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VisionVision  User Manual User Manual 
The Vision User Manual provides detailed descriptions of the product functionality and 
the step by step processes for use. 

Looking for Something Else? 

For information not found in the User Manual for your product, such as specifications 
and API reference, browse Related Information. 

Related information: 

• Hardware and Software Operating System Compatibility 
• License Setup and Activation 
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VisionVision  Overview Overview 
The Vision Concepts Help describes the basic concepts of machine vision and 
image processing for users with little or no imaging experience. This document also 
contains in-depth discussions on machine vision and image processing functions for 
advanced users. 

Vision Overview
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Digital Images Digital Images 
This section describes conceptual information about digital images, image display, 
and system calibration. 

Also contains information about the properties of digital images, image types, file 
formats, the internal representation of images in NI Vision, image borders, and image 
masks. 

Definition of a Digital Image Definition of a Digital Image 
An image is a 2D array of values representing light intensity. For the purposes of image 
processing, the term image refers to a digital image. An image is a function of the light 
intensity f (x, y) where f is the brightness of the point (x, y), and x and y represent the 
spatial coordinates of a picture element, or pixel. 

By convention, the spatial reference of the pixel with the coordinates (0, 0) is located at 
the top, left corner of the image. Notice in the following figure that the value of x 
increases moving from left to right, and the value of y increases from top to bottom. 

In digital image processing, an imaging sensor converts an image into a discrete 
number of pixels. The imaging sensor assigns to each pixel a numeric location and a 
gray level or color value that specifies the brightness or color of the pixel. 

Properties of a Digitized Image Properties of a Digitized Image 
A digitized image has three basic properties: resolution, definition, and number of 
planes. 
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Image Resolution 

The spatial resolution of an image is determined by its number of rows and columns of 
pixels. An image composed of m columns and n rows has a resolution of m × n. This 
image has m pixels along its horizontal axis and n pixels along its vertical axis. 

Image Definition 

The definition of an image indicates the number of shades that you can see in the 
image. The bit depth of an image is the number of bits used to encode the value of a 

pixel. For a given bit depth of n, the image has an image definition of 2n, meaning a 

pixel can have 2n different values. For example, if n equals 8 bits, a pixel can have 256 
different values ranging from 0 to 255. If n equals 16 bits, a pixel can have 65,536 
different values ranging from 0 to 65,535 or from -32,768 to 32,767. 

Vision can process images with 8-bit, 10-bit, 12-bit, 14-bit, 16-bit, floating point, or 
color encoding. The manner in which you encode your image depends on the nature of 
the image acquisition device, the type of image processing you need to use, and the 
type of analysis you need to perform. For example, 8-bit encoding is sufficient if you 
need to obtain the shape information of objects in an image. However, if you need to 
precisely measure the light intensity of an image or region in an image, you should use 
16-bit or floating-point encoding. 

Use color encoded images when your machine vision or image processing application 
depends on the color content of the objects you are inspecting or analyzing. 

Vision does not directly support other types of image encoding, particularly images 
encoded as 1-bit, 2-bit, or 4-bit images. In these cases, Vision automatically transforms 
the image into an 8-bit image—the minimum bit depth for NI Vision—when opening 
the image file. 

The number of planes in an image corresponds to the number of arrays of pixels that 
compose the image. A grayscale or pseudo-color image is composed of one plane. A 
true-color image is composed of three planes—one each for the red component, blue 
component, and green component. 
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Number of Planes 

In true-color images, the color component intensities of a pixel are coded into three 
different values. A color image is the combination of three arrays of pixels 
corresponding to the red, green, and blue components in an RGB image. HSL images 
are defined by their hue, saturation, and luminance values. 

Image Types Image Types 
The Vision libraries can manipulate three types of images: grayscale, color, and 
complex images. Although Vision supports all three image types, certain operations on 
specific image types are not possible. For example, you cannot apply the logic 
operator AND to a complex image. 

The following table shows how many bytes per pixel grayscale, color, and complex 
images use. For an identical spatial resolution, a color image occupies four times the 
memory space of an 8-bit grayscale image, and a complex image occupies eight times 
the memory of an 8-bit grayscale image. 

Image Type Number of Bytes per Pixel Data 

8-bit (Unsigned) 
Integer Grayscale 

(1 byte or 8-bit) 8-bit for the grayscale intensity 

16-bit (Unsigned) 
Integer Grayscale 

(2 bytes or 16-bit) 16-bit for the grayscale intensity 

16-bit (Signed) 
Integer Grayscale 

(2 bytes or 16-bit) 16-bit for the grayscale intensity 

32-bit Floating-Point 
Grayscale 
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Image Type Number of Bytes per Pixel Data 

(4 bytes or 32-bit) 32-bit for the grayscale intensity 

32-bit RGB Color 

(4 bytes or 32-bit) 8-bit for the alpha value (not used), 8-bit for the red intensity, 8-bit for the 
green intensity, 8-bit for the blue intensity 

64-bit (Unsigned) 
RGB Color 

(8 bytes or 64-bit) 
16-bit for the alpha value (not used), 16-bit for the green intensity, 16-bit for 
the red intensity, 16-bit for the blue intensity 

64-bit Complex Color 

(8 bytes or 64-bit) 32-bit floating for the real part, 32-bit for the imaginary part 

Grayscale Images 

A grayscale image is composed of a single plane of pixels. Each pixel is encoded using 
one of the following single numbers: 

• An 8-bit unsigned integer representing grayscale values between 0 and 255 
• A 16-bit unsigned integer representing grayscale values between 0 and 65,535 
• A 16-bit signed integer representing grayscale values between –32,768 and 32,767 
• A single-precision floating point number, encoded using four bytes, representing 

grayscale values ranging from –∞ to ∞ 

Color Images 

A color image is encoded in memory as either a red, green, and blue (RGB) image or a 
hue, saturation, and luminance (HSL) image. Color image pixels are a composite of 
four values. RGB images store color information using 8 bits each for the red, green, 
and blue planes. HSL images store color information using 8 bits each for hue, 
saturation, and luminance. RGB U64 images store color information using 16 bits each 
for the red, green, and blue planes. In the RGB and HSL color models, an additional 
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8-bit value goes unused. This representation is known as 4 ∞ 8-bit or 32-bit encoding. 
In the RGB U64 color model, an additional 16-bit value goes unused. This 
representation is known as 4 ∞ 16-bit or 64-bit encoding. 

Alpha plane (not used) 

Red or hue plane 

Green or saturation plane 

Blue or luminance plane 

Complex Images 

A complex image contains the frequency information of a grayscale image. You can 
create a complex image by applying a Fast Fourier transform (FFT) to a grayscale 
image. After you transform a grayscale image into a complex image, you can perform 
frequency domain operations on the image. 

Each pixