall into each bin, and stores the ratio of the count and total
number of pixels in the image in the appropriate element within the color spectrum
array.

The software also applies a special adaptive learning algorithm to determine if pixels
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are either black or white before assigning it to a color bin. Figure B represents the low
sensitivity color spectrum of figure A The height of each bar corresponds to the
percentage of pixels in the image that fall into the corresponding bin.

The color spectrum contains useful information about the color distribution in the
image. You can analyze the color spectrum to get information such as the most
dominant color in the image, which is the element with the highest value in the color

spectrum. You also can use the array of the color spectrum to directly analyze the color
distribution and for color matching applications.
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Related concepts:

« Color Pattern Matching

Color Matching

Color matching quantifies which colors and how much of each color exist in a region of
an image and uses this information to check if another image contains the same colors
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in the same ratio.

Use color matching to compare the color content of an image or regions within an
image to a reference color information. With color matching, you create an image or
select regions in an image that contain the color information you want to use as a
reference. The color information in the image may consist of one or more colors. The
machine vision software then learns the 3D color information in the image and
represents this information as a 1D color spectrum. Your machine vision application
compares the color information in the entire image or regions in the image to the
learned color spectrum, calculating a score for each region. The score relates how
closely the color information in the image region matches the information represented
by the color spectrum.

When to Use

Color matching can be used for applications such as color identification, color
inspection, color object location and other applications that require the comparison of
color information to make decisions.

Color Identification

Color identification identifies an object by comparing the color information in the
image of the object to a database of reference colors that correspond to pre-defined
object types. The object is assigned a label corresponding to the object type with
closest reference color in the database. Use color matching to first learn the color
information of all the pre-defined object types. The color spectrums associated with
each of the pre-defined object types become the reference colors. Your machine vision
application then uses color matching to compare the color information in the image of
the object to the reference color spectrums. The object receives the label of the color
spectrum with the highest match score.

The following figure shows an example of a tile identification application. Figure A
shows the image of a tile that needs to be identified. Figure B shows the scores
obtained using color matching with a set of the reference tiles.
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Use color matching to verify the presence of correct components in automotive
assemblies. An example of a color identification task is to ensure that the color of the
fabricin the interior of a car adheres to specifications.

Color Inspection

Color inspection detects simple flaws such as missing or misplaced color components,
defects on the surfaces of color objects, or printing errors on color labels. You can use
color matching for these applications if known regions of interest predefine the object
or areas to be inspected in the image. You can define these regions, or they can be the
output of some other machine vision tool, such as pattern matching.

The layout of the fuses in junction boxes in automotive assemblies is easily defined by
regions of interest. Color matching determines if all of the fuses are present and in the
correct locations. The following figure shows an example of a fuse box inspection
application in which the exact location of the fuses in the image can be specified by
regions of interest. Color matching compares the color of the fuse in each region to the
color that is expected to be in that region.
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Color matching can be used to inspect printed circuit boards containing a variety of
components including diodes, resistors, integrated circuits, and capacitors. In a
manufacturing environment, color matching can find flaws in a manufactured product
when the flaws are accompanied by a color change.

Concepts

Color matching is performed in two steps. In the first step, the machine vision software
learns a reference color distribution. In the second step, the software compares color
information from other images to the reference image and returns a score as an
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indicator of similarity.
Learning Color Distribution

The machine vision software learns a color distribution by generating a color
spectrum. You provide the software with an image or regions in the image containing
the color information that you want to use as a reference in your application. The
machine vision software then generates a color spectrum based on the information
you provide. The color spectrum becomes the basis of comparison during the
matching phase.

Comparing Color Distributions

During the matching phase, the color spectrum obtained from the target image or
region in the target image is compared to the reference color spectrum taken during
the learning step. A match score is computed based on the similarity between these
two color spectrums using the Manhattan distance between two vectors. A fuzzy
membership weighting function is applied to both the color spectrums before
computing the distance between them. The weighting function compensates for some
errors that may occur during the binning process in the color space. The fuzzy color
comparison approach provides a robust and accurate quantitative match score. The
match score, ranging from 0 to 1000, defines the similarity between the color
spectrums. A score of zero represents no similarity between the color spectrums,
whereas a score of 1000 represents a perfect match. The following figure illustrates the
comparison process.
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Color Location

Use color location to quickly locate known color regions in an image. With color
location, you create a model or template that represents the colors that you are
searching. Your machine vision application then searches for the model in each
acquired image, and calculates a score for each match. The score indicates how closely
the color information in the model matches the color information in the found regions.

When to Use

Color can simplify a monochrome visual inspection problem by improving contrast or
separating the object from the background. Color location algorithms provide a quick
way to locate regions in an image with specific colors.

Use color location when your application has the following characteristics.

+ Requires the location and the number of regions in an image with their specific
color information.

+ Relies on the cumulative color information in the region, instead of how the colors
are arranged in the region.

« Does not require the orientation of the region.

+ Does not require the location with subpixel accuracy.

The color location tools in Vision measure the similarity between an idealized
representation of a feature, called a model, and a feature that may be presentin an
image. A feature for color location is defined as a region in an image with specific
colors.

Color location is useful in many applications. Color location provides your application
with information about the number of instances and locations of the template within
animage. Use color location in the following general applications—inspection,
identification, and sorting.

Inspection

Inspection detects flaws such as missing components, incorrect printing, and incorrect
fibers on textiles. Acommon pharmaceutical inspection application is inspecting a
blister pack for the correct pills. Blister pack inspection involves checking that all the
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pills are of the correct type, which is easily performed by checking that all the pills
have the same color information. Because your task is to determine if there are a fixed
number of the correct pills in the pack, color location is a very effective tool.

Figure A shows the template image of the part of the pill that contains the color
information that you want to locate. Figure B shows the pills located in a good blister
pack. Figure C shows the pills located when a blister pack contains the wrong type of
pills or missing pills. Because the exact locations of the pills is not necessary for the
inspection, the number of matches returned by color location indicates whether a
blister pack passes inspection.

it B c

Identification

|dentification assigns a label to an object based on its features. In many applications,
the color-coded identification marks are placed on the objects. In these applications,
color matching locates the color code and identifies the object. In a spring
identification application, different types of springs are identified by a collection of
color marks painted on the coil. If you know the different types of color patches that
are used to mark the springs, color location can find which color marks appear in the
image. You then can use this information to identify the type of spring.

Sorting

Sorting separates objects based on attributes such as color, size, and shape. In many
applications, especially in the pharmaceutical and plastic industries, objects are
sorted according to color, such as pills and plastic pellets. The following figure shows
an example of how to sort different colored candies. Using color templates of the
different candies in the image, color location quickly locates the positions of the
different candies.
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What to Expect from a Color Location Tool

In automated machine vision applications, the visual appearance of inspected
materials or components changes because of factors such as orientation of the part,
scale changes, and lighting changes. The color location tool maintains its ability to
locate the reference patterns despite these changes. The color location tool provides
accurate results during the following common situations: pattern orientation and
multiple instances, ambient lighting conditions, and blur and noise conditions.

Pattern Orientation and Multiple Instances

A color location tool locates the reference pattern in an image even if the pattern in the
image is rotated or scaled. When a pattern is rotated or slightly scaled in the image, the
color location tool can detect the following:
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« The patternin the image
« The position of the pattern in the image
« Multiple instances of the pattern in the image, if applicable

Because color location only works on the color information of a region and does not
use any kind of shape information from the template, it does not find the angle of the
rotation of the match. It only locates the position of a region in the image whose size
matches a template containing similar color information.

Refer to the inspection section for an example illustrating pattern orientation and
multiple instances.

Ambient Lighting Conditions

The color location tool finds the reference pattern in an image under conditions of
uniform changes in the lighting across the image. Color location also finds patterns
under conditions of non-uniform light changes, such as shadows.

The following figure shows typical conditions under which the color location tool
works correctly. Figure A shows the original template image. Figure B shows the same
pattern under bright light. Figure C shows the pattern under poor lighting.

& B c

Blur and Noise Conditions

Color location finds patterns that have undergone some transformation because of
blurring or noise. Blurring usually occurs because of incorrect focus or depth of field
changes.
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Concepts

Color location is built upon the color matching functions to quickly locate regions
with specific color information in an image.

The color location functions extend the capabilities of color matching to applications
in which the location of the objects in the image is unknown. Color location uses the
color information in a template image to look for occurrences of the template in the
search image. The basic operation moves the template across the image pixel by pixel
and comparing the color information at the current location in the image to the color
information in the template using the color matching algorithm.

The color location process consists of two main steps—learning template information
and searching for the template in an image. The following figure illustrates the general
flow of the color location process. During the learning phase, the software extracts the
color spectrum from the template image. This color spectrum is used to compare the
color information of the template with the color information in the image.

During the search step, a region the size of the template is moved across the image
pixel by pixel from the top of the image to the bottom. At each pixel, the function
computes the color spectrum of the region under consideration. This color spectrum is
then compared with the template's color spectrum to compute a match score.

The search step is divided into two phases. First, the software performs a coarse-to-
fine search phase that identifies all possible locations, even those with very low match
scores. The objective of this phase is to quickly find possible locations in the image
that may be potential matches to the template information. Because stepping through
the image pixel by pixel and computing match scores is time consuming, the following
techniques are used to speed up the search process.

« Subsampling—When stepping through the image, the color information is taken
from only a few sample points in the image to use for comparison with the
template. This reduces the amount of data used to compute the color spectrum in
the image, which speeds up the search process.

« Step size—Instead of moving the template across the image pixel by pixel, the
search process skips a few pixels between the each color comparison, thus
speeding up the search process. The step size indicates the number of pixels to
skip. For color location, the initial step size can be as large as half the size of the
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template.

The initial search phase generates a list of possible match locations in the image. In
the second step, that list is searched for the location of the best match using a hill-
climbing algorithm.

Template
Learn color information
in the template.

Learning Phase

Template Descriptor
- S

|Is2s a coarse to fine
searc_h strategy_to find <
a list of possible
matches with scores.

Image

Matching Phase < Initial Match List
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Refine each match location
using a hill climbing process
and update scores.
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Related concepts:

+ Color Matching

Color Pattern Matching

Use color pattern matching to quickly locate known reference patterns, or fiducials, in
a colorimage. With color pattern matching, you create a model or template that
represents the object you are searching for. Then your machine vision application
searches for the model in each acquired image, calculating a score for each match. The
score indicates how closely the model matches the color pattern found. Use color
pattern matching to locate reference patterns that are fully described by the color and
spatial information in the pattern.
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When to Use

Grayscale, or monochrome, pattern matchingis a well-established tool for
alignment, gauging, and inspection applications. In all of these application areas, color
simplifies a monochrome problem by improving contrast or separation of the object
from the background. Color pattern matching algorithms provide a quick way to locate
objects when color is present.

Use color pattern matching when the object under inspection has the following
qualities:

« The object contains color information that is very different from the background,
and you want to find the location of the object in the image very precisely. For
these applications, color pattern matching provides a more accurate solution than
color location—because color location does not use shape information during the
search phase, finding the locations of the matches with pixel accuracy is difficult.

« The object has grayscale properties that are difficult to characterize or that are
very similar to other objects in the search image. In such cases, grayscale pattern
matching may not give accurate results. If the object has some color information
that differentiates it from the other objects in the scene, color provides the
machine vision software with the additional information to locate the object.

The following figure illustrates the advantage of using color pattern matching over
color location to locate the resistors in an image. Although color location finds the
resistors in the image, the matches are not very accurate because they are limited to
color information. Color pattern matching uses color matching first to locate the
objects, and then pattern matching to refine the locations, providing more accurate
results.
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The following figure shows the advantage of using color information when locating
color-coded fuses on a fuse box. Figure A shows a grayscale image of the fuse box. In
the image of the fuse box in figure A, the grayscale pattern matching tool has difficulty
clearly differentiating between fuse 20 and fuse 25 and will return close match scores
because of similar grayscale intensities and the translucent nature of the fuses. In the
color image, figure B, the addition of color helps to improve the accuracy and
reliability of the pattern matching tool.

LR R
R

The color pattern matching tools in Vision measure the similarity between an idealized
representation of a feature, called a model, and the feature that may be presentin an
image. A feature is defined as a specific pattern of color pixels in an image.

Color pattern matching is the key to many applications. Color pattern matching
provides your application with information about the number of instances and
location of the template within an image. Use color pattern matching in the following
three general applications: gauging, inspection, and alignment.

Gauging

Many gauging applications locate and then measure or gauge the distance between
objects. Searching and finding a feature is the key processing task that determines the
success of many gauging applications. If the components you want to gauge are
uniquely identified by their color, color pattern matching provides a fast way to locate
the components.

Inspection

Inspection detects simple flaws, such as missing parts or unreadable printing. A
common application is inspecting the labels on consumer product bottles for printing
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defects. Because most of the labels are in color, color pattern matching is used to
locate the labels in the image before a detailed inspection of the label is performed.
The score returned by the color pattern matching tool also can be used to decide
whether a label is acceptable.

Alignment

Alignment determines the position and orientation of a known object by locating
fiducials. Use the fiducials as points of reference on the object. Grayscale pattern
matching is sufficient for most applications, but some alignment applications require
color pattern matching for more reliable results.

What to Expect from a Color Pattern Matching Tool

In automated machine vision applications, the visual appearance of materials or
components under inspection can change due to factors such as orientation of the
part, scale changes, and lighting changes. The color pattern matching tool maintains
its ability to locate the reference patterns and gives accurate results despite these
changes.

Pattern Orientation and Multiple Instances

A color pattern matching tool locates the reference pattern in an image even when the
pattern in the image is rotated and slightly scaled. When a pattern is rotated or scaled
in the image, the color pattern matching tool detects the following features of an
image:

The pattern in the image

The position of the pattern in the image

The orientation of the pattern

Multiple instances of the pattern in the image, if applicable

Figure A shows a template image, or pattern. Figures B and Cillustrate multiple
occurrences of the template. Figure B shows the template shifted in the image.
Figure C shows the template rotated in the image.
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Ambient Lighting Conditions

The color pattern matching tool finds the reference pattern in an image under
conditions of uniform changes in the lighting across the image. Because color analysis

is more robust when dealing with variations in lighting than grayscale processing,
color pattern matching performs better under conditions of non-uniform light
changes, such as in the presence of shadows, than grayscale pattern matching.

Figure A shows the original template image. Figure B shows the same pattern under
bright light. Figure C shows the pattern under poor lighting.

A B

Blur and Noise Conditions

Color pattern matching finds patterns that have undergone some transformation
because of blurring or noise. Blurring usually occurs because of incorrect focus or

depth of field changes.

Concepts

Color pattern matching is a unique approach that combines color and spatial
information to quickly find color patterns in an image. It uses the technologies behind
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color matching and grayscale pattern matching in a synergistic way to locate color
patterns in color images.

Color Matching and Color Location

Color matching compares the color content of an image or regions in an image to
existing color information. The color information in the image may consist of one or
more colors. To use color matching, define regions in an image that contain the color
information you want to use as a reference. The machine vision functions then learn
the 3D color information in the image and represents it as a 1D color spectrum. Your
machine vision application compares the color information in the entire image or
regions in the image to the learned color spectrum, calculating a score for each region.
This score relates how closely the color information in the image region matches the
information represented by the color spectrum. To use color matching, you need to
know the location of the objects in the image before performing the match.

Color location functions extend the capabilities of color matching to applications
where you do not know the location of the objects in the image. Color location uses
the color information from a template image to look for occurrences of the template in
the search image. The basic operation moves the template across the image pixel by
pixel and compares the color information at the current location in the image to the
color information in the template, using the color matching algorithm. Because
searching an entire image for color matches is time consuming, the color location
software uses some techniques to speed up the location process. A coarse-to-fine
search strategy finds the rough locations of the matches in the image. A more refined
search, using a hill climbing algorithm, is then performed around each match to get
the accurate location of the match. Color location is an efficient way to look for
occurrences of regions in an image with specific color attributes.

Grayscale Pattern Matching

Vision grayscale pattern matching methods incorporate image understanding
techniques to interpret the template information and use that information to find the
template in the image. Image understanding refers to image processing techniques
that generate information about the features of a template image. These methods
include the following:

« Geometric modeling of images
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« Efficient non-uniform sampling of images
« Extraction of rotation-independent template information

Vision uses a combination of the edge information in the image and an intelligent
image sampling technique to match patterns. The image edge content provides
information about the structure of the image in a compact form. The intelligent
sampling technique extracts points from the template that represent the overall
content of the image. The edge information and intelligent sampling technique reduce
the inherently redundant information in an image and improve the speed and
accuracy of the pattern matching tool. In cases where the pattern can be rotated in the
image, a similar technique is used, but with specially chosen template pixels whose
values, or relative change in values, reflect the rotation of the pattern. The result is fast
and accurate grayscale pattern matching.

Vision pattern matching accurately locates objects in conditions where they vary in
size (x5%) and orientation (between 0° and 360°) and when their appearance is
degraded.

Combining Color Location and Grayscale Pattern Matching

Color pattern matching uses a combination of color location and grayscale pattern
matching to search for the template. When you use color pattern matching to search
for a template, the software uses the color information in the template to look for
occurrences of the template in the image. The software then applies grayscale pattern
matching in a region around each of these occurrences to find the exact position of the
template in the image. The following figure illustrates the general flow of the color
pattern matching algorithm. The size of the searchable region is determined by the
software, based on the inputs you provide, such as search strategy and color
sensitivity.
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—

In-Depth Discussion

There are standard ways to convert RGB to grayscale and to convert one color space to
another. The transformation from RGB to grayscale is linear. However, some
transformations from one color space to another are nonlinear because some color
spaces represent colors that cannot be represented in other spaces.

RGB to Grayscale

The following equations convert an RGB image into a grayscale image on a pixel-by-
pixel basis:

grayscale value =0.299R + 0.587G + 0.114B
This equation is part of the NTSC standard for luminance. An alternative conversion

from RGB to grayscale is a simple average:
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grayscalevalue=(R+G+B)/3

RGB and HSL

Machine Vision

There is no matrix operation that allows you to convert from the RGB color space to
the HSL color space. The following equations describe the nonlinear transformation

that maps the RGB color space to the HSL color space.

V2 =,/3(G- B)
Vl1=2R-G-B
rtan~1(v2/v1)
4
R
==
2
"0
' <
256 x 3
H= 1

if V1 #0;
elseif v1 =0, V2 >0

elseifvl=0,V2<0
otherwise -
ifViz=0 vV2=20]

256 x @#ﬂ else if V1 > 0
256 x Qﬂ_"‘_ﬁ?_l
= T

L=0.299R+0.587G +0.114B

S=255(1-3min(R, G, B) / (R++B))

The following equations map the HSL color space to the RGB color space:
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- cos(h)/cos(n/3 - h))/3

L [0 < h < 21/3]

r [2n/3 < h < 4n/3]

r [4n/3| < h £ 2x]

0.299r + 0.587g + 0.114b

_ g 2K
h=H 558
s = §/255
s'=(1-5)/3
fh) =(1-s

b=s

r = f(h)
g=1-r->b
h'=h-2n/3

r=s

g =f(h)
b=1-r-g|
h'=h-4x/3

g=s

b = f(h')
r=1-g->b
=
1'=L/I
R =1r
G = gf
B = bl

RGB and CIE XYZ

Machine Vision

The following 3 x 3 matrix converts RGB to CIE XYZ without applying gamma

correction.
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X 0.412453 0.357580 0.180423 || R
Y | =] 0.212671 0.715160 0.072169 || G
4 0.019334 0.119193 0.950227 || B

By projecting the tristimulus values on to the unit plane X+ Y+ Z =1, color can be
expressed in a 2D plane. The chromaticity coordinates are defined as follows:

X=X/ (X+Y+2)
y=Y/(X+Y+2Z)
z=Z7/(X+Y+2)

You can obtain zfrom xand y by z=1 - x +y. Hence, chromaticity coordinates are
usually given as (x, y) only. The chromaticity values depend on the hue or dominant
wavelength and the saturation. Chromaticity values are independent of luminance.

The diagram from (x, y) is referred to as the CIE 1931 chromaticity diagram, or the CIE
(x, y) chromaticity diagram, as illustrated in the bell curve of the following figure.
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The three color components R, G, and B define a triangle inside the CIE diagram of the
previous figure. Any color within the triangle can be formed by mixing R, G, and B. The
triangle is called a gamut. Because the gamut is only a subset of the CIE color space,
combinations of R, G, and B cannot generate all visible colors.

To transform values back to the RGB space from the CIE XYZ space, use the following
matrix operation:

R 3.240479 -1.537150 -0.498535 || X
G | =| -0.969256 1.875992 0.041556 Y
B 0.055648 -0.204043 1.057311 || 2

Notice that the transform matrix has negative coefficients. Therefore, some XYZ color
may transform into R, G, B values that are negative or greater than one. This means
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that not all visible colors can be produced using the RGB color space.
RGB and CIE L*a*b*

To transform RGB to CIE L*a*b*, you first must transform the RGB values into the CIE
XYZ space. Use the following equations to convert the CIE XYZ values into the CIE
L*a*b* values.

1* =116 x (Y/Yn)Y/3

- 16 for Y/Yn > 0.008856
*=903.3xY/Yn otherwise

a* =500(f(X / Xn) - f(Y / Yn))

b* =200(f(Y / Yn) - f(Z / Zn))

where,

f(t) = tY/3 for t > 0.008856
f(t) =7.787t + 16/116 otherwise
Here Xn, Yn, and Zn are the tri-stimulus values of the reference white.

L* represent the light intensity. Vision normalizes the result of the L* transformation to
range from 0 to 255. The hue and chroma can be calculated as follows:

Hue = tan_l(b* /a*)
A E*a,b:\/(a*)2+(b*)2

Based on the fact that the color space is now approximately uniform, a color difference
formula can be given as the Euclidean distance between the coordinates of two colors
in the CIE L*a*b*.

Chroma=\/(AL*)2+(Aa*)2+(Ab*)2

To transform CIE L*a*b* values to RGB, first convert the CIE L*a*b* values to CIE XYZ
using the following equations:
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X=Xn[P+a* | 500)°
Y=yYnP
Z=2Zn(P-b* /200)3

where
P=(L* +16) [ 116

Then, use the conversion matrix given in the RGB and CIE XYZ section to convert CIE
XYZ to RGB.

RGB and CMY

The following matrix operation converts the RGB color space to the CMY color space.

C 1]| R
M|=|1]|lG
¥ 11| B

Normalize all color values to lie between 0 and 1 before using this conversion
equation. To obtain RGB values from a set of CMY values, subtract the individual CMY
values from 1.

RGB and YIQ

The following matrix operation converts the RGB color space to the YIQ color space.

Y 0.299 0.587 0.114 || R
U | =|0.596 -0.275 -0.321 G
Q 10.212 -0.523 0.311 || B

The following matrix operation converts the YIQ color space to the RGB color space.
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R
G
B

1.0 0.956 0.621
1.0 -0.272 -0.647
1.0 =100 1./02

Related concepts:

« Pattern Matching

+ Color Location

+ Color Matching

Color Segmentation

-

Machine Vision

Color segmentation compares the color feature of each pixel with the color features of
surrounding pixels or a trained color classifierto segment an image into color

regions. Use color segmentation to separate color objects of interest from background
clutter.

You can use color segmentation in a wide variety of machine vision applications, such
as the following;:

+ Inspection—Partition an image into different regions based on the color of the part
in each region.

« Counting—Segment an image to quickly count the number of objects with a
particular color composition. The following figures illustrate a color segmentation
that can be used to count the number of bottles that contain each color of liquid.
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B

Concepts

Color segmentation involves three stages.

1. Train a color classifier with color samples for your application.
2. Segment an image into different color regions. Color segmentation consists of the
following steps.
a. Move aninspection window across the image to calculate the color feature of
each pixel.

- (O
@+ed ...L..jLJ

G

1. Pivot Pixel
2. Inspection Window
3. Image
b. Compare the color feature for each inspection window with the color feature of
neighboring windows.
c. Ifthe closest distance between the inspection window and a neighboring
window is less than maximum distance, apply the color label from the pivot
pixel in the neighboring window to the pivot pixel in the inspection window.
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i. Distance Between Neighboring Color Features Exceeds Maximum Distance
ii. Distance Between Neighboring Color Features Does Not Exceed
MaximumDistance
d. If the closest distance between the inspection window and a neighboring
window is greater than maximum distance, use the color classifier to label the
pivot pixel in the inspection window.

o | o DJ
|---|}_|:::I

o|oiol
1

1
-

-

1. Distance Between Neighboring Color Features Exceeds Maximum Distance

If the identification score for the inspection window is less than the minimum
identification score, the color classification algorithm does not label the pivot
pixel.

3. Filter segmented regions to eliminate regions that do not meet the specified size
requirements.

In-Depth Discussion

Maximum distance refers to the maximum distance allowed between the color
features of pivot pixels with the same color label. Maximum distance is calculated from
the trained color classifier as:

Step Size

MAximum Distance = Distance Between Two Closest Trained Classesx .~ =« —
indow Size

An aggressive maximum distance defines the distance between the two closest trained
classes as the median distance between samples in each class. A conservative
maximum distance defines the distance between the two closest trained classes as the
smallest distance between samples in each class. A high maximum distance typically
allows more pixels to use the color label of neighboring pixels, which avoids using the
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color classifier and decreases the time required to perform color segmentation. A high
maximum distance reduces the accuracy of color segmentation.

Color segmentation can be time-consuming if it operates on each pixel. To increase the
speed of color segmentation increase the step size, which increases the offset between
each inspection window, or train color samples at a lower color resolution to reduce
the size of the color feature for each color class.

Related concepts:

« Color Classification

Deep Learning

Introduction

Vision Development Module supports loading and executing third party Deep Learning
framework models. The models from the following Deep Learning frameworks are
supported.

« TensorFlow Inference Engine
« OpenVINO™ Inference Engine

The Deep Learning Inference Engines enable user to:

+ Load pre-trained Deep Learning Models into Software and Hardware ecosystem
+ Run loaded models in Windows and Real Time targets
+ Supply Vision Image and LabVIEW data to learned models

Supported Platforms
The following platforms are supported:
Development Environments

+ LabVIEW 64-bit

TensorFlow Runtime and Real Time Targets Support:
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« Windows 64-bit
« NI Linux RT 64-bit

OpenVINO™ Runtime and Real Time Targets Support:

« Windows 64-bit (Windows 7 Embedded Standard is not supported)
« NI Linux RT 64-bit

When to Use

The Deep Learning Inference Engines provide the ability to load and execute third
party framework models. These functions can be used when there are pre-trained
models present and there is a need to use them along with other Vision functions.
They can also be deployed in Real Time targets. The prerequisites for using the Deep
Learning Inference Engines are:

« Pre-trained models from supported libraries
« The model must be a Frozen Model or a Saved Model

\d L s
 Note Model Training is currently not supported with Vision Development

Module.

Deep Learning Inference Engines

Vision Development Module supports TensorFlow and OpenVINO™ Inference Engines.

User Workflow

3 party Environments (Ex: Python and TensorFlow) NI Vision and LabVIEW

environment

i
i
i
Sesion D  Windows 64bit
esign beep ini DLModels  |j RT 64bit
Trainin inux i
Learning Network £ : » Inference
i
i

A new Deep Learning Model or topology is created by the developers. This model is
then trained using the data acquired from the dataset. The trained model so obtained
maybe further deployed on Targets using the LabVIEW APIs provided by the Vision
Development Module. For more details about the inference engines workflow, see the
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Development Workflow

Machine Vision

The following workflow is applicable in LabVIEW using Vision functions.

Load Pre-Trained
Model

Configure Input
MNodes and Supply

Supplying Input Data

Configure Cutput Run Model and
Nodes Get Output Data
data

Deep Learning libraries usually accepts data as a Tensor (a representation of multi-
dimensional arrays). Once a model is loaded using Vision functions, it understands
input and output tensor configurations for the loaded models. Supplied data to the
Vision function is converted to input node tensors and fed to the model while running
inference. The following table depicts input data compatibility:

NI Data Type

NI Vision Image
(U8, U1s, 116,
SGL)

NI Vision Image
(RGB32)

Array (U8, 18,
116, U16, 132,
164, Float,
Double)

Default
Tensor Data Expected
Type Tensor
Dimension
Unsigned
Integer8/16 4 [1*X*Y*1]
/ Float
Unsigned
Integer8/16 4 [1*X*Y*3]
/Float
us, 18,116,
Ul6,132,164, Same as
Float, supplied
Double

Comment

Error displayed for dimension mismatch. Data is
converted if tensor expects Float data type. If tensor
is not Float, it must be same as Image Type.

Error displayed for dimension mismatch. Data is
converted if tensor expects Float data type. If tensor
is not Float, it must be same as Image Type.

Erroris displayed if there is a mismatch in
dimensions or datatype.

© National Instruments 375



376

Machine Vision

NI Vision Image
(RGB64, - - Unsupported
Complex, HSL)

Array
(Complex, U32, - - Unsupported
U64)

Interpreting Output Data

The output data from the model is converted into single dimensional Float Array in
LabVIEW. The dimensional information of the original data from the graph is also given
out. The user needs to construct back the data from this LabVIEW output.

NI D
Tensor Data Type ata Comment
Type

Array (U8, 18,116, Ul6, U32, 132, U64, Float Data is converted. Data loss may result for
164, Float, Double) Double to Float conversion.

Frozen Model(*.pb)

The supported model file format for Frozen Model is Protocol Buffer (.pb). This format
is created and maintained by Google™. If Saved Models are supplied, a folder must be
provided with Protocol Buffer files and other intermediate files. This is supported only

for TensorFlow.
Saved Models

These are primarily folders which must be provided with Protocol Buffer files and
other intermediate files. This is supported only for TensorFlow.
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Intermediate Representation (*.xml)

These are primarily xml files with graph information about the model. They are
compulsorily accompanied with same named “.bin” file that contains weights and
biases relevant for the defined model. This format is supported only for OpenVINO™
Deep Learning and Deployment toolkit and is maintained by Intel.

Reference Link: https://en.wikipedia.org/wiki/Protocol_Buffers
The supported LabVIEW datatypes are:

1. NI Vision Image
o U8,Ul6,RGB32, SGL
2. LabVIEW Arrays

Model Optimizer (OpenVINO™ only)

Model Optimizer, as a part of OpenVINO™ toolkit is a cross-platform python based
command line tool that facilitates the transition between the training and deployment
environment, performs static model analysis, and adjusts deep learning models for
optimal execution on end-point target devices. The following diagram summarizes the
workflow.

A\\’ Note For more details about converting a model to OpenVINO model using
Model Optimizer and accessing the Readme, use the command cd
%NI_MO_INSTALL_PATH% orgoto C: \Users\Public\Documents\
National Instruments\model optimizer\
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TensorFlow

L | Model Optimizer | |

—
{ | Comver! & optimize | =il IR g

| Caffe

W = inlsresdiats Reprssarianion

A python script convert2ir.py is available as part of the installation which will help
users convert models of different topologies easily without requiring to go into
complex set of parameters that model optimizer requires to convert, for example, a
tensorflow model to an IR model. The model optimizer can convert TensorFlow and
Caffe Models.

Related information:

+ TensorFlow
« https://en.wikipedia.org/wiki/Protocol Buffers

In-Depth Discussion
This section provides additional information you may need.
Case Study

The following model is considered for the case study:

( Y 4 Y f ( N f b —— ’
“input 1° Size: | Comwl + Relul _J ‘max pooll | ‘Conw? + Reluz* | ‘max poolz’ Densel ‘Gensez'
110010053 SRR LA M pooling | Convolulion Layer [~  Max Pocling Meursl network Maural natwor k
3332 and Aol | Layer 23 x3ndd and Ralll Layer 202 Nitizs 176 x10
LY P S LY A k) ] \ <

1 ‘Outptl”
sefimax -
10
-~ | — A

gLl — Rectified Unaar Uint

The above model/graph accepts a single RGB image of size 100x100 as input and
classifies itinto 10 classes. For example, let us consider that the graph was saved as
Example.pb file.
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Node Name: ‘Input 1

Example.pb Data: NI Vision Image (RGB 32)

Load Pre-Trained NCc;nﬁgur;:' én me: Specify Output
Model odes and supply Nodes
data

Using High level APIs/ Reference Design APIs

Run Model and

Get Output Data —* Float Array of size 10

Vision provides the following high-level API for the Deep Learning Interface:
« Classification (IMAQ DL Model Classify Image)

This high-level API provides fixed design for supplying and receiving data. This can be
used as a reference API to create a custom high level API.

Classification

The APl accepts Vision Image as an Input. In this case the loaded model's input node
should accept tensors of similar dimensions. The output node data must be two-
dimensional Float array. The following diagram depicts input and output data
dimension requirements.

1=x=vye C. Classify Image 1: N
X— Image Width

Y— Image Height
C— Channels (3 for RGB and 1 for Grayscale)
N— Number of Classes

The APl will display an error if the input image dimensions does not match with the
input node tensor dimensions. It is recommended to develop a graph which accepts
any image dimension and resize them in the graph itself.
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Object Detection

The APl accepts Vision Image as an Input. In this case the loaded model's input should
accept tensor of similar dimensions. There must be 4 output nodes and must follow
the order below.

Number of Matches - Float (dimensional float array).
Confident Scores for Matches - Two Dimensional Float Array.
Label Index of Matches - Two Dimensional Float Array.
Locations for Matches - Three Dimensional Foat Array.
o Each leaf row contains locations as [Top, Left, Bottom, Right].
o Coordinates ranges between 0 to 1 (unit bounding boxes).

— 1 (Single dimension array for number of matches)
1*X*Y*C

® . .
Detect Objects — 1*0 (two-dimension array for scores of matches)

—* 1*0 (two-dimension array for label indices)

—— 1 *0 *4 (three-dimension array for boxes)

X— Image Width

Y— Image Height

C—Channels (3 RGB and 1 for Grayscale)
O—Number of detected objects

The object detection API converts output node data to LabVIEW data, while doing so it
also converts unit bounding boxes to supplied image dimensions. This APl will display
an error if input image dimensions does not match with the input node tensor
dimensions. It is recommended to develop a graph which accepts any image
dimension and resize them in the graph itself.

Error and exception handling
Model Importer functions propagate errors from third party libraries to LabVIEW. The
error description shows the actual error code and explanation received from the third

party library.

Related information:
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+ Pretrained Models and Algorithms

Classification

This section contains information about classification.

Introduction 36

Classification identifies an unknown sample by comparing a set of its significant
features to a set of features that conceptually represent classes of known samples. A
particle classifier uses feature vectors to identify samples based on their shape. A color
classifier uses color features to identify samples based on their color.

Classification involves two phases: training and classifying. Training is a phase during
which you teach the machine vision software the types of samples you want to classify
during the classifying phase. You can train any number of samples to create a set of
classes, which you later compare to unknown samples during the classifying phase.
You store the classes in a classifier file. Training might be a one-time process, or it
might be an incremental process you repeat to add new samples to existing classes or
to create several classes, thus broadening the scope of samples you want to classify.

Classifying is a phase during which your custom machine vision application classifies
an unknown sample in an inspection image into one of the classes you trained. The
classifying phase classifies a sample according to how similar the sample features are
to the same features of the trained samples.

When to Use

The need to classify is common in many machine vision applications. Typical
applications involving classification include the following:

« Sorting—Sorts samples of varied shapes or colors. For example, a classifier can
sort different items on a conveyor belt into different bins. A particle classifier can
sort mechanical parts of different shapes, and a color classifier can sort items of
different colors. Example outputs of a sorting or identification application could be
user-defined labels of certain classes.

« Inspection—Inspects samples by assigning each sample an identification score
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and then rejecting samples that do not closely match members of the training set.
Example outputs of a sample inspection application could be Pass or Fail.

Training the Classifier

The following figure illustrates the process of training and testing a classifier.

Collect Training and
Testing Images

!

Set Classifier
Parameters

#‘—

Add or Remove
Training Samples

:

Train
Classifier

.

Test
Classifier

Pass
Testing?

Yes

Save
Classifier

Based on your specific application, predefine and label a set of training samples that
represent the properties of the entire population of samples you want to classify.

Configure the classifier by selecting the proper classification method and

distance metricfor your application. For example, you can configure the Particle
Classifier to distinguish the following:

« Small differences between sample shapes independent of scale, rotation, and
mirror symmetry,
« Shapes that differ only by scale,
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+ Shapes that differ only by mirror symmetry,
« Any combination of the above points.

If testing indicates that the classifier is not performing as expected, you can restart the
training process by collecting better representative samples or trying different training
settings. In some machine vision applications, new parts or colors need to be added to
an existing classification system. This can be done by incrementally adding samples of
the new parts or colors to the existing classifier.

Related concepts:

« Nearest Neighbor

Binary Particle Classification
Use binary particle classification to identify samples based on their shape.
Ideal Images for Classification

Images of samples acquired in a backlit environment are ideal for particle
classification. The following figures show examples images of backlit samples.

lbn- Training Image Samples !Ef -

ERERARED
EQlOIRBE

SlE|=[=[=[]©
[>]0]°O]0]O] #

B12:5121/1 4
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The following figures show samples that are not ideal for particle classification
because they contain several unconnected parts or are grayscale and have an internal

pattern.
1 DO
NOT
ONLY PASS

Bl2«51214 4 .

General Classification Procedure

Consider an example application whose purpose is to sort nuts and bolts. The classes
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in this example are Nut and Bolt.

Before you can train a classification application, you must determine a set of features,
known as a feature vector, on which to base the comparison of the unknown sample to
the classes of known samples. Features in the feature vector must uniquely describe
the classes of known samples. An appropriate feature vector for the example
application would be {Heywood Circularity, Elongation Factor}.

The following table shows good feature values for the nuts and bolts shown in the
subsequent figure. The closer the shape of a sample is to a circle, the closer its
Heywood circularity factor is to 1. The more elongated the shape of a sample, the
higher its elongation factor.

Class Average HeywoodCircularity Average ElongationFactor
Nut 1.109 1.505
Bolt 1.914 3.380

The class Nut is characterized by a strong circularity feature and a weak elongation
feature. The class Bolt is characterized by a weak circularity feature and a strong
elongation feature.

After you determine a feature vector, gather examples of the samples you want to
classify. A robust classification system contains many example samples for each class.
All the samples belonging to a class should have similar feature vector values to
prevent mismatches.

After you have gathered the samples, train the classifier by computing the feature
vector values for all of the samples. Then you can begin to classify samples by
calculating the same feature vector for the unknown sample and comparing those
values to the feature vector values of the known samples. The classifier assigns the
unknown sample a class name based on how similar its feature values are to the
values of a known sample.

Illustration A shows a binary image of nuts and bolts. Illustration B shows these
samples classified by circularity and elongation.
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Preprocessing

Preprocessing operations prepare images for better feature extraction. Preprocessing
includes noise filtering; thresholding; rejecting particles that touch the image border;
and removing small, insignificant particles.

For best results, acquire the inspection images under the same lighting conditions in
which you acquired the training images. Also, apply the same preprocessing options to
the inspection images that you used to preprocess the training images.

Feature Extraction

Feature extraction computes the feature vector in the feature space from an input
image. Feature extraction reduces the input image data by measuring certain features
or properties that distinguish images of different classes. Which features to use
depends on the goal of the classification system. The features could be raw pixel
values or some abstract representation of the image data. For identification
applications, select features that most efficiently preserve class separability—feature
values for one class should be significantly different from the values for another class.
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For inspection applications, select features that distinguish the acceptable from the
defective.

The Particle Classifier classifies samples using different types of shape descriptors. A
shape descriptor is a feature vector based on particle analysis measurements. Each
type of shape descriptor contains one or more shape measurements made from a
sample.

The default Particle Classifier shape descriptor is based on shape characteristics that
are invariant to scale changes, rotation, and mirror symmetry. Another type of shape
descriptor is based on the size of the sample and is used along with the default shape
descriptor to distinguish samples with the same shape but different scale, such as
different sized coins. The Particle Classifier also uses a reflection-dependent shape
descriptor to distinguish samples that are the same shape but exhibit mirror
symmetry, such as a lowercase letter p and a lowercase letter g. The Particle Classifier
uses these different types of shape descriptors in a multi-classifier system to achieve
scale-dependent classification, reflection-dependent classification, or scale and
reflection-dependent classification.

Invariant Features

The Particle Classifier uses the following features for scale-invariant, rotation-
invariant, and reflection-invariant shape descriptors:

« Feature 1 describes the circularity of the sample.

« Feature 2 describes the degree of elongation of the sample.

« Feature 3 represents the convexity of the sample shape.

« Feature 4 is a more detailed description of the convexity of a sample shape.
« Feature 5is used for the discrimination of samples with holes.

+ Feature 6 is used for more detailed discrimination of samples with holes.

« Feature 7 represents the spread of the sample.

« Feature 8 represents the slenderness of the sample.

Classification

The Particle Classifier can apply the following classification algorithms: Minimum
Mean Distance, Nearest Neighbor, and K-Nearest Neighbor. Each of these methods may

employ different distance metrics: Maximum distance (Leo), Sum distance (L1), and
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Euclidean distance (L2).
Cascaded Classification System

In a cascaded classification system, cascaded multiple classifiers make classification
decisions based on multiple classification stages. Classifier 1 outputs several
candidates for Classifier 2 in the second stage. Classification is based on different
features.

Parallel Classification Systems

Combining results from multiple classifiers may generate more accurate classification
results than any of the constituent classifiers alone. Combining results is often based
on fixed combination rules, such as the product and/or average of the classifier
outputs.

The Particle Classifier uses a parallel classification system with three classifiers, as
illustrated in the following figure. Two classifiers are used for scale-dependent
classification. One of these classifiers uses scale-invariant features, and the other uses
a scale-dependant feature. Additionally, the Particle Classifier uses a third classifier to
distinguish samples with mirror symmetry. The outputs of the classifiers are combined
using user-specified weights to get the result.

Shape Feature Vector Shape Shape Classifier output

| Classifier
Wil particie
Y __ Classifier
Scale Feature Vector Seale | Scale Classifier Output / ,  Output
™| Classifier ™ j >
AN %
A
Reflection Feature Vect i Reflection Classifier Output s
eflection Feature Veclor | Reflection | Reflection Classifier Outpu

" Classifier

Related concepts:

+ Nearest Neighbor

Color Classification

Use color classification to identify samples based on their color.
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Concepts

A color classifier has a training phase and a classifying phase. In the training phase,
you provide the classifier with known samples. A know sample consists of a region in
the image containing the color you want the classifier to learn and a label for the color.
For every sample that is added during the training phase, the color classifier calculates
a color feature and assigns the associated class label to the feature. Eventually, all the
trained samples (color feature with the label) added to the classifier are saved into a
file which represents a trained color classifier.

After you train the classifier, you can classify regions in an image into their
corresponding classes for color identification and color inspection type machine vision
applications. In the classifying phase, the classification engine calculates the color
feature of the sample that you want to identify and classifies them among trained
sample using one of the existing classification algorithms. Vision color classification
uses the same classification algorithms as the particle classifier including the
Minimum Mean Distance, Nearest Neighbor, and K-Nearest Neighbor classifiers.

Sample Images

The following figure shows samples that are not ideal for color classification because
they include a large amount of background color.

Samples with only one hue (samples of a pure color) are also not ideal. Samples
should include enough variation to capture any close change in hue.

The following figure shows a set of images that are ideal for color classification. Each
image has a textured color pattern that illustrates the range of colors for each class.
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Preprocessing

There are no preprocessing algorithms associated with the NI Color Classifier. For
example, if you supply a color sample that includes background regions, then the
background color is included in the calculated color feature. You must use separate
preprocessing algorithms to separate the background region from the color sample
before you add the color sample to the NI Color Classifier.

> Note Because the Color Classifier supports all closed ROI types, you can use
any closed shape of a color region as a sample.

Feature Extraction

The Color Classifier uses the HSL color space to calculate a color feature for every
sample to be trained or classified. The color feature represents the three dimensional
color information of the sample in a one dimensional format. The Color Classifier
calculates the color feature according to the following steps:

1. Convert the color sample to the HSL color space.

2. Calculate the hue, saturation, and luminance histograms of the color sample. The
hue and saturation histograms each contain 256 values.

3. Reduce the luminance histogram to 8 values which are suppressed by 12.5%. By
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suppressing the luminance histogram, the Color Classifier accentuates the color
information for the sample.

\g : . :
 Note Because it suppresses the luminance histogram, the NI Color
Classifier cannot identify more than eight pure gray colors.

4. Combine the 520 hue, saturation, and luminance values to produce a high
resolution color feature.

5. Obtain medium and low resolution color features by applying a dynamic mask to
the high resolution color feature. The medium and low resolution color features
are subsets of the high resolution color feature. The medium resolution color
feature contains 128 hue and saturation values and 8 luminance values for a total
of 136 values. The medium resolution color feature contains 64 hue and saturation
values and 8 luminance values for a total of 72 values.

You can select a high resolution, medium resolution, or low resolution color feature.
Select the medium or low resolution color features to speed up color classification.

The dynamic mask that is applied to the high resolution color feature to produce the
medium and low color features selects the hue and saturation values that most
distinctly differentiate the color class from other color classes. The dynamic mask
varies based on the trained color samples. The Color Classifier calculates the dynamic
mask according to the following steps:

1. Calculate the mean hue and saturation histograms For each class label based on
trained samples.

2. Calculate the standard deviation on the mean histogram values across all the class
labels.

3. ldentify the 128 locations in the mean histograms with the highest standard
deviation values to produce the medium resolution color feature.

4. |dentify the 64 locations in the mean histograms with the highest standard
deviation values to produce the low resolution color feature.

5. Ensure that the dynamic mask contains at least one significant hue value and one
significant saturation value for the class.

The following figure illustrates example values of medium resolution and low
resolution masks for an example class.
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Saturation Luminance
High
512 of 512 locations enabled 512 of 512 locations enabled 8 locations
Medium
128 of 512 locations enabled 128 of 512 locations enabled 8 locations
Low

64 of 512 locations enabled 64 of 512 locations enabled 8 locations

The Color Classifier stores the high resolution color features for each sample in the
classifier file. If you select a medium or low resolution color feature, the Color
Classifier stores the dynamic mask for the medium or low resolution feature with the
classifier file.

Classification

During classification, the Color Classifier calculates the high resolution color feature
for each class, then applies any medium or low resolution mask stored in the classifier
file to produce the final color feature. The mask is applied to trained samples and the
color sample to be classified.

The general concepts of the general classification procedure for binary particle
classification also apply to color classification.

Related concepts:

« Binary Particle Classification
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Nearest Neighbor

Nearest neighbor classification includes Nearest Neighbor, K-Nearest Neighbor, and
Minimum Mean Distance algorithms. The most intuitive way of determining the class
of a feature vector is to find its proximity to a class or features of a class using a
distance function. Based on the definition of the proximity, there are several different
algorithms, as follows.

Distance Metrics

The Particle Classifier and the Color Classifier provide three distance metrics:
Euclidean distance, Sum distance, and Maximum distance.

Let X=[x1,X2,...Xn]l and Y =[y1, y2,...Yyn] be the feature vectors.

n 2
Euclidean distance (L2) dx, v) = \/Z (X,— Y,)
i=1
Sum distance, also known as the City-Block metric or Manhattan metric n
(L1) ’ dix, v) = Z': 1 (Xi_ Y‘)

dx, v) = max(X,-— v)

]

Maximum distance (L)

Nearest Neighbor Classifier

In Nearest Neighbor classification, the distance of an input feature vector X of
unknown class to a class Cj is defined as the distance to the closest sample that is used

to represent the class.

d(x, ¢) = mim d(x x)

where d(X,Xij) is the distance between X and Xij.

The classification rule assigns a pattern X of unknown classification to the class of its
nearest neighbor.
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min
X€E Class C, if d(X ¢)= " d[x C)
i

Nearest neighbor classification is the most intuitive approach for classification. If
representative feature vectors for each class are available, Nearest Neighbor
classification works well in most classification applications.

In some classification applications, a class may be represented by multiple samples
that are not in the same cluster, as shown in the following figure. In such applications,
the Nearest Neighbor classifier is more effective than the Minimum Mean Distance
classifier.

A X X X
Xx x %X x x
X HK ¥ X ¥
X x X
o 0 Ooo
Op {}D 0o
00 o y 02 0P
0 X X X 009,
X X 0
X N x X
X " x XX
-
o=Class 1
x=Class 2

K-Nearest Neighbor Classifier

In K-Nearest Neighbor classification, an input feature vector X is classified into class C;
based on a voting mechanism. The classifier finds the K nearest samples from all of the
classes. The input feature vector of the unknown class is assigned to the class with the
majority of the votes in the K nearest samples.

The outlier feature patterns caused by noise in real-world applications can cause
erroneous classifications when Nearest Neighbor classification is used. As the

ni.com



Machine Vision

following figure illustrates, K-Nearest Neighbor classification is more robust to noise
compared with Nearest Neighbor classification. With X as an input, K =1 outputs Label
1,and K= 3 outputs Label 2.

A
Label Label2
x _°° 4
ODHp g “00% o
0O I:||:| . 5
O © o
Label3
. O .
00 ] N
O - L][ 0
'
Minimum Mean Distance Classifier
Let {XI1,X/5, ... ,XJnj} be nj feature vectors that represent class Cj. Each feature vector

has the label of class j that you have selected to represent the class. The center of the
classjis defined as

1 ¥
M. =— .
J an-: 1 !
The classification phase classifies an input feature vector X of unknown class based on
its distance to each class center.

min
X € Class C, if d(X M)= " dx M)
I

where d(X,Mj) is defined as the distance function based on the distance metric selected
during the training phase.
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In applications that have little to no feature pattern variability or a lot of noise, the
feature patterns of each class tend to cluster tightly around the class center. Under
these conditions, Minimum Mean Distance classifiers perform effectively—only the
input vector distances to the centers of the classes need to be calculated instead of all
the representative samples in real-time classification.

Support Vector Machines

A Support Vector Machine (SVM) is a supervised learning method that generalizes a
large set of trained samples into a smaller number of support vectors to predict the
class of unknown samples.

A SVM classifier is mathematically more complex than a distance-based classifier.
However a SVM classifier has better generalization capabilities than a distance-based
classifier, and is faster when the sample set is large because the SVM classifier operates
only on the support vectors.

When to use
Use a SVM classifier in the following types of applications:

« The application has one class of good samples but an unknown number of classes
for bad samples. An example of this type of application is defect detection. For this
type of application, use a one-class SVM classifier to train samples of the known
good class. Samples, such as defects, that cannot be classified as the known class
are classified as unknown.

« The application requires a large number of training samples. During training, the
SVM classifier identifies support vectors for the training samples. During
classification the SVM classifier operates only on the support vectors, which
reduces the time required for classification.

In-Depth Discussion

The SVM algorithm builds a model to classify samples. The model represents the
samples in a multi-dimensional space where the samples are separated by the
maximum possible distance. For example, the following figure illustrates an
application that involves linearly-separable two classes represented in a two-
dimensional space.
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Samples of Class A
Samples of Class B
Support Vectors
Hyperplane
Margin

AW

The SVM algorithm uses a quadratic function to identify the support vectors for each
class. A support vector is a sample in one class that is closest to another class. The SVM
algorithm then identifies a hyperplane that separates the support vectors of each
class. The distance between the support vector and the hyperplane is called the
margin. The SVM algorithm selects a support surface that produces the largest
possible margin for each support vector.

Training

When you train the SVM classifier, the SVM algorithm uses an iterative process to
optimize the support vector function. You can control the optimization by using the
tolerance parameter in the software. Training is terminated when the gradient of the
optimized function is less than or equal to tolerance. A tolerance value that is too high
may cause the SVM algorithm to terminate training before the support vector function
is adequately optimized. A tolerance value that is too low will cause the SVM algorithm
to try to achieve a very high level of optimization, which may be too time-consuming
and computationally expensive.

Classification

When you use the SVM classifier, the SVM algorithm determines the class of an
unknown sample by comparing it with the support vectors of the trained samples. The
SVM algorithm uses the following formula to classify an unknown sample x:
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sgn

Z y,a,-K,-(x,-, X) +b

where;

« yiis the class association (-1 or +1),

« qjis the weight coefficient,

« Kis the kernel function x; is the number of support vectors,
+ bisthe distance of the hyperplane from origin.

Classification speed depends on the number of support vectors and the selected
kernel function. The weight coefficient aj, which is an output of the optimized support
vector function, determines the number of support vectors. If the weight coefficient of
a sampleis not equal to 0, the sample is a support vector.

Multi-Class SVM

SVM classification typically involves two classes. For applications that involve more
than two classes, the SVM algorithm uses a one-versus-one approach. In a one-versus-
one approach, the algorithm creates a binary classification model for every possible
combination of classes, so that n number of classes produces n x (n - 1)/2
classification models. During classification, the algorithm uses a voting mechanism to
identify the best class. If the voting mechanism identifies multiple classes, the
algorithm selects the class that is closest to the sample.

Models

The following sections describe the models that the SVM algorithm uses to classify
samples. Select a model based on the classes involved in your application. For
applications that involve a single class, such as texture defect detection, select the
one-class model. For applications that involve multiple classes, select the C-SVC or nu-
SVC models. For applications that involve multiple classes, always start with the nu-
SVC model.

C-SvC

The C-SVC model allows the SVM algorithm to clearly separate samples that are
separated by a very narrow margin. Training involves minimizing the error function:
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min

w, b, €°

SubjecttoYi(WTK( Xi)+b)=1-§;&=0,i=1...1
where:

« Wis the normal vector of the hyperplane to origin,
« Cisthe cost parameter,
« istheslackvariable.

If the SVM algorithm cannot define a clear margin, then it uses the cost parameter to
allow some training errors and produce a soft margin. If the cost value is too high it
prohibits training errors, producing a narrow margin and rigid classification.

Nu-SvC

In the Nu-SVC model, the nu parameter controls training errors and the number of
support vectors. Training involves minimizing the error function:

/

1.7 ]
Ww- vp+—;z 3

i=1

min

w, b, §

Subject to Yi(W'K(Xi) +b) = p - §; & =0,i=1...1;p=0
where:

« Wis the normal vector of the hyperplane to origin,
+ visthe nu parameter,
« Eistheslackvariable.

The nu value specifies both the maximum ratio of training errors and the minimum
number of support vectors relative to the number of samples. Nu must be greater than
0 and cannot exceed 1. A higher nu value increases tolerance for variation in the
texture, but may also increase tolerance for texture defects. If nu is too high, training
produces too many training errors to be useful.
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One-Class SVM

In the one-class model, the SVM algorithm considers the spatial distribution
information for each sample to determine whether the sample belongs to the known
class. Training involves minimizing the error function:

/

1,.T 1
SWW-p+3 g
w, b,E 2 v[z !

min
i=1
Subject to WTK(Xi) >p-¢;&=0,i=1...;p=0
where:

« Wis the normal vector of the hyperplane to origin,
+ visthe nu parameter,
« Eistheslackvariable.

Kernels

A SVM classifier is a linear classifier. Typically, a SVM classifier uses a linear kernel,
which is the product of the sample feature vector multiplied by the sample support
vector. A SVM classifier can also use the following nonlinear kernels.

. . Degree
Polynomial (Gamma X Kernel(x,, x) + Coefficient
2
Radial BasisFunction (RBF) e-Gamma(X,-+X)
2
. Xi_X)
Gaussian _
e 2><Sigma2

Use a nonlinear kernel to transform samples with nonlinear feature information to a
dimension where the feature information is linearly separable, as illustrated in the
following figures.

400 ni.com



Machine Vision

A
O O
O O o
m|
O
O O
O
O O
O
O 0O g
B

Figure A illustrates how a polynomial kernel separates nonlinear feature information.
Figure B illustrates how a RBF kernel separates nonlinear feature information . Figure C
illustrates the clearly devisable nonlinear feature information obtained after using a
nonlinear kernel to transform the sample to a dimension where the feature
information is linearly separable.

Choosing the Right Parameters

The following list provides information for selecting the right SVM parameters for your
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application.

« Model—If your application involves only one class, use the one-class model. If your
application involves more than one class, always start with the nu-SVC model.

+ Tolerance—Specifies the maximum gradient of the quadratic function used to
compute support vectors. Training is terminated when the gradient of the
optimized function is less than or equal to the tolerance value. The default value is
0.001. You typically do not need to change this value.

« nu—Specifies both the maximum ratio of training errors and the minimum number
of support vectors relative to the number of samples. Values must be greater than
0 and cannot exceed 1. The default value is 0.1 A higher nu value increases
tolerance for variation in the texture, but may also increase tolerance for texture
defects. If the texture classifier does not perform as expected because the trained
texture samples do not represent every possible variation of the texture, try
increasing the value of nu.

« Cost—Specifies the penalty for training errors. If the cost value is too high it
prohibits training errors, producing a narrow margin and rigid classification.
Decrease the cost value to allow more training errors and produce a softer margin
between classes.

« Kernel—Specifies the kernel that the classifier uses. RBF is the default value. In
general, you do not need to modify this setting. If the number of sample features is
high, try the linear kernel.

« Degree—Specifies the degree of the polynomial kernel. In general, select a value
less than 10.

« Gamma—Specifies the gamma value for the polynomial and RBF kernels. A high
value requires more support vectors to classify the sample. Use a high value for
samples with regularly distributed feature information, and a low value for
samples with irregularly distributed feature information. You may need to change
this value to support the values selected for Cost or nu. For example, if you specify
a high nu value, which raises the minimum number of support vectors, you may
also need to increase the value of Gamma.

If you use a custom classifier, specify a feature vector value for the custom classifier
that is greater than 0 but less than 1. Scaling the feature vector reduces overflow issues
and improves the classification rate.
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Custom Classification

You can define a custom feature extraction process for specific machine vision
applications using Vision.

When to Use

Typical applications include sorting and inspection applications for which you can
define a feature descriptor to represent the different classes in a specific application.
Examples of such feature descriptors include statistics about the grayscale pixel
distribution in an image, measurements from a Vision gauging tool, or color spectra
from Vision color learning algorithms.

Concepts

With custom classification, you create a classifier by training it with prelabeled training
feature vectors. NI Vision custom classification uses the same classification algorithms
as the Particle Classifier, including the Minimum Mean Distance, Nearest Neighbor, and
K-Nearest Neighbor classifications.

In-Depth Discussion

This section provides additional information you may need for making a successful
classification application.

Training Feature Data Evaluation

A good training data set should have both small intraclass variation and large
interclass variation. The NI Particle Classifier outputs an intraclass deviation array to
represent the deviation in each class, and a class distance table to represent the
deviation between the classes.

Intraclass Deviation Array

[Qj, Njl,j=1,2,...L, where Njis the number of samples in class j and L is the number of
classes. The number of samples Nj represents the statistical significance of Qj that is
defined as follows:
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Let {le, ij, e Xij} be Nj n-dimensional feature vectors that represent class Cj with Xij
= [xilj, Xi2 tj, .. xinj]T. Each feature vector has the label of class j that you have selected

to represent the class. Let Mj = [mlj, mzj, . mnj]T be the mean vector of the classj.
Then

1 nj .

M=ol X

where each element of the mean vector:
1 nj .

Mlk_ an.:l)(ik

The standard deviation of feature element k of class j is defined as:
1 nj S, 2

ij‘ njzi:l()(ik mlk)

The quality of feature datain class j is defined as:

maonl'{
Qj =
k

A small Qj indicates that the training data in class j is tightly clustered about the class
center. A large Qj indicates that the training data is spread out from the class center,
which may increase chances for misclassification.

Class Distance Table

Let M; = [mlj, mzj, - mnj]T be the mean vector of the class j as defined before. The
distance between two classes i and j is defined as follows:

dij= D(M', M)

where D is the distance metric selected from the training option.
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You can use the class distance table to examine statistical information, such as the two
closest class distances and the two most widely separated classes. Additionally, you
can use the class distance table with the intraclass deviation array to evaluate the
quality of different training data sets.

Determining the Quality of a Trained Classifier

The Particle Classifier outputs a classification distribution table that you can use to
determine the quality of a trained classifier. the Example Classification Distribution
Table table shows an example classification distribution table.

Example Classification Distribution Table

C1 Cc2 C3 Total Accuracy
Samples of Class C1 10 0 0 10 10/10=100%
Samples of Class C2 0 8 2 10 8/10=80%
Samples of Class C3 4 0 6 10 6/10=60%
Total 14 8 8 30 24 /30=80%
Predictive Value 10/14=71% 8/8=100% 6/8=75% -

In this example, assume that the classifier was given 30 samples to classify: 10 samples
known to be in class C1, 10 samples known to be in class C2, and 10 samples known to
bein class C3.

Classifier Predictability

The classification predictive value indicates the probability that a sample classified
into a given class belongs to that class. Use the columns of the table to determine the
predictive value, per class, of the classifier. Each column represents a class into which
the classifier classifies samples. The values in the columns indicate how many samples
of each class have been classified into the class represented by the column. For
example, 10 samples known to be in class C1 were correctly classified into class C1.
However, 4 samples known to be in class C3 were also classified into C1.

,\\’ Note The number of samples classified correctly into a class is located at the
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intersection of row Samples of Class x and column Cx.

Looking down a column, notice the number of samples that were classified correctly
into the class. Count the total number of samples classified into the class. The
predictive value of the class is the ratio of:

Number of Samples Classified Correctly
Total Number of Samples Classified into the Class

For example, the predictive value of class C1 is 71%.

10
10 + 4

=071 = T1%
Classifier Accuracy

The classification accuracy indicates the probability that a sample is classified into the
class to which it belongs. Use the rows of the table to determine the accuracy, per
class, of the trained classifier. The accuracy indicates the probability that the classifier
classifies a sample into the correct class. Each row shows how the classifier classified
all of the samples known to be in a certain class. In the example classification
distribution table, 8 of the samples known to be in class C2 were correctly classified
into class C2, but 2 of the samples known to be in class C2 were erroneously classified
into class C3.

Looking across a row, the accuracy of a class is the ratio of:

Number of Samples Classified Correctly
Total Number of Samples Known to Be the Class

For example, the accuracy of class C1 is 100%.

10

To = 1 = 100%

Identification and Classification Score

The Particle Classifier outputs both identification confidence and classification
confidence for the evaluation of classification results. The classification confidence
outputs a meaningful score for both sorting and inspection applications. Use the
identification confidence only when you cannot reach a decision about the class of a
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sample by using the classification confidence score alone.
Classification Confidence

The classification confidence indicates the degree to which the assigned class
represents the input better than the other classes represent the input. It is defined as
follows:

Classification Confidence=(1- dl d2)x 1000

where dj is the distance to the closest class, and dj is the distance to the second
closest class.

The distance is dependent on the classification algorithm used. Because 0 <dj; <1 and
0=<djy =1, the classification confidence is a score between 0 and 1000.

Identification Confidence

The identification confidence indicates the similarity between the input and the
assigned class. It is defined as follows:

Identification Confidence = (1 - d) x 1000
where d is the normalized distance between the input vector and the assigned class.

Distance d is dependent on the classification algorithm used.

d = Distance Between Input Sample and its Assigned Class
- Normalization Factor

The normalization factor is defined as the maximum interclass distance.
Calculating Example Classification and Identification Confidences

Assume a normalized scalar feature with a distribution in [0,1] from two classes of
patterns, as shown in the following figure. The centers of the two classes are 0.33 and
0.67, respectively. If the Minimum Mean Distance is used for classification with input
feature x = 0.6, the classification output is class 2, and the classification confidence is
calculated as:
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Classification confidence = (1

0.60 - 0.67
- ) x 1000 = 740

|0.60 - 0.33]

and the identification confidence is calculated as:

[0.60 - 067 |
© Jo.67 - 033
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For a feature value x = 0.5, the sample can be classified into class 1 or class 2 with the
classification confidence value equal to 0. For 0.4 <x < 0.5, the sample is classified into
class 1 with low classification confidence, while 0.5 <x < 0.6 is classified into class 2
with low classification confidence in a Minimum Mean Distance classification system.

Evaluating Classifier Performance

For a systematic approach to evaluating a classifier in the design phase, define a
testing data set in addition to a training data set. After you train the classifier using the
training data set, run the classifier using the testing data set. The output of the
classification confidence distribution is a good indicator of the classifier performance.
The classification confidence distribution is a histogram of the classification score. The
amplitude is the number of testing samples in a specific classification score.

the following figure shows the classification confidence distribution from a testing
database of mechanical parts. You can set a minimum classification score of 800 and
get a high classification rate for this testing database.
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the following figure shows the classification confidence distribution from a testing
database of animal crackers. If you use the same minimum classification score for
cracker image classification that you used for mechanical parts classification, you get a

high rate of false negatives because a large portion of the cracker classification scores
are less than 800.
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A classification confidence distribution from a representative testing database is a

good indicator for selecting a good score threshold for a specific inspection or sorting
application.

\ : e :
 Note A score threshold that can be used to reject classification results is

application dependent. Experiment with your classifier to determine an
effective threshold for your application.

Cross-Validation
Use cross-validation to check the accuracy of the classifier. For cross-validation,
trained samples are randomly divided into K groups, with the sample to class ratio

roughly equal for each group. The classifier trains K - 1 groups, reserving a group to
classify among the trained groups for validation. The cross-validation process is
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repeated to validate each group. The accuracy of the classifier is calculated with the
following formula.

Number of Correctly Classified Samples
Total Number of Samples

x 1000

Because the samples are randomly assigned to groups, the accuracy of the classifier
may change each time you perform cross-validation even if you do not add samples or
change settings. You can use this behavior to test the stability of the classifier. Minor
variations indicate a stable texture classifier and large variations indicate an unstable
texture classifier.

Defect Inspection

This section contains information about defect inspection.

When to Use Defect Maps

Defect maps aid in detecting defects in images and patterns when a template of the
same is known. The Pattern Matching algorithm provides an overall score for a match
(or matches). A more localized scoring mechanism has been developed which provides
more information about how each pixel of the match differs from the template and
hence is a great tool in detecting defects.

Defect Map Concepts

A defect map is a float-point image that has a score for every pixel. The higher the
score, the higher the probability of the pixel being a defect. The score ranges from 0 to
the square of the bit depth of the image. For example, an 8-bit image will have a score
range from 0 to 65535.

Pattern Matching/Geometric Matching provides an overall score for a match (or
matches). Pattern Matching/Geometric Matching stores the intermediate results of
every match found in the match image. These values are used to calculate the defect
map for every match.
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Pattern Matching workflow:
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Geometric Matching workflow:
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Weight Map

A weight map is the image used to specify weights to suppress noise and false defects
in the defect map. Pixels with lower weights are enhanced and pixels with higher
weights are suppressed in the defect map. The known patterns and noise in the
template can be learned and captured as a weight map. The weight map will then be
applied on the defect map to suppress this noise and enhance the real defect regions.

Template Image

Inspection Image
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Defect Overlayed

Related concepts:

+ Introduction
« Introduction

Golden Template Comparison

This section contains information about inspection based on golden template
comparison.

Introduction

Golden template comparison compares the pixel intensities of an image under
inspection to a golden template. A golden template is an image containing an ideal
representation of an object under inspection. A pixel in an inspection image is
returned as a defect if it does not match the corresponding pixel in the golden
template within a specified tolerance.

412  ni.com



Machine Vision

When to Use

Inspection based on golden template comparison is a common vision application. Use
golden template comparison when you want to inspect for defects, and other methods
of defect detection are not feasible. To use golden template comparison, you must be
able to acquire an image that represents the ideal inspection image for your
application.

Example applications in which golden template comparison would be effective include
validating a printed label or a logo stamped on a part.

Concepts

Conceptually, inspection based on golden template comparison is simple: Subtract an
image of an ideal part and another image of a part under inspection. Any visible
defects on the inspected part show up as differences in intensity in the resulting defect
image. The following figure illustrates this concept.

denizl llass

it s L !

+ Figure A shows the golden template in a label inspection application.
+ Figure B shows the inspection image.
+ Figure C shows the defect image.

Defect areas in which the inspection image was brighter than the template are overlaid
in green in the defect image. Defect areas in which the inspection image was darker
than the template are overlaid in red.

Using simple subtraction to detect flaws does not take into account several factors

about the application that may affect the comparison result. The following sections
discuss these factors and explain how Vision compensates for them during golden
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template comparison.

Alignment

In most applications, the location of the part in the golden template and the location

of the part in the inspection image differ. The following figure illustrates this concept
and shows how differing part locations affect inspection.

« Figure A shows the golden template.
« Figure B shows the inspection image.
+ Figure C shows the defect image.

The label in the inspection image is identical to the label in the golden template.
However, the part in the inspection image is located slightly higher and to the right
compared to the part in the golden template. Due to this the top and right areas of the
label are detected as dark defects compared to their corresponding pixels in the
template, which are white background pixels. Similarly, the left and bottom appear as
bright defects. The text and logo inside the label also appear as defects because of the
part misalignment.

Aligning the part in the template with the partin the inspection image is necessary for
an effective golden template comparison. To align the parts, you must specify a
location, angle, and scale at which to superimpose the golden template on the
inspection image. You can use the position, angle, and scale defined by other Vision
functions, such as pattern matching, or geometric matching, or edge detection.

Perspective Correction

The part under inspection may appear at a different perspective in the inspection
image than the perspective of the part in the golden template. The following figure
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illustrates this concept and shows how differing image perspectives affect inspection.

S 36

+ Figure A shows the golden template.
« Figure B shows the inspection image.
« Figure C shows the defect image.

The label in the inspection image is identical to the label in the golden template.
However, the left side of the part in the inspection image is closer to the camera than
the right side of the part, giving the part a warped perspective appearance. Although
the angles and scales of the labels are the same, the template is still misaligned
because of the perspective difference.

Golden template comparison corrects for perspective differences by correlating the
template and inspection image at several points. Not only does this correlation
compute a more accurate alignment, but it also can correct for errors of up to two
pixels in the input alignment.

Histogram Matching

The inspection images may be acquired under different lighting conditions than the
golden template. As a result the intensities between a pixel in the golden template and
its corresponding pixel in an inspection image may vary significantly. The following
figure illustrates this concept and shows how differing pixel intensities affect
inspection.
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« Figure A shows the golden template.
+ Figure B shows the inspection image.
« Figure C shows the defect image.

The label in the inspection image is identical to the label in the golden template.
However, the inspection image was acquired under dimmer lighting. Although the
images are aligned and corrected for perspective differences, the defect image
displays a single, large, dark defect because of the shift in lighting intensity.

Golden template comparison normalizes the pixel intensities in the inspection image
using histogram matching. Figure A shows the histogram of the golden template,
which peaks in intensity near 110 and then stays low until it saturates at 255. Figure B
shows the histogram of the inspection image, which peaks in intensity near 50 and
peaks again near 200.

Using a histogram matching algorithm, golden template comparison computes a
lookup table to apply to the inspection image. After the lookup table is applied, the
histogram of the resulting defect image, shown in figure C, exhibits the same general
characteristics as the template histogram. Notice the peak near 110 and the saturation
at 255.
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Machine Vision

Even after alignment, perspective correction, and histogram matching, the defect
image may return small defects even when the part under inspection seems identical
to the golden template. These small defects are usually confined to edges, or sharp
transitions in pixel intensities.

Figure A shows the golden template. Figure B shows the inspection image. The label in
the inspection image is almost identical to the label in the golden template. Figure C
shows insignificant defects resulting from of a small, residual misalignment or
quantization errors from the image acquisition. Although these minor variations do
not affect the quality of the inspected product, a similarly sized scratch or smudge not

on an edge would be a significant defect.
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To distinguish minor edge defects from significant defects, you can define edge areas
for golden template comparison to ignore using the Vision Template Editor. Differences
in areas you want to ignore are not returned as defects. You can preview different edge
thicknesses in the training interface, and optionally change edge thickness during
runtime.

Using Defect Information for Inspection

Golden template comparison isolates areas in the inspection image that differ from the
golden template. To use the defect information in a machine vision application, you
need to analyze and process the information using other NI Vision functions. Examples
of functions you can use to analyze and process the defect information include particle
filters, binary morphology, particle analysis, and binary particle classification.

Optical Character Recognition

This section contains information about optical character recognition (OCR).

Introduction

OCR provides machine vision functions you can use in an application to perform OCR.
OCR is the process by which the machine vision software reads text and/or characters
in an image. OCR consists of a training phase and either a reading or a verifying phase.

Training characters is the process by which you teach the machine vision software the
types of characters or patterns you want to read in the image during the reading
procedure. You can use OCR to train any number of characters, creating a character
set. The set of characters is later compared with objects during the reading and
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verifying procedures. You store the character set in a character set file. Training might
be a one-time process, or it might be a process you repeat several times, creating
several character sets to broaden the scope of characters you want to detect in an
image.

Reading characters is the process by which the machine vision application you create
analyzes an image to determine if the objects match the characters you trained. The
machine vision application reads characters in an image using the character set that
you created when you trained characters.

Verifying characters is a process by which the machine vision application you create
inspects an image to verify the quality of the characters it read. The application verifies
characters in an image using the reference characters of the character set you created
during the training process.

When to Use

Typically, machine vision OCR is used in automated inspection applications to identify
or classify components. For example, you can use OCR to detect and analyze the serial
number on an automobile engine that is moving along a production line. Using OCR in
this instance helps you identify the part quickly, which in turn helps you quickly select
the appropriate inspection process for the part.

You can use OCR in a wide variety of other machine vision applications, such as the
following:

Inspecting pill bottle labels and lot codes in pharmaceutical applications
Verifying wafers and IC package codes in semiconductor applications
Controlling the quality of stamped machine parts.

Sorting and tracking mail packages and parcels

Reading alphanumeric characters on automotive parts

Training Characters

Training involves teaching OCR the characters and/or patterns you want to detect
during the reading procedure.
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All the characters that have been trained with the same character value form a
character class. You can designate the trained character that best represents the
character value as the reference character for the character class.

The following figure illustrates the steps involved in the training procedure.

Acqguire
Image

v

Specify ROI

v

OCR Separates
Each Character from
Image Background

v

QOCH Extracts
Feature Information
for Each Character

v

Assign a Character
Value to Each
Segmented Character

1 | Assign a Reference
i Character to Each
i Character Class

Save Character Set to
Character Set File

’\\‘ Note The diagram item enclosed in dashed lines is an optional step.

The process of locating characters in an image is often referred to as character
segmentation. Before you can train characters, you must set up OCR to determine the
criteria that segment the characters you want to train. When you finish segmenting the
characters, use OCR to train the characters, storing information that enables OCR to
recognize the same characters in other images. You train the OCR software by
providing a character value for each of the segmented characters, creating a unique
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representation of each segmented character. You then save the character setto a
character set file to use later in an OCR reading procedure.

Refer to the NI OCR Training Interface Help that ships with the OCR Training Interface
for information about setting up and training characters using OCR.

Reading Characters

When you perform the reading procedure, the machine vision application you create
with OCR functions segments each object in the image and compares it to characters
in the character set you created during the training procedure. OCR extracts unique
features from each segmented object in the image and compares each object to each
character stored in the character set. OCR returns the character value of the character
in the character set that best matches the object and returns a nonzero classification
score. If no character in the character set matches the object, OCR returns the
substitution character as the character value and returns a classification score of zero.
After reading, you can perform an optional verifying procedure to verify the quality of
printed characters.

Refer to Chapter 5, Performing Machine Vision Tasks, of the Vision user manual for your
ADE for information about using OCR to read and analyze images for trained

characters.

The following figure illustrates the steps involved in the reading procedure.
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OCR Session

An OCR session applies to both the training and reading procedures. An OCR session
prepares the software to identify a set of characters during either the training
procedure or the reading procedure. A session consists of the properties you set and
the character set that you train or read from a file. OCR uses session information to
compare objects with trained characters to determine if they match. If you want to
process an image containing characters that you stored in multiple character sets, use
multiple OCR sessions simultaneously to read all the characters simultaneously.
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You also can merge several character sets in one session. If you choose to merge
multiple character sets, train each of the character sets with the same segmentation
parameters.

Concepts and Terminology

The following sections describe OCR concepts and terminology.
Region of Interest (ROI)

The ROl applies to both the training and reading procedures. During training, the ROl is
the region that contains the objects you want to train. During reading, the ROl is the
region that contains the objects you want to read by comparing the objects to the
character set. You can use the ROI to effectively increase the accuracy and efficiency of
OCR. During training, you can use the ROI to carefully specify the region in the image
that contains the objects you want to train while excluding artifacts. During reading,
you can use the ROI to enclose only the objects you want to read, which reduces
processing time by limiting the area OCR must analyze.

Particles, Elements, Objects, and Characters

Particles, elements, objects, and characters apply to both the training and reading
procedures. Particles are groups of connected pixels. Elements are particles that are
part of an object. For example, the dots in a dot-matrix object are elements. A group of
one or more elements forms an object based on the element spacing criteria. A
character is a trained object.

Patterns

Patterns are characters for which the character value is a string of more than one
character. For example, a logo is a pattern because it requires a string of more than one
character to describe it. Non-ASCII characters are also patterns.

Character Segmentation

Character segmentation applies to both the training and reading procedures.
Character segmentation refers to the process of locating and separating each character
in the image from the background.
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The following illustration shows the concepts included in the character segmentation

process.
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1. Acquired Image
2. ROI
3. Character Bounding Rectangle
4. Character
5. Artifact
6. Element
7. Vertical Element Spacing
8. Horizontal Element Spacing
9. Character Spacing

Thresholding

Thresholding is one of the most important concepts in the segmentation process.
Thresholding is separating image pixels into foreground and background pixels. The
standard thresholding method is referred to as global grayscale thresholding. Global
grayscale thresholding separates pixels based on their intensity values. Foreground
pixels are those whose intensity values are within the lower and upper threshold
values of the threshold range. Background pixels are pixels whose intensity values lie

outside the lower and upper threshold values of the threshold range.

OCR includes one manual method and three automatic methods of calculating the
thresholding range:

+ Fixed Range is a method by which you manually set the threshold value. This
method processes grayscale images quickly, but requires that lighting remain
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uniform across the ROl and constant from image to image.

The following three automatic thresholding methods are affected by the pixel
intensity of the objects in the ROL. If the objects are dark on a light background, the
automatic methods calculate the high threshold value and set the low threshold
value to the lower value of the threshold limits. If the objects are light on a dark
background, the automatic methods calculate the low threshold value and set the
high threshold value to the upper value of the threshold limits.

+ Uniform is a method by which OCR calculates a single threshold value and uses
that value to extract pixels from items across the entire ROI. This method is fast
and is the best option when lighting remains uniform across the ROI.

« Linear is a method that divides the ROl into blocks, calculates different threshold
values for the blocks on the left and right side of an ROI, and linearly interpolates
values for the blocks in between. This method is useful when one side of the ROl is
brighter than the other and the light intensity changes uniformly across the ROI.

« Non linear is a method that divides the ROl into blocks, calculates a threshold
value for each block, and uses the resulting value to extract pixel data.

OCR includes a method by which you can improve performance during automatic
thresholding, which includes the Uniform, Linear, and Non linear methods:

« Optimize for Speed allows you to determine if accuracy or speed takes precedence
in the threshold calculation algorithm. If speed takes precedence, enable Optimize
for Speed to perform the thresholding calculation more quickly, but less
accurately. If accuracy takes precedence, disable Optimize for Speed to perform
the thresholding calculation more slowly, but more accurately.

If you enable Optimize for Speed, you also can enable Bi modal calculation to
configure OCR to calculate both the lower and upper threshold levels for images
that are dominated by two pixel intensity levels.

Local Thresholding

Local thresholding, also known as "locally adaptive thresholding" is similar to global
grayscale thresholding. However instead of using a thresholding value based on the
entirety of the image to determine wether a pixel is part of the foreground or part of
the background, local thresholding categorizes a pixel based on the intensity statistics
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of neighboring pixels.
Color Thresholding

Thresholding a color image is similar to global grayscale thresholding, however an
individual threshold interval must be established for each of the color components.

Threshold Limits

Threshold limits are bounds on the value of the threshold calculated by the automatic
threshold calculation algorithms. For example, if the threshold limits are 10 and 240,
OCR uses only intensities between 10 and 240 as the threshold value. Use the
threshold limits to prevent the OCR automatic threshold algorithms from returning too
low or too high values for the threshold in a noisy image or an image that contains a
low population of dark or light pixels. The default range is 0 to 255.

Character Spacing

Character spacing is the horizontal distance, in pixels, between the right edge of one
character bounding rectangle and the left edge of the next character bounding
rectangle.

If an image consists of segmented or dot-matrix characters and the spacing between
two characters is less than the spacing between the elements of a character, you must
use individual ROIs around each character.

Element Spacing

Element spacing consists of horizontal element spacing and vertical element spacing.
Horizontal element spacing is the space between two horizontally adjacent elements.
Set this value to 1 or 2 for stroke characters and 4 or 5 for dot-matrix or segmented
characters. Dot-matrix or segmented characters are characters comprised of a series of
small elements. Stroke characters are continuous characters in which breaks are due
only to imperfections in the image. If you set the horizontal element spacing too low,
you might accidentally eliminate elements of an object. If you set the horizontal
element spacing too high, you might include extraneous elements in the object,
resulting in a trained object that does not represent a matchable character.
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Vertical element spacing is the space between two vertically adjacent elements. Use
the default value, 0, to consider all elements within the vertical direction of the ROl to
be part of an object. If you set vertical element spacing too high, you might include
artifacts as part of an object. If you set vertical element spacing too low, you might
eliminate elements that are part of a valid object.

The following illustrations shows how character spacing and element spacing affect
OCR.
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1. CorrectImage
2. Incorrect Element Spacing
3. Incorrect Character Spacing

Item 2 represents an image for which the horizontal element spacing was set
incorrectly. The letters O and R are divided vertically because horizontal element
spacing was set too low and the OCR segmentation process did not detect that the
elements represent a single character. The letter C is trained correctly because the
horizontal element spacing value falls within the range that applies to this character.
Item 3 represents an image for which the character spacing value was set too high, and
thus OCR segments all three letters into one character.
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Character Bounding Rectangle

The character bounding rectangle is the smallest rectangle that completely encloses a
character.

AutoSplit

AutoSplit applies to both the training and reading procedures. Use AutoSplit when an
image contains characters that are slanted. AutoSplit, which works in conjunction with
the maximum character bounding rectangle width, uses an algorithm to analyze the
right side of a character bounding rectangle and determine the rightmost vertical line
in the object that contains the fewest number of pixels. AutoSplit moves the rightmost
edge of the character bounding rectangle to that location. The default value is False.

Character Size

Character size is the total number of pixels in a character. Generally, character size
should be between 25 and 40 pixels. If characters are too small, training becomes
difficult because of the limited data. The additional data included with large
characters is not helpful in the OCR process, and the large characters can cause the
reading process to become very slow.

N 7
_/Q\_ Tip You can adjust the character size to filter small particles.

Shortest Segment

Segmentation by the shortest segment algorithm ensures valid segmentation even
when the characters are merged. The algorithm observes the max character with
configured by the user, or will automatically calculate a value if none has been set.

The algorithm uses the grayscale value of a character as a cost, and executes a shortest
path traversal from the top to the bottom of the character.

The algorithm works in three steps:
+ Attempt to divide the characters by applying multiple shortest path cuts.

+ Choose the cuts that are closest to the max character width.
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+ Intelligently choose the cuts which segment a character correctly based on
classification during reading.

Selected shortest path cuts based on max character width

N 7
_/Q\_ Tip For the best performance with the Shortest Segment algorithm, ensure
~  the bounding rectangle width parameters accurately match the character
width during Training. During Reading, if a character set file is loaded, the
user should only adjust the bounding box width if the default values are
unexpected.

Text Location

Text Location allows a user to set an ROl enclosing multiple lines of text. Multiline
detection will identify and return the number of lines bound within the specified ROI.
Text Location can detect lines irrespective of small rotations (+20°) and differing
character heights.

Text location uses particle analysis and clustering based on vertical overlap to detect
the lines in a specified ROI. Setting Number of Lines Expected to Auto Detect will
automatically detect the number of lines and apply character segmentation to all
lines.

If the number of lines expected is less than the number of lines identified, will return
the number of expected lines, choosing the lines with the highest ranked classification
score.
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Users should avoid using Text Location if the characters are printed using a dot matrix
printer and elements in the characters are widely spaced.

Substitution Character

Substitution character applies to the reading procedure only. OCR uses the
substitution character for unrecognized characters. The substitution characteris a
question mark (?) by default.

Acceptance Level

Acceptance level applies to the reading procedure. Acceptance level is a value that
indicates how closely a read character must match a trained character to be
recognized. Refer to the classification score section of this chapter for more
information about how the acceptance level affects character recognition. The valid
range for this value is 0 to 1000. The default value is 700. Experiment with different
values to determine which value works best for your application.

Read Strategy

Read strategy applies only to the reading procedure. Read strategy refers to the criteria
OCR uses to determine if a character matches a trained character in the character set.
The possible modes are Aggressive and Conservative. In Aggressive mode, the reading
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procedure uses fewer criteria than Conservative mode to determine if an object
matches a trained character. Aggressive mode works well for most applications. In
Conservative mode, the reading procedure uses extensive criteria to determine if an
object matches a trained character.

\g . : : .
 Note Conservative mode might result in OCR not recognizing characters.
Test your application with Conservative mode before deciding to use it.

Read Resolution

Read resolution applies to the reading procedure. When you save a character set, OCR
saves a variety of information about each character in the character set. Read
resolution is the level of character detail OCR uses to determine if an object matches a
trained character. By default, OCR uses a low read resolution, using few details to
determine if there is a match between an object and a trained character. The low read
resolution enables OCR to perform the reading procedure more quickly. You can
configure OCR to use a medium or high read resolution, and therefore use more details
to determine if an object matches a trained character. Using a high read resolution
reduces the speed at which OCR processes.

The low resolution works well with most applications, but some applications might
require the higher level of detail available in medium or high resolutions.

» Note Using medium or high resolution might result in OCR not recognizing
characters. If you choose to use medium or high resolution, test your
application thoroughly.

Valid Characters

Valid characters applies only to the reading procedure. Valid characters refers to the
practice of limiting the characters that the reading procedure uses when analyzing an
image. For example, if you know that the first character in an ROl should be a number,
you can limit the reading procedure to comparing the first character in the ROl only to
numbers in the character set. Limiting the characters that the reading procedure uses
when analyzing an image increases the speed and accuracy of OCR.
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Aspect Ratio Independence

Aspect ratio independence applies only to the reading procedure. Aspect ratio
independence is the ability to read characters at a different size and height/width ratio
than the training size and height/width ratio. To maintain performance in the OCR
process, National Instruments recommends you limit the difference to +50%. Avoid
creating character sets whose characters differ only in height and width. Consider
separating the characters into different character sets, using valid characters to restrict
trained characters, and enforcing the aspect ratio.

OCR Scores
The following sections describe the scores returned by the reading procedure.
Classification Score

The classification score indicates the degree to which the assigned character class
represents the input object better than other character classes in the character set. It is
defined as follows:

Classification Score = (1 - d1 [ d2) x 1000

where dj is the distance of the object to the best match in the closest class, and dj is
the distance of the object to the best match in the second closest class. Distance is
defined as a measure of the differences between the object and a trained character.
The smaller the distance, the closer the object is to the trained character. Because d; <
d», the classification score is between 0 and 1000. A trained character is considered a
match only if the distance between the object and the trained character is smaller than
a value controlled by the acceptance level. The larger the acceptance level, the smaller
the distance between the object and the trained character has to be for OCR to match
the object.

Verification Score

If an input object belongs to a character class for which a reference character has been
designated, OCR compares the object to the reference character and outputs a score
the indicates how closely the input object matches the reference character. The score
ranges from 0 to 1000, where 0 represents no similarity and 1000 represents a perfect
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match. You can use this score to verify the quality of printed characters.
Removing Small Particles

Removing small particles applies to both the training and reading procedures. The
process of removing small particles involves applying a user-specified number of x 3
erosions to the thresholded image. OCR fully restores any objects that remain after
applying the erosions. For example, in the following figure, if any portion of the letters
X and G remains after removing small particles, OCR fully restores the X and G.

1. Particle
Removing Particles That Touch the ROI

Removing particles that touch the ROl applies to both the training and reading
procedures. You can configure OCR to remove small particles that touch an ROl you
specified. Refer to the following figure for examples of particles that touch the ROI.

I 7
(5K
N

1. Particle to Remove
2. Incorrect Artifact to Remove
3. ROI
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Instrument Readers

This section contains information about instrument readers that read meters, liquid
crystal displays (LCDs), barcodes, and 2D codes.

Introduction

Instrument readers are functions you can use to accelerate the development of
applications that require reading meters, seven segment displays, barcodes, and 2D
codes.

When to Use

Use instrument readers when you need to obtain information from images of simple
meters, LCD displays, barcodes, and 2D codes.

Meter Functions

Meter functions simplify and accelerate the development of applications that require
reading values from meters or gauges. These functions provide high-level vision
processes to extract the position of a meter or gauge needle.

You can use this information to build different applications such as the calibration of a
gauge. Use the functions to compute the base of the needle and its extremities from an
area of interest indicating the initial and the full-scale position of the needle. You then
can use these Vs to read the position of the needle using parameters computed
earlier.

The recognition process consists of the following two phases:

+ Alearning phase during which the user must specify the extremities of the needle.
« An analysis phase during which the current position of the needle is determined.

The meter functions are designed to work with meters or gauges that have either a
dark needle on a light background or a light needle on a dark background.
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Meter Algorithm Limits

This section explains the limit conditions of the algorithm used for the meter
functions. The algorithm is fairly insensitive to light variations.

The position of the base of the needle is very important in the detection process.
Carefully draw the lines that indicate the initial and the full-scale position of the
needle. The coordinates of the base and of the points of the arc curved by the tip of the
needle are computed during the setup phase. These coordinates are used to read the
meter during inspection.

LCD Functions

LCD functions simplify and accelerate the development of applications that require
reading values from seven-segment displays.

Use these functions to extract seven-segment digit information from an image.
The reading process consists of two phases:

+ Alearning phase during which the user specifies an area of interest in the image to
locate the seven-segment display.

+ Areading phase during which the area specified by the user is analyzed to read the
seven-segment digit.

The NI Vision LCD functions provide the high-level vision processes required for
recognizing and reading seven-segment digit indicators. The LCD functions are
designed for seven-segment displays that use either LCDs or LEDs composed of
electroluminescent indicators or light-emitting diodes, respectively.

The LCD functions can perform the following tasks:

+ Detect the area around each seven-segment digit from a rectangular area that
contains multiple digits

+ Read the value of a single digit

+ Read the value, sign, and decimal separator of the displayed number
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LCD Algorithm Limits
The following factors can cause a bad detection:

« Very high horizontal or vertical light drift

+ Very low contrast between the background and the segments
« Very high level of noise

« Very low resolution of the image

Each of these factors is quantified to indicate when the algorithm might not give
accurate results.

Light drift is quantified by the difference between the average pixel values at the top
left and the bottom right of the background of the LCD screen. Detection results might
be inaccurate when light drift is greater than 90 in 8-bit images.

Contrast is measured as the difference between the average pixel valuesin a
rectangular region in the background and a rectangular region in a segment. This
difference must be greater than 30 in 8-bit images, which have 256 gray levels, to
obtain accurate results.

Noise is defined as the standard deviation of the pixel values contained in a
rectangular region in the background. This value must be less than 15 for 8-bit images,
which have 256 gray levels, to obtain accurate results.

Each digit must be larger than 18 x 12 pixels to obtain accurate results.

Barcode Functions

Vision currently supports the following barcode formats: Code 25, Code 39, Code 93,
Code 128, EAN 8, EAN 13, Codabar, MSI, UPC A, Pharmacode, and GS1 DataBar Limited
(previously referred to as RSS-14 Limited).

The process used to recognize barcodes consists of two phases:

+ Alearning phase in which the user specifies an area of interest in the image which
helps to localize the region occupied by the barcod.
« The recognition phase during which the region specified by the user is analyzed to
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decode the barcode.
Barcode Algorithm Limits
The following factors can cause errors in the decoding process:

« Very low resolution of the image

« Very high horizontal or vertical light drift
+ Contrast along the bars of the image

+ High level of noise

The limit conditions are different for barcodes that have two different widths of bars
and spaces—such as Code 39, Codabar, Code 25, MSI, and Pharmacode—and for
barcodes that have more than two widths of bars and spaces—such as Code 93, Code
128, EAN 13, EAN 8, and UPC A, and GS1 DataBar Limited (previously referred to as
RSS-14 Limited).

The resolution of an image is determined by the width of the smallest bar and space.
These widths must be at least 3 pixels for all barcodes.

Light drift is quantified by the difference between the average of the gray level of the
left, or upper, line and the right, or bottom, line of the background of the barcode.
Decoding inaccuracies can occur if the light drift is greater than 120 for barcodes with
two different widths of bars and spaces and greater than 100 for barcodes with four
different widths of bars and spaces.

In overexposed images, the gray levels of the wide and narrow bars in the barcode
tend to differ. Decoding results may not be accurate when the difference in gray levels
is less than 80 for barcodes with two different widths of bars and spaces, and less than
100 for barcodes with four different widths of bars and spaces.

Consider the difference in gray levels between the narrow bars and the wide bars. The
narrow bars are scarcely visible. If this difference of gray level exceeds 115 on 8-bit
images (256 gray levels) for barcodes with two different widths of bars and spaces and
100 for barcodes with four different widths of bars and spaces, the results may be
inaccurate.

Noise is defined as the standard deviation of a rectangular region of interest drawn in
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the background. It must be less than 57 for barcodes with two different widths of bars
and spaces and less than 27 for barcodes with four different widths of bars and spaces.

Reflections on the barcode can introduce errors in the value read from the barcode.
Similarly, bars and spaces that are masked by the reflection produce errors.

2D Code Recognition

The term 2D code refers to both matrix codes and multi-row barcodes. Matrix codes
encode data based on the position of square, hexagonal, or round cells within a
matrix. Multi-row barcodes are codes that consist of multiple stacked rows of barcode
data. NI Vision currently supports the PDF417, Data Matrix, QR Code, and Micro QR
Code formats. The process used to recognize 2D codes consists of two phases:

« Acoarse locating phase during which the user specifies an ROl in the image, which
helps localize the region occupied by the 2D code. This phase is optional, but it can
increase the performance of the second phase by reducing the size of the search
region.

+ Alocating and decoding phase during which the software searches the ROl for one
or more 2D codes and decodes each located 2D code.

What to Expect from 2D Code Recognition

The following factors can cause errors in the search and decoding phases or 2D code
recognition:

+ Very low resolution of the image.

« Very high horizontal or vertical light drift.

+ Contrast along the bars of the image.

« High level of noise or blurring.

« Inconsistent printing or stamping techniques, such as misaligned code elements,
inconsistent element size, or elements with inconsistent borders.

« In PDF417 codes, a quiet zone that is too small or contains too much noise.

Related concepts:

« 2D Code Recognition
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Data Matrix Concepts

A Data Matrix code is a matrix built on a square or rectangular grid with a finder pattern
around the perimeter of the matrix. Each cell of the matrix contains a single data cell.
The cells can be either square or circular.

Locating and decoding Data Matrix codes requires a minimum cell size of 2.5 pixels.
Locating and decoding Data Matrix codes also requires a quiet zone of at least one cell
width around the perimeter of the code. However, a larger quiet zone increases the
likelihood of successful location. Each symbol character value is encoded in a series of
data cells called a code word.

Data Matrix codes use one of two error checking and correction (ECC) schemes. Data
Matrix codes that use the ECC schemes 000 to 140 are based on the original
specification. These codes use a convolution error correction scheme and use a less
efficient data packing mechanism that often requires only encoding characters from a
particular portion of the ASCII character set. Data Matrix codes that use the ECC 200
scheme use a Reed-Solomon error correction algorithm and a more efficient data
packing mechanism. The ECC 200 scheme also allows for the generation of multiple
connected matrices, which enables the encoding of larger data sets. The following
figure shows an example of a Data Matrix code:

Quiet Zone
Finder Pattern
Clock Pattern
Data Cell

=

Related concepts:

« 2D Code Recognition
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Quality Grading

Vision can assess the quality of a Data Matrix code based on how well the code meets
certain parameters. For each parameter, Vision returns one of the following letter
grades: A, B, C, D, or F. An A indicates that the code meets the highest standard for a
particular parameter. An F indicates that the code is of the lowest quality for that
parameter. NI Vision support the following grading standards:

+ 1SO 16022
+ 1SO 15415
« AIMDPM

Related concepts:

« Data Matrix Concepts

Decode

The decoding process tests whether the Data Matrix features are correct enough to be
readable when the code is optimally imaged. The code is assigned an A or F, based on
whether the decoding is successful or not. The decoding process also locates and
defines the area covered by the code in the image, adaptively creates a grid mapping
of the data cell centers, and performs error correction.

Related concepts:

« Quality Grading

Symbol Contrast

The symbol contrast test determines whether the light and dark pixels in the image are
sufficiently and consistently distinct throughout the code. All pixels are sorted by their
reflectance values to determine the darkest 10% and lightest 10%. The mean
reflectance of the darkest 10% and the mean reflectance of the lightest 10% are
calculated. The difference of the two means is the symbol contrast. The following list
shows how the symbol contrast is graded.
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.0) if symbol contrast = 70%
.0) if symbol contrast = 55%
.0) if symbol contrast = 40%
.0) if symbol contrast = 20%
(0.0) if symbol contrast <20%

The following figure shows a Data Matrix code with a symbol contrast value of 8.87%,
which returns a grade of F.

Related concepts:

+ Quality Grading

Print Growth

The print growth test determines the extent to which dark or light markings
appropriately fill their cell boundaries. This parameter is an important indication of
process quality, which affects the reading performance of the function. The print
growth grade is based on the dimension with the largest print growth (D'). The
dimensions (D) of the markings are determined by counting pixels in the image.
Horizontal and vertical dimensions are checked separately. For each dimension, the
following values are specified:

« nominal value (Dnom) =0.50
« maximum value (Dmax) = 0.65
« minimum value (Dmin) =0.35

Normalize each measured D to its corresponding nominal and limit values:

if D> Dnom, then D' = (D - Dnom)/ (Dmax - Dnom) otherwise D' = (D - Dnom)/ (Dnom - Dmin)
The following list shows how print growth is graded:
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)if-0.50<D'<0.50
)if-0.70<D'<0.70
)if-0.85<D'<0.85
)if-1.00<D'<1.00

The following figure shows a Data Matrix code with a print growth value of 0.79, which
returns a grade of C.

Related concepts:

+ Quality Grading

Axial Nonuniformity

Axial nonuniformity is a measure of how much the sampling point spacing differs from
one axis to another.

Axial nonuniformity measures and grades the spacing of the cell centers. Axial
nonuniformity tests for uneven scaling of the code, which would inhibit readability at
some atypical viewing angles. The spacings between adjacent sampling points are
independently sorted for each polygonal axis. Then the average spacing (Xavg) along
each axis is computed.

Axial Nonuniformity = abs(Xavg - Yavg)/((Xavg * Yavg)/2)

where abs() yields the absolute value. The following list shows how axial
nonuniformity is graded.
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if axial nonuniformity < 0.06

(4.0)
(3.0) if axial nonuniformity < 0.08
(2.0)
)

.0) if axial nonuniformity <0.10
(1.0) if axial nonuniformity <0.12
(0.0) if axial nonuniformity > 0.12

A (4.0
B (3.0
C (2.0
D (1.0
F

The following figure shows a Data Matrix code with an axial nonuniformity value of
0.2714, which returns a grade of F.

Related concepts:

+ Quality Grading

Unused Error Correction

Unused error correction tests the extent to which regional or spot damage in the
symbol has eroded the reading safety margin that the error correction provides. The
convolutional error encoding for Data Matrix codes ECC 000-ECC 140 can correct for the
following maximum percentages of bit errors (Emax):

« ECC000: Emax =0.0%
« ECC050: Emax=2.8%
« ECC080: Emax =5.5%
« ECC100: Emax=12.6%
« ECC 140: Emax =25.0%
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The actual percentage of bit errors (Eact) is the number of bits that were corrected

divided by the total number of bits in the symbol data fields. The unused error
correction for Data Matrix codes ECC 000-ECC 140 is expressed as:

Unused Error Correction =1.0 - (Eact / Emax)

For ECC 200 codes, the correction capacity of the Reed-Solomon decoding is expressed
as:

et+22tsd-p

where

e is the number of erasures

tis the number of errors

d is the number of error correction code words

p is the number of code words reserved for error detection

Values for d and p are defined by the specification for the given symbol. Values e and t
are determined during a successful decode process. The amount of unused error
correction is computed as:

Unused Error Correction=1.0- (e +2t) /(d - p)

In codes with more than one Reed-Solomon block, the unused error correction is
calculated for each block independently, and the lowest value is used to calculate the
unused error correction grade. The following list shows how unused error correction is
graded.

A (4.0) if unused error correction = 0.62
« B(3.0) if unused error correction = 0.50
« C(2.0) if unused error correction =0.37

D (1.0) if unused error correction = 0.25

F

(0.0) if unused error correction <0.25

0
0
0
0

The following figure shows a Data Matrix code with an unused error correction value of
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0.00, which returns a grade of F.

K
' Bea ¥y
kf.-:-ll’.:

Related concepts:

« Quality Grading

Overall Symbol Grade

The overall symbol grade is the lowest of the grades from the other symbol
parameters.

Related concepts:

+ Quality Grading

ISO 15415 Grading Standard Concepts

ISO 15415 is an extension of the ISO 16022 grading system. ISO 15415 uses the grading
parameters of the ISO 16022 grading scheme, as well as the following additional
parameters:

« Modulation
« Grid Nonuniformity
+ Fixed Pattern Damage

Related concepts:

+ Quality Grading
« Decode

« Symbol Contrast
+ Print Growth
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« Axial Nonuniformity
« Unused Error Correction
o Overall Symbol Grade

Modulation

Modulation is a measure of the uniformity of reflectance of the dark and light modules
in a 2D barcode. Lower modulation may increase the probability of a module being
incorrectly identified as dark or light.

Modulation is affected by print growth or loss, defects, reflectance, and variation of the
ink coverage. For example, the following figure illustrates a Data Matrix with variations
in reflectance:

Modulation is expressed as:

Modulation =2 - (abs(R - GT))/SC

where,

Ris the reflectance of the module closest to the global threshold in the codeword,
GT is the global threshold.

The mean reflectance of the darkest 10% and the mean reflectance of the lightest 10%
is determined. The average of the two means is taken as the global threshold.

The modulation grade for a codeword is computed as the minimum grade of all the
data cells in a particular codeword. The final modulation grade is determined by
comparing the number of codewords with a particular grade or higher and the error
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correction capacity of the given data matrix barcode. The following list shows how
codeword grading for modulation is calculated.

0) if modulation =0.50
3.0) if modulation = 0.40
2.0) if modulation =0.30
1.0) if modulation = 0.20

Related concepts:

« ISO 15415 Grading Standard Concepts

Fixed Pattern Damage

Fixed pattern damage measures the damage in the finder pattern, quite zone, clock
pattern and solid area segment regions. Pattern damage can be caused by an improper
printer nozzle, a faulty thermal element, or physical damage to the barcode.

The following figure illustrates damage to the fixed pattern and the clock pattern:
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The overall fixed pattern grade is the average of all grades. The final grade is the
minimum of the finder pattern grade, quiet zone grade, clock pattern grade, solid area
grade, or overall fixed pattern grade. The following list shows how overall fixed pattern
damage is calculated.

A (4.0) if overall FPD grade =4.0
« B(3.0)if overall FPD grade = 3.5
« C(2.0) if overall FPD grade = 3.0

D (1.0) if overall FPD grade = 2.5

F

(0.0) if overall FPD grade < 2.5

0
0
0
. 0

The following figure shows a Data Matrix code with a fixed pattern damage score of 2.4,
which returns a grade of F and modulation grade of C.

« 1S0O 15415 Grading Standard Concepts

Grid Nonuniformity

Grid nonuniformity measures the largest deviation of the grid centers from their ideal
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theoretical position, as determined by the reference decode algorithm. The
measurements are expressed as a fraction of the width of the symbol under test. The
following image illustrates grid nonuniformity by comparing an actual symbol under
test with the border of the ideal grid position.

1. Symbol under test
2. ldeal grid position outline

The following list shows how grid non-uniformity is graded.

4

0) if grid non uniformity <0.38
0) if grid non uniformity < 0.50
0) if grid non uniformity < 0.63
0) if grid non uniformity <0.75
(0.0) if grid non uniformity > 0.75

A (4.

B (3.
« C(2.

D (1.

F
The following figure shows a Data Matrix code with a grid nonuniformity score of 1.88,
which returns a grade of F.

Related concepts:

« 1S0O 15415 Grading Standard Concepts

© National Instruments 449



450

Machine Vision

Scan Grade

The overall symbol grade is the lowest of the grades from the other symbol
parameters. The scan grade applies to the current image and contributes to the overall
symbol grade.

Related concepts:

« ISO 15415 Grading Standard Concepts

Overall Symbol Grade

The overall symbol grade evaluates apparent variation in symbol characteristics when
the Data Matrix code is viewed from different orientations relative to optical axis of
camera.

The overall symbol grade requires five images of the Data Matrix code, acquired using
the same aperture and light source, in which the Data Matrix code is rotated by 72°
(+5°) for each image. The overall symbol grade is the mean of the scan grades for each
of the five images. If any two acquired images provide different decoded data, the
overall symbol grade is 0.

Related concepts:

+ 1SO 15415 Grading Standard Concepts

AIM DPM Grading Standard Concepts

AIM DPM is an extension of the ISO 15415 grading system that requires an initial system
adjustment for gain and exposure parameters prior to grading.

To perform the adjustment, calculate the mean of the light lobes of a given data matrix
barcode. If the mean of the light lobes is not within the range of 70-86%, adjust the
gain and exposure parameters and repeat the calculation. AIM DPM uses the decode,
print growth, axial nonuniformity, unused error correction, grid nonuniformity, fixed
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pattern damage, scan grade, and overall symbol grade parameters of the ISO 15415
grading scheme, as well as the following additional parameters:

o Cell Contrast
+ Cell Modulation
o Minimum Reflectance

Cell Contrast

Cell contrast tests whether the light and dark pixels in the image are sufficiently and
consistently distinct throughout the code. The angle of illumination, reflectance, and
variation of ink coverage can all affect cell contrast. The cell contrast parameter is
similar to the symbol contrast parameter used in the ISO 15415 grading scheme;
however, the process for computing cell contrast is different from the process used to
compute symbol contrast.

To compute cell contrast, a histogram is constructed using the grid centers of the data
matrix code. Mean light and mean dark values are computed for the light and dark
elements of the grid center, and are used to calculate the cell contrast as shown in the
following equation:

Cell Contrast = (Mean Light - Mean Dark) / Mean Light
The following list shows how cell contrast is graded.

if cell contrast=0.3

4.0)
0) if cell contrast = 0.25
0)
0)

(
(
( if cell contrast=0.20
( if cell contrast=>0.15
(0.0) if cell contrast<0.15

3.
2.
1.

A
B
C
D
F

AW

The following figure shows a Data Matrix code with a cell contrast of 0.7045, which
produces a grade of A.
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Related concepts:

« AIM DPM Grading Standard Concepts

Cell Modulation

The cell modulation parameter is similar to the modulation parameter used in the ISO
15415 grading scheme; however, the process for computing cell modulation is
different from the process used to compute modulation. Cell modulation is computed
according to the following formula:

If (R<T2)then CM =(T2-R)/(T2 - MD) otherwise CM = (R - T2)/(Mean Light Target - T2)

where R is the reflectance of the cell T2 is the threshold created using the historgram of
the grid center MD is the mean of the dark lobe from the final grid-point histogram
Mean Light Target is the mean of the light lobe from the final grid-point histogram The
following list shows how codeword grading for modulation is calculated.

if modulation = 0.50

4.0)
) if modulation = 0.40
)
)

e A

- B

« C if modulation =0.30
D if modulation =0.20
F

(0.0) if modulation <0.20

(4.0
(3.0
(2.0
(1.0

The following figure shows a Data Matrix code with a cell modulation grade of D.

ni.com



Machine Vision

« AIM DPM Grading Standard Concepts

Minimum Reflectance

Minimum reflectance is the minimum reflectance required by the symbol under test
compared to a standard calibration card.

To produce the calibration values required to calculate minimum reflectance, use a
calibration card and perform the initial system adjustment required for AIM PDF. The
gain and exposure settings used during the initial system adjustment define the
calibrated system parameter for the minimum reflectance calculation. The mean light
value produced by the adjustment defines the calibrated mean light parameter for the
minimum reflectance calculation.

Following calibration, repeat the process with the data matrix symbol under test. If the
mean light value does not fall within the desired range of 70-86%, adjust the system
parameter. The gain and exposure settings used under test define the target system
parameter for the minimum reflectance calculation. The mean light value produced
under test defines the target mean light parameter for the minimum reflectance
calculation. The reflectance for the symbol to grade is defined by the following
equation:

Calibrated System Parameter _ Target Mean Light
Target System Parameter Calibrated Mean Light

Minimum Reflectance-

The following list shows how minimum reflectance contrast is graded.

« A(4.0) if Minimum Reflectance = 5%
« F(0.0) if Minimum Reflectance < 5%

© National Instruments 453



Machine Vision

Related concepts:

« AIM DPM Grading Standard Concepts

PDF417 Concepts

A PDF417 code is a multi-row barcode in which each data element is encoded in a code
word. Each row consists of a start pattern, a left row indicator code word, one to 30
data code words, a right row indicator code word, and a stop pattern. Each code word
consists of 17 cells and encodes four bars and four spaces. Each bar and each space
has a maximum width of six cells.

Locating and decoding PDF417 codes requires a minimum cell size of 1.5 pixels and a
minimum row height of 4.5 pixels. Locating and decoding PDF417 codes also requires
a quiet zone of at least one cell width around the perimeter of the code. However, a
larger quiet zone increases the likelihood of successful location. The following figure
shows an example of a PDF417 code:

N
[y (]
1
Quiet Zone

Start Pattern

Left Row Indicator
Data Code Words
Right Row Indicator
Stop Pattern

I

Related concepts:

« 2D Code Recognition
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QR Code Concepts

A QR Code is a matrix built on a square grid with a set of finder patterns located at
three corners of the matrix. Finder patterns consist of alternating black and white
square rings. The size of the matrix can range from a minimum size of 21 x21uptoa
maximum size of 177 x 177. Each cell of the matrix contains a single data cell. Matrix
cells are square and represent a single binary 0 or 1.

Locating and decoding QR Codes requires a minimum cell size of 2.5 pixels. Locating
and decoding PDF417 codes also requires a quiet zone of at least one cell width
around the perimeter of the code. However, a larger quiet zone increases the
likelihood of successful location. Each symbol character value is encoded in a unit
called a code word consisting of 8 cells or one byte of data.

QR Codes have built in error checking and correction (ECC) using the standard Reed-
Solomon scheme for error correction. The amount of error correction capability of
each code is selectable during the printing process. In general, the QR Code can
correct for anywhere from 7% to 30% of error depending upon the selection made at
print time.

The following figure shows a example of a QR Code:

(OO (2)

i

= 9
1. Quiet Zone
2. Finder Pattern
3. Data Cell

Related concepts:

+ 2D Code Recognition

Micro QR Code Concepts

A Micro QR Code is a smaller version of the standard QR Code. Micro QR Codes have
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only one finder pattern located at one corner of the matrix. The size of a Micro QR Code
can range from a minimum size of 11 x 11 up to a maximum size of 17 x 17.

The following figure shows an example of a Micro QR Code:

1. Quiet Zone
Finder Pattern
3. Data Cell

N

Related concepts:

« QR Code Concepts

Stereo Vision

A stereo vision system uses multiple cameras to acquire multiple overlapping images
of a single region of interest within a scene. Use a stereo vision system to compute
relative depth information or precise 3D measurements for a scene.

Stereo Vision in Vision

Vision supports binocular stereo vision systems. A binocular stereo vision system uses
exactly two cameras. Ideally, the two cameras are separated by a short distance, or
baseline, and are mounted almost parallel to one another.

Related concepts:

o Stereo Vision

When to Use Stereo Vision

A stereo vision system requires fixed camera settings and locations during and after
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calibration. As a result, a stereo vision system is not suitable for applications where the
platform on which cameras are mounted can experience strong disturbances. It is also
not suitable for applications which require changing camera settings while making
measurements. For best results, Vision prefers a horizontal baseline, or a system where
the horizontal distance exceeds the vertical distance between the two cameras.

A typical stereo vision system is passive. Stereo vision systems use stationary cameras
and do not require moving parts, such as a laser. A stereo vision system allows you to
establish a stereo correspondence and calculate the disparity, or horizontal difference,
between corresponding, or conjugate, points in images captured by the system.
Disparity information is rendered as a disparity map, which you can use to determine
the relative depth of an object.

Stereo images can also be processed to produce very dense depth information that
can be mapped to real-world coordinates.

Disparity and depth information produced with a stereo vision system can be used in
conjunction with other algorithms, such as pattern matching or object tracking, to
profile stationary or moving objects.

Related concepts:

« Stereo Vision

Stereo Vision in Navigation Applications

Stereo vision systems are commonly used by robots for navigation. Autonomous
mobile robots use relative distance information available from disparity maps to avert
obstacles. Such robots might also use depth information to measure size and distance
of obstacles for accurate path planning. Stereo vision systems are also used for
navigation by outdoor autonomous vehicles, hospital service robots and automobile
systems for providing depth information to human drivers.

Related concepts:

« When to Use Stereo Vision
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Stereo Vision in Robotic Applications

A stereo vision system is useful in robotic industrial automation of tasks such as bin
picking or crate handling.

A bin-picking application requires a robot arm to pick a specific object from a
container that holds several different kinds of parts. With a single camera, part
occlusion and lighting variation make it difficult to determine which part is on top of
the pile and easy to grasp. A stereo vision system can provide an inexpensive way to
obtain 3D information and determine which parts are free to be grasped.

Stereo vision is also effective in crate handling applications; for example, using a
robotic arm to remove fruit or bottles from a crate. 3D information obtained from a
stereo vision system can provide precise locations for individual fruits or the caps of
bottles in a crate. This enables applications in which a robot arm picks an object from
a pallet and moves it to another pallet or process.

Related concepts:

« When to Use Stereo Vision

Stereo Vision in Machine Vision Applications

3D information can be used to locate objects in machine vision applications. For
example, you can use 3D information to identify individual fruit for inspection or to
verify the presence of pills in a blister pack. 3D information can also be used to inspect
and make measurements on automotive parts or electronic components such as
solder paste or ball-grid arrays.

Related concepts:

+ When to Use Stereo Vision

Stereo Vision in Surveillance Applications
Stereo vision systems are good for tracking applications because they are robust in the

presence of lighting variations and shadows. A stereo vision system can accurately
provide 3D information for tracked objects which canbeused to detect abnormal
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events, such as trespassing individuals or dropped baggage. Stereo vision systems can
also enhance biometric systems such as facial recognition systems.

Related concepts:

« When to Use Stereo Vision

What to Expect from a Stereo Vision System

This topic describes conditions that can affect the performance of a stereo vision
system. Depth resolution refers to the accuracy with which a stereo vision system can
estimate changes in the depth of a surface. Depth resolution is represented by the
following equation:

where,

zis the depth of the object from the stereo system,
fis the focal length,

b is the baseline,

d is disparity.

Depth resolution is proportional to the square of the depth (z) and is inversely
proportional to the focal length (f) and baseline (b), or distance between the cameras.

Good depth resolution requires a large baseline (b) value, a large focal length (f) value
and a small depth (z) value.

Depth resolution depends on accurate disparity estimations. The accuracy of disparity
estimation is directly proportional to pixel size, where smaller pixel sizes provide
better resolution. Typically, disparity can be estimated accurately to about one fifth of
a pixel. For a camera with a pixel size of 7.5 microns, this translates to a disparity
resolution of 1.5 microns.
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The following figure illustrates the relationship of the depth resolution to the depth of
an object for a given focal length and baseline, and a disparity resolution of 1.5
microns.

i8
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Range of depth refers to the minimum and maximum distances of objects that can be
measured by the stereo vision system for a given maximum disparity. For a simple
stereo system, the depth of a point (z) is given by:

=2
where,

fis the focal length,
b is the baseline,

d is disparity.

The following figure plots depth values as a function of disparity, assuming a focal
length (f) of 8mm, baseline (b) of 10cm and pixel size of 7.5 microns:
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The figure illustrates that for an object which is approximately 1000 mm from the
stereo system the disparity value is more than 100 pixels. The disparity value reduces
drastically as depth reaches approximately 6000 mm.

In Vision, maximum disparity indicates maximum difference between conjugate points
in rectified stereo images. The horopter, or range of depth values, is limited by the
number of disparities you specify when computing a disparity map. For example, if the
number of disparities is set to 32 with a minimum disparity of 0, the horopter extends
from approximately 3400 mm to infinity.

To estimate the depth of objects you want to inspect, make sure that the objects are
within the horopter. In most cases, this involves specifying a minimum disparity value
of 0 and specifying a number of disparities large enough to include the closest object.

Without increasing the number of disparities, the size of the horopter can only be
increased by decreasing the baseline, decreasing the focal length, or increasing the
pixel width of the sensor. Any of these changes cause an undesirable increase in depth
resolution. If you increase the size of the baseline, ensure that the object under
inspection remains within overlapping regions of interest. If you decrease the focal
length, ensure that the object of interest remains in focus to ensure accurate matching.

Related concepts:

o Stereo Vision
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Stereo Vision Concepts

This section explains the basic principles of binocular stereo vision system for a
simplified set-up. A typical stereo vision system incorporates the following steps in
order to compute 3D information:

1.

Perform camera model calibration for each camera. A camera model calibration
learns internal and external parameters for each camera setup. Camera model
calibration allows you to subsequently perform image correction to remove lens
distortion and produce undistorted images.

Perform stereo calibration for the stereo vision system. Stereo calibration
computes the relative spatial relationship between two cameras.

Perform stereo image rectification. Stereo image rectification projects images
acquired from the left and right cameras so that the images reside in the same
plane. The rows of rectified images align perfectly so that a pointin the leftimage
falls on the same row in both left and right images.

Compute stereo image correspondence. Stereo correspondence establishes
matches between the left and right rectified images to produce a disparity map. A
disparity map is a 2D image that uses grayscale values to indicate the disparity, or
distance, between features in the left and right image. Because disparity values
indicate the relative depth of an object, a disparity map is sufficient for many
stereo vision applications.

. Optionally compute 3D planes for applications that require precise depth

information. 3D planes provide detailed depth information which can be mapped
to real-world coordinates.

> Note Vision renders depth and disparity maps with respect to the left
rectified image.

For best results, Vision prefers a horizontal baseline, or a system where the horizontal
distance exceeds the vertical distance between the two cameras.

Related concepts:

o Stereo Vision
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Parts of a Stereo Vision System
This topic describes the elements of a stereo vision system.

The following figure illustrates a simple stereo vision system, which incorporates the
following assumptions:

Both cameras have the same focal length,

The two cameras are parallel to each other,

The X-axes of the two cameras intersect and align with the baseline,

The origin of the real-world coordinate system coincides with the origin of the left
camera coordinate system:

Lalt Camsara Right Camsara

Image Image

P (X Vg, 25)

where,

b is the baseline, distance between the two cameras,

fis the focal length of a camera,

X is the X-axis of a camera,

z is the optical axis of a camera,

P is a real-world point defined by the coordinates X, Y, and Z,

UL is the coordinate of the real-world point P in an image acquired by the left camera,

Ur is the coordinate of the real-world point P in an image acquired by the right camera.
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The X-coordinates of points obtained by projecting point P on the two camera image-
planes are given by uL and ug:

U =F
UR: fx_b

The tuple (UL, UR) is known as a correspondence and related projections U and UR are
known as conjugate or homologous points. The distance between conjugate points is
referred to as disparity (d), which is calculated using the following equation:

d=(U,- U= £

V4

Given a pair of conjugate points, the real-world distance of the original point from the
stereo vision system can be calculated as follows:

2= ft

d

The following figure illustrates a typical stereo vision system:

Left Camera
Right Camera

Image : Imaga

FiXg, ¥, 25)

Most of the assumptions made for the simplified stereo vision system cannot be made
for typical stereo vision applications. To compensate, a typical stereo vision system
requires stereo calibration.

Related concepts:

« Stereo Vision Concepts

ni.com



Stereo Calibration

Machine Vision

A stereo vision system requires camera model calibration for each camera, followed by
stereo calibration. Stereo calibration data allows Vision to produce rectified images,

and to calculate disparity and depth information.

The following figure illustrates the calibration process:

—

Right Camera

Single Camara
Calibration

Gnd
Imageish
Left Cameara
Single Camara
Calibration
Slerao
» Calibration

P

Single-camera calibration computes the following parameters:

« Internal Parameters—Distortion model and coefficients, focal length, and optical
center for each camera.

« External Parameters—Rotation and translation matrices between the
corresponding camera-coordinate system and the real-world coordinate system.

You must perform stereo calibration to calculate the pose of each camera relative to
the other. During stereo calibration, both cameras must view the same calibration grid.
For the first frame, the entire calibration grid should be within the field of view for each
camera. For subsequent frames, partial coverage of the calibration grid is acceptable.

Stereo calibration produces the following matrices:

« Rotation Matrix (R)—A rotation matrix, which denotes rotation between left to

right camera-coordinate systems.

« Translation Matrix (T)—A translation matrix, which denotes translation between
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left to right camera-coordinate systems.

« Essential Matrix (E)—A geometrical matrix, which relates the location of a point
seen by the left camera to the same point as seen by the right camera, in real-
world coordinates.

« Fundamental Matrix (F)—A geometrical matrix, which relates the location of a
point seen by the left camera to the same point as seen by the right camera, in
pixel coordinates.

If a camera changes position or focal length, you must repeat camera model
calibration for the camera and repeat stereo calibration for the entire stereo vision
system.

Related concepts:

« Stereo Vision Concepts

Maximum Projection Error and Calibration Quality Metric

Vision provides a maximum projection error and a calibration quality metric for stereo
calibration.

The maximum projection error indicates the maximum error obtained by projecting a
left camera coordinate onto the right camera coordinate.

The calibration quality metric indicates the quality of the stereo calibration based
upon an average root mean square error. The calibration quality metricis a value
between 0 to 1, with 1 indicating the best calibration. If the calibration quality metric is
less than 0.7, consider repeating the calibration process.

Related concepts:

« Stereo Calibration

Stereo Image Rectification
Stereo image rectification projects images acquired from the left and right cameras so

that the images reside in the same plane. The rows of rectified images align perfectly
so that a point falls on the same row in both in the left and the right images.
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By row-aligning matches, stereo image rectification simplifies the processes of
calculating stereo correspondence and computing a disparity map. Stereo image
rectification is based upon the spatial relationship between the cameras, which is
obtained from information produced during stereo calibration.

To speed up the rectification process, a look-up table can be computed for each
camera to interpolate points from the original image and create a new rectified image.
Because learning a look-up table is memory intensive, the process is optional in Vision.

Vision also accepts a scale parameter. Valid values are 0-1. A value of 1 constrains the
rectified images to the original image size. Values smaller than 1 increase the scale of
the rectified images.

The following figure illustrates the process of image rectification:

H EEEE B
Left CLL T T 117 Right

Image Caplured by Cameras

Distortion Removed

Righy =

Reaclilisd {rows aligread)
Cwarlap Show in Hed

110 Right

Related concepts:

« Stereo Vision Concepts
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Maximum Rectification Error and Rectification Quality Metric

Vision provides a maximum rectification error and a rectification quality metric to
indicate the quality of rectified images.

These parameters are computed using epipolar lines, which are obtained with the
fundamental matrix produced during stereo calibration. For example, an epipolar line
for an image obtained with the right camera describes the 3D vector of a point relative
to the center of projection for the left camera. A valid match in the right camera image
must lie on the epipolar line. The following figure illustrates an epipolar line in the
rightimage plane:

a Palnt of Interast

Fighit Imaga Flans

Epipolag/Line ™,

'-" Left Camera Canlaer of Projection

The maximum rectification error indicates the greatest distance between a point and
its corresponding epipolar line. If this error is greater than 1 consider repeating the
calibration process.

The rectification quality metric is a value between 0 and 1, with 1 indicating perfectly
aligned rectified images. If the rectification quality metric is less than 0.7, consider
repeating the calibration process.

Related concepts:

+ Stereo Image Rectification
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Stereo Image Correspondence

Stereo correspondence establishes matches between the left and right rectified
images to produce a disparity map.

A disparity map is a 2D image that uses grayscale values to indicate the disparity, or
distance, between features in left and right rectified images. The grayscale value of
each pixel in the disparity map indicates the distance of that point from the stereo
vision system. For better display and resolution, NI Vision multiplies disparity by a
factor of 16. Brighter pixels indicate points that are closer to the camera and darker
pixels indicate points that are farther away from the camera. A disparity map can be
directly used for many applications, including the following:

+ Recognizing the relative distance of objects from the imaging system. For example,
in an application that must pick up the closest object, it may be possible to
segment the disparity map and identify the target object.

« Tracking an object of interest across a sequence of images. Instead of using user-
specified point information to locate and track objects, you can segment a
disparity map to identify objects and track the objects across a sequence of
images.

« Modeling object 3D information, which can be computed from the disparity map.

« Path planning, using 3D information to locate obstacles and open areas.

Vision provides two algorithms for establishing stereo correspondence: a block-
matching algorithm6 and a semi-global algorithm78 . The block-matching algorithm
offers efficient performance while the semi-global algorithm provides a dense
disparity map and works in regions with little or no apparent texture.

Vision provides options to compute disparity to sub-pixel accuracy and to specify a
maximum difference between a valid disparity value for a pixel compared to the
disparity values of pixels immediately to the left and right. When Vision cannot
determine the disparity for a point, the point is set to the value specified by the user to

. See K. Konolige, Small Vision System: Hardware and implementation, Proceedings of the
International Symposium on Robotics Research, pp. 111-116, Hayama, Japan 1997.

. See H. Hirschmuller, Stereo Processing by Semi-Global Matching and Mutual Information, IEEE
Transactions on PAMI, Vol. 30 (2), pp. 328-341, 2008.

. See S. Birchfield and C. Tomasi, Depth Discontinuities by Pixel-to-Pixel Stereo, IJCV, vol. 35(3), pp.
269-293, 1999.
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represent invalid pixels.
Related concepts:

« Stereo Vision Concepts

Confidence Score Image

Vision provides a confidence score image, which indicates the confidence of the
disparity for each pixel. Score images return values between 0-1000, where 1000
indicates the highest confidence. The block-matching algorithm computes confidence
score based on how distinctive the match is compared to the second best match, and
based on the similarity of the disparity to neighboring disparities. For the semi-global
matching algorithm, confidence scores are based entirely on sum of absolute
difference values for the match.

Confidence score functions are logistic functions, which vary slowly over a range
before falling suddenly in unacceptable regions.

Related concepts:

+ Stereo Image Correspondence

Depth Computation

Some applications might require only a disparity map. Other applications require
precise depth information. Examples of such applications are bin-picking, de-
palletizing, 3D matching, and 3D measurements. For applications that require precise
depth information, 3D planes can be computed following stereo calibration and stereo
image rectification.

The following figure illustrates the complete 3D reconstruction process:
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3D planes provide comprehensive real-world information about the scene, which can
optionally be rendered to a real-world coordinate system. All real-world coordinates

use the unit of measure specified during single-camera calibration.

Origin for the Xand Y planes is the optical center. Depth and disparity coordinates,

provided in the Z plane, are relative to the left camera.

Vision provides an error map for depth computation, which indicates the inherent

error in measurement for each pixel.

Related concepts:

« Stereo Vision Concepts

© National Instruments 471



472

Machine Vision

In-Depth Discussion of Stereo Vision Concepts

This section provides in-depth explanations of stereo vision concepts and the Vision
implementation of stereo vision.

Related concepts:

« Stereo Vision Concepts

Stereo Calibration In-Depth

You must perform camera model calibration for each camera in the system before
performing stereo calibration. Creating a camera model involves acquiring multiple
images, usually of a calibration grid, in multiple planes.

For each plane, a camera model provides a set which consists of rotation and
translation matrices. Corresponding sets, computed for the left and right camera
based on the same plane, provide the information required to compute the spatial
relationship between the two cameras. Stereo calibration returns a single rotation and
translation matrix (R, T) that relates relative real-world coordinates for the left and
right cameras. The following figure illustrates a calibrated stereo vision system:

|'!-\.
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« Oyisthe origin of the coordinate systems centered at the left camera principal
point,

+ Oyisthe origin of the coordinate systems centered at the right camera principal
point,

« Pisareal-world point being imaged by both cameras, in real-world coordinates,

« plisthe projection of P on the left-camera image plane,

+ pristhe projection of P on the right-camera image plane.

A camera model provides enough information to describe the relationship of the
camera relative to a point (P) under inspection. Let, (R, T|) and (Ry, Ty) be the rotation
and translation matrices for the left and right cameras for the plane in which P lies. The
real-world coordinates of the point P relative to the left and right cameras are given by
the following equations:

P=RP+T,
P.=RP+T,

The 3D coordinates of P are given by the following equation:

P,= RT(P,~ T)

The stereo translation matrix is given by the following equation:

Rz&@f

After each camera is calibrated, the stereo vision system must be calibrated. Stereo
calibration computes the essential matrix (E) and the fundamental matrix (F). The
essential matrix (E) contains the rotation and translation information required to relate
the location of a point (P() as seen by the left camera to the same point (Py) as seen by
the right camera, in real-world coordinates. Assuming the relationship Py =R(P| - T),

the relationship between points relative to the left and right cameras and the essential
matrix is given by the following equation:

.
Pl-E-P=0

The essential matrix does not contain information about the internal parameters of
the cameras; therefore, it cannot be used to correlate pixel coordinates for conjugate
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points. You must use the fundamental matrix F) to relate pixel coordinates for
conjugate points. The fundamental matrix (F) includes internal parameters for both
cameras. Give a pixel point in the left image (q|), a conjugate pixel pointin the right
image (qr), and the fundamental matrix (F), you can compute the corresponding
epipolar line in the right image using the following equation:

g, Fq=0
Related concepts:

+ In-Depth Discussion of Stereo Vision Concepts

Stereo Image Rectification In-Depth

Given the rotation matrix and translation vector between the two stereo images, NI
Vision attempts to limit the amount of change that a new projection produces for each
of the two images in order to reduce the resulting distortion while maximizing the
common viewing area”. Image rectification is provided by the following rotation
matrices:

R, = Repirl
RZ = Repirr
where:

+ Rjisthe rotation to be applied to the left image to get the left rectified image,

+ Ryisthe rotation to be applied to the right image to get the right rectified image,

* Repi is the rotation matrix which row-aligns coplanar images obtained by r and rr,

« r|is the rotation matrix required to make left image coplanar with the right image
rotated by matrix ry,

+ Rristhe rotation matrix required to make right image coplanar with the left image
rotated by matrix .

Matrices riand ry are obtained by applying half a rotation clockwise and
counterclockwise, respectively, so that

9. Vision uses the algorithm proposed by Bouguet for obtaining rectified images. See G. Bradski and A.

474

Kaebler, Learning OpenCV - Computer Vision with the OpenCV Library, First Edition, O'Reilly Media,
2008.
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_.T
R=rr,

. Matrix Rep; = [R1 Rz R3]T. Matrix Rgp; produces the left epipole, or the projection of the
principal point of the right camera onto the left image plane, projected to infinity.
Using the principal point of the left camera as the origin, translation matrix T provides
the direction of the left epipole on the image plane. Consequently, specific matrices ri,
r2, r3 are given by the following equations:

T
(7
tgm)

[

n=

n=
Xy

R=nxn

Related concepts:

« In-Depth Discussion of Stereo Vision Concepts

Stereo Image Correspondence In-Depth
A typical correspondence algorithm consists of following three stages:

1. Pre-filtering to normalize the image brightness and enhance texture,
2. Matching points along horizontal lines in local windows,
3. Post-filtering to eliminate bad matches.

Related concepts:

« In-Depth Discussion of Stereo Vision Concepts

Pre-Filtering for Stereo Image
Correspondence

Pre-filtering is a preparatory step for the block-matching algorithm. The semi-global
algorithm operates on the original rectified stereo images to establish a stereo
correspondence. Vision provides two pre-filtering options: a Sobel filter and a
normalized response filter. To prevent horizontal lines, which may mislead the
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matching algorithm, the Sobel filter uses only the following kernel:

The Sobel filter output is given in the following equation: Min(Max(Isobel, -Icap), Icap)-
Where:

+ Isobel is the value obtained by applying the kernel, accumulated in a window of a
user-defined size.
* lcap is a positive number that limits the final pixel value.

The normalized response filter computes the filter response through the following
equation: Min(Max(lcenter, -lavg -Icap), Icap)

where,

* lcenter is the pixel value at the point, accumulated over a window of a user-defined
size,

* lavg is the average of the pixel computed through 4-neighbors of the center pixel
and accumulated over a specified window size,

« lcap is a positive number which limits the final pixel value.

Related concepts:

+ Stereo Image Correspondence In-Depth

Block Matching Algorithm

The block-matching algorithm establishes a correspondence by computing the sum of
absolute differences (SAD) computed between small windows in rectified, pre-filtered
stereo images.

Matching is constrained by minimum disparity and number of disparity parameters.
For example, for a given point (x|, y) in the left image, the search in the right image is
restricted to points that lie within (x| - minimum disparity, y) and (x| - minimum
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disparity - number of disparities, y).

The algorithm computes SAD values for each point in the specified range and selects
the location in the right image with the smallest SAD value as the match. The
complexity of this algorithm is given in the following equation:

O(w- h-n)
where:

« wis the width of the rectified image,
+ histhe height of the rectified image,
« nisthe number of disparities.

Related concepts:

« Stereo Image Correspondence In-Depth

Semi-Global Matching Algorithm

This algorithm aims to minimize the following global energy function, E, for disparity
image, D.

F(o) X

p

c(p, b,) +z Pll((Dp— D,) = 1) +z le((Dp— D,) > 1)

with Po=P1
where:

« E(D) is the energy for disparity image D,

*+ p, qrepresentindices for pixels in the image,

« Npisthe neighborhood of the pixel p,

« C(p, Dp) is the cost of pixel matching with disparity in Dp,

« Pjisthe penalty passed by the user for change in disparity between neighboring
pixels by 1,
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« Py isthe penalty passed by the user for change in disparity between neighboring
pixels by value greater than 1,

« I[.]is the function which returns 1 if argument is true, 0 otherwise the minimized
function produces a perfect disparity map with smoothing governed by
parameters P1 and P2; however, minimizing the function for a 2D image spaceis a
NP-complete problem.

The semi-global matching function approximates the 2D minimization by performing
multiple 1D, or linear, minimizations. The matching function aggregates costs on
multiple paths which converge on the pixel under examination. Cost is computed for
the disparity range specified by the minimum disparity and number of disparities
parameters. By default, the matching algorithm aggregates costs for 5 directions. You
can set the full dynamic programming parameter to true to force the algorithm to
aggregate costs for 8 directions. Let, S(p, d) be the aggregate cost for pixel p and
disparity d.

Then

Sp, d) =} Lip, d)

r

where ris a direction used for converging to the pixel p L¢(p, d) is the minimum cost of
the path taken in direction r from pixel (p for disparity d) The cost L((p, d) is given in the
following equation:

Ldp, d)=Cp, d)+ mir{l.,[p- r,d), L{p-r,d-1)+ Py, L{p-r, d+ 1)+ Py, minLp-r, i)+ Pz]- Ir}{inL,{p-rJ k)
r

The equation uses the following costs to find the disparity by adding current cost, C(p,
d, to previous pixel in direction r:

« The minimum of the cost at previous pixel with disparity d,

+ The cost at previous pixel with disparity d - 1 and d + 1 with added penalty P,

+ The cost at previous pixel with disparities less than d - 1 and greater than d + 1 with
added penalty P».

In order to limit the ever increasing value of Ly(p, d) on the path, minimum value of the
previous pixel is subtracted. The upper value of L((p, d) is bounded by Crax + P2, where
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Cmax is the maximum value of cost C. The cost function C(p, d) is computed in the
following manner:

clp, d)=min(d(p, p-d, 1, 1), d(p-d. p, I, 1))

where I and IR are left and right rectified images, respectively

dp.p-d.iplp)= , min o Vi(p)-1)(q)

The value of Cis aggregated over a window of a user-defined sizel?. After computing
S(p, d) for each pixel p for each disparity d, the algorithm chooses the disparity which
provides the minimum cost for that pixel.

The complexity of this algorithm is given in the following equation:
O(w- h-n)
where:

« w equals the width of the rectified image,
+ hequals the height of the rectified image,
+ nequals the number of disparities.

Related concepts:

+ Stereo Image Correspondence In-Depth

Post-Filtering for Stereo Image
Correspondence

Post-filtering sets noise pixels to the value specified by the user to represent invalid
pixels. Post-filtering consists of two steps. First, pixels that do not meet the specified
uniqueness ratio and texture threshold are removed. Then a speckle filter is applied.

Birchfield and C. Tomasi, Depth Discontinuities by Pixel-to-Pixel Stereo, [JCV, vol. 35(3), pp. 269-293,
1999.
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The uniqueness ratio specifies how unique the disparity of a valid match must be at
each pixel relative to all other disparities. Valid values are 0-100, where a value of 0
causes the uniqueness ratio to have no effect.

The texture threshold specifies the minimum sum of absolute difference for a valid
match at each pixel. A value of 0 causes the texture threshold to have no effect. A value
thatis too large will cause each point in the image to be rejected.

The speckle filter examines a user-defined window around each pixel and rejects pixels
outside the user-specified speckle range, or range of disparities within the speckle
window.

Vision also provides an option to interpolate the disparity map using polynomial
interpolation. Interpolation allows pixels to be set to logical approximate values in
cases where the stereo correspondence algorithm cannot determine a disparity value.

Related concepts:

+ Stereo Image Correspondence In-Depth

Depth Computation In-Depth

Using a particular disparity value at a given pixel, 3D information can be computed in
the following manner:

X1 [X

Y|y

dl" |z

U W

Qis given as:
10 0 - Cy
01 0 -cy

U f
0o -I/T,'- [cf""\}/T,,

where:

« disthe disparity at a point (x, y) in the left rectified image,
* (cx, cy) represents the optical center in the left rectified image,
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« fisthe focal length in the left rectified image,
« Txis the X-component of the translation parameter,
« C'xisthe X-coordinate of the right rectified image.

The 3D measurements can then be given by (X/W, Y/W, Z/W), which are X, Y and Z real-
world coordinates, respectively. By default, Vision renders 3D information with respect
to the left rectified image such that the new optical center will be at (0, 0, Z) position.
Vision sets 3D information for a pixel to not a number (NaN) if disparity cannot be
determined.

Related concepts:

+ In-Depth Discussion of Stereo Vision Concepts

Error Mapping for Depth Computation

For 3D measurements, Vision computes error (ep) for a given pixel (p) according to the
following equation:

1 fo fo

e, == -
P 2(CX—C'X)—(d—l) (cx—c'x)—(d+l)

This equation computes and averages the interval between the depth achieved from
the previous disparity and the depth achieved from the next disparity. Consequently,
distant objects produce larger errors than near objects.

Related concepts:

« Depth Computation In-Depth

Feature Detection and Matching

This section contains information about feature detection and matching.
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Introduction to Feature Detection and Matching

Feature detection and matching are an integral part of computer vision, and are
fundamental for many applications. Finding feature correspondence between images
is a fundamental part of many applications. Feature detection and matching is
comprised of three stages.

1. Feature detection using one of the following methods: Features from Accelerated
Segment Test (FAST) Detector, Harris Corner Detector, or Shi-Tomasi Corner
Detector.

2. Feature description using one of the following methods: Binary Robust Invariant
Scalable Keypoints Descriptor (BRISK) or Fast Retina Keypoint Descriptor (FREAK).

3. Feature matching.

When to Use Feature Detection and Matching

Feature detection, which is also known as corner detection, is useful in applications
such as:

+ Finding defects using missing corners,

« Shape fitting using a mathematical fit on detected corners,

+ Using FAST feature points with optical flow,

+ Analyzing an image using detected feature point strengths, for example, while
auto-focusing.
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Feature Matching can be used in:

+ Object (or template) matching between images invariant to gradual changes in
rotation, scaling, and perspective transformations,

+ Finding correspondence between two images which can be used in many
applications, such as stitching,

+ Object recognition and pose detection,

« Establishing transformation between two images.

Feature Detection and Matching Concepts

The concept of feature detection refers to methods that aim at computing abstractions
of image information. There is no universal or exact definition of what constitutes a
feature, and the exact definition often depends on the problem or the type of
application. A feature is defined as an interesting part of an image, and features are
used as a starting point for many computer vision algorithms. The detector selects
points that can be consistently detected across various transformations (blurring,
rotation, and scale). Once features have been detected, the features are described
mathematically. The result is a feature descriptor. This information can be used to find
the matches between the two images.

Feature Detection

Corner Detector: A corner can be defined as the intersection of two edges. A corner can
also be defined as a point for which, there are two dominant and different edge
directions in a local neighborhood of the point. An interest point is a pointin an image
which has a well-defined position and can be robustly detected. This method detects
all the corners in the image.

+ Calculate the image gradients.

« Calculate the Eigen values (A1 and A). There are three cases to be considered:
o If both eigen values are small, the image region is of constant intensity,
o If one eigen value is high and the other low, it indicates an edge,
o If both eigen values are high, it indicates a corner.

The Harris corner detector and Shi-Tomasi corner detector are similar except for the
determination of a good corner.
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« Harris Corner: Corner Score =A1A2 - k (A1 + ?\2)2.
« Shi-Tomasi Corner: Corner Score = min(A1 +A2).

FAST Feature Point Detector: FAST is an algorithm for identifying all the interest points
in an image, not just corners. Interest points have high local information content and
ideally should be repeatable between different images.

For a pixel p of intensity Ip,.

« Choose a circle of 16 pixels around it, as shown in the following image:

« For a pixel to be a feature, at least N (N=12) contiguous pixels should have Intensity
>(lp+T)or (Ip-T), where T is a threshold intensity value.

The detectors can be used for grayscale (U8, U16, and 116) images. Rectangle and
Rotated Rectangle are the supported ROI types.

Feature Descriptors

BRISK!? (Binary Robust Invariant Scalable Keypoints) and FREAK!? (Fast Retina
Keypoint) are both binary descriptors that provide information about the feature
point.

BRISK is a 512-bit binary descriptor that computes the weighted Gaussian average

For more information about the BRISK descriptor, see S. Leutenegger, M. Chli, and R. Siegwart.Brisk:
Binary robust invariant scalable keypoints, 2011.

For more information about the FREAK descriptor, see A. Alahi, R. Ortiz, P. Vandergheynst. FREAK:
Fast Retina Keypoint, 2010.

ni.com



Machine Vision

over a select pattern of points near the keypoint. It compares the values of specific
pairs of Gaussian windows, leading to either a 1 or a 0, depending on which window in
the pair was greater, which creates binary descriptors.

FREAK is also a binary descriptor that improves upon the sampling pattern and
method of pair selection that BRISK uses, but the pattern used in this method is
inspired by the retinal pattern in the eye. FREAK provides better rotation invariance,
while BRISK provides better matches to changes in perspective distortion. Both
provide similar results to changes in scale.

Feature Matching

Given a feature in Image 1, the best match needs to be found in Image 2 for feature
matching. Because both BRISK and FREAK are binary descriptors, matching these
features requires a computation of the hamming distance, with the number of bits
different in the two descriptors being a measure of their dissimilarity.
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Kernels

A kernel is a structure that represents a pixel and its relationship to its neighbors. This

section lists a number of predefined kernels supported by Vision.

Gradient Kernels

The following tables list the predefined gradient kernels.

3 x 3 Kernels

The following tables list the predefined gradient 3 x 3 kernels.

Prewitt Filters

The Prewitt filters have the following kernels. The notations West (W), South (S), East
(E), and North (N) indicate which edges of bright regions they outline.

#0 W/Edge
-1 0
-1 0
-1 0

#4 S/Edge
1 1
0 0
-1 -1
#8 E/Edge

ni.com

#1 W/Edge
-1 0
-1 1
-1 0

#5 S/Edge
1 1
0 1
-1 -1

#9 E/Edge

#2 SW/Edge
0 1 1
-1 0 1
-1 -1 0
#6 SE/Edge
1 1 0
1 0 -1
0 -1 -1
#10 NE/Edge

#3 SW/Edge
0 1 1
-1 1 1
-1 -1 0
#6 SE/Edge
1 1 0
1 1 -1
0 -1 -1

#11 NE/Edge



Kernels

1 0 -1 1 0 -1 0 -1 -1 0 -1 -1
1 0 -1 1 1 -1 1 0 -1 1 1 -1
1 0 -1 1 0 -1 1 1 0 1 1 0
#12 N/Edge #13 N/Edge #14 NW/Edge #15 NW/Edge
-1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0
0 0 0 0 1 0 -1 0 1 -1 1 1
1 1 1 1 1 1 0 1 1 0 1 1

Sobel Filters

The Sobel filters are very similar to the Prewitt filters, except that they highlight light
intensity variations along a particular axis that is assigned a stronger weight. The
Sobel filters have the following kernels. The notations West (W), South (S), East (E), and
North (N) indicate which edges of bright regions they outline.

#16 W/Edge #17 W/Edge #18 SW/Edge #19 SW/Edge
-1 0 1 -1 0 1 0 1 2 0 1 2
-2 0 2 -2 1 2 -1 0 1 -1 1 1
-1 0 1 -1 0 1 -2 -1 0 -2 -1 0
#20 S/Edge #21 S/Edge #22 SE/Edge #23 SE/Edge
1 2 1 1 2 1 2 1 0 2 1 0
0 0 0 0 1 0 1 0 -1 1 1 -1
-1 -2 -1 -1 -2 -1 0o -1 -2 0 -1 -2
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#24 E/Edge

1 0 -1
2 0 -2
1 0 -1

#28 N/Edge

-1 -2 -1
0 0 0
1 2 1

5 x 5 Kernels

The following table lists the predefined gradient 5 x 5 kernels.

#0 W/Edge
0 -1 0
-1 -2 0
-1 -2 0 2
-1 -2 0
0 -1 0
#4 S/Edge
0 1 1 1
1 2 2 2
0O 0 o0 O

ni.com

#25 E/Edge
1 0
2 1
1 0
#29 N/Edge
-1 -2
0 1
1 2

#1 W/Edge
0 -1

-1 -2

-1 -2

-1 -2

0 -1

#5 S/Edge

0 1

1 2 2
0O 0 1

#26 NE/Edge
-1 0 -1
-2 1 0
-1 2 1
#30 NW/Edge
-1 -2 -1
0 -1 0
1 0 1

#2 SW/Edge

#27 NE/Edge
0 -1
1 1
2 1

-2 -1
-1 1
0 1
#3 SW/Edge
0 0 1
0 0 2
-1 -2 1
-1 -2 -2
-1 -1 -1
#7 SE/Edge
1 1 1
1 2 2
1 2 1

Kernels

-2
-1
0
0
1
2
1 1
2 1
2 1
0 O
0 O
0 O
0 O
-2 -1



Kernels

-1 -2 -2 -2 -1 -1 -2 -2 -2 -1 0o 0 -2 -2 -1 0O 0 -2 -2 -1

o -1 -1 -1 O 0 -1 -1 -1 O 0 0 -1 -1 -1 0 0 -1 -1 -1

#8 E/Edge #9 E/Edge #10 NE/Edge #11 NE/Edge

o 1 0 -1 -0 o 1 0 -1 -0 0 0 -1 -1 -1 0 0 -1 -1 -1
1 2 0 -2 -1 1 2 0 -2 -1 o 0 -2 2 -1 0 0 -2 2 -1

#12 N/Edge #13 N/Edge #14 NW/Edge #15 NW/Edge
0 -1 -1 -1 O 0 -1 -1 -1 O -1 -1 -1 0 O -1 -1 -1 0 O
-1 -2 -2 -2 -1 -1 -2 -2 -2 -1 -1 -2 -2 0 0 -1 -2 -2 0 O
o 0 o0 0 O 0o 0 1 0 O -1 -2 0 2 1 -1 -2 1 2 1
1 2 2 2 1 1 2 2 2 1 o 0 2 2 1 o 0 2 2 1

o 1 1 1 O o 1 1 1 O o o0 1 1 1 O O 1 1 1

7 x 7 Kernels

The following table lists the predefined gradient 7 x 7 kernels.

Table 1.

#0 W/Edge #1 W/Edge
0 -1 -1 0 1 1 0 0 -1 -1 0 1 1 0
-1 -2 -2 0 2 2 1 -1 -2 -2 0 2 2 1
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#3 S/Edge

#2 S/Edge

#5 E/Edge

#4 E/Edge

#7 N/Edge

#6 N/Edge

ni.com
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0 -1
-1 -2
-1 -2
0 0
1 2
1 2
0 1

Laplacian Kernels

-1 0
-2 -1
-2 -1
0 0
2 1
2 1
1 0

The following tables list the predefined Laplacian kernels.

3 x 3 Kernels

#0 Contour 4
0 -1
-1 4
0 -1

#3 Contour 8
-1 -1
-1 8
-1 -1

#6 Contour 12

#1 +lmagex1
0 -1
-1 5
0 -1

#4 +lmagex1
-1 -1
-1 9
-1 -1

#7 +Imagex1

-1 -1 -1
-2 -2 -2
-3 -3 -3
0 1 0
3 3 3
2 2 2
1 1 1
#2 +Imagex1
0 -1
-1 6
0 -1
#5 +Imagex2
-1 -1
-1 10
-1 -1
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-1 -2 -1 -1 -2 -1
-2 12 -2 -2 13 -2
-1 -1 -2 -1 -2 -1

5 x 5 Kernels

#0 Contour 24 #1 +lmagex1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 24 -1 -1 -1 -1 25 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

7 x 7 Kernels

#0 Contour 48 #1 +lmagex1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 48 -1 -1 -1 -1 -1 -1 49 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 - -1 -1 -1 -1 -1 -1 -
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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Smoothing Kernels

The following tables list the predefined smoothing kernels.

3 x 3 Kernels

0 1 0 0 1 0 0 2 0 0 4 0
1 0 1 1 1 1 2 1 2 4 1 4
0 1 0 0 1 0 0 2 0 0 4 0
1 1 1 1 1 1 2 2 2 4 4 4
1 0 1 1 1 1 2 1 2 4 1 4
1 1 1 1 1 1 2 2 2 4 4 4

5 x 5 Kernels

Table 2.
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
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7 x 7 Kernels

Table 3.
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Gaussian Kernels

The following tables list the predefined Gaussian kernels.

3 x 3 Kernels

0 1 0 0 1 0 1 1 1
1 2 1 1 4 1 1 2 1
0 1 0 0 1 0 1 1 1
1 1 1 1 2 1 1 4 1
1 4 1 2 4 2 4 16 4
1 1 1 1 2 1 1 4 1
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5 x 5 Kernel
1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

7 x 7 Kernel
1 1 2 2 2 1 1
1 2 2 4 2 2 1
2 2 4 8 4 2 2
2 4 8 16 8 4 2
2 2 4 8 4 2 2
1 2 2 4 2 2 1
1 1 2 2 2 1 1
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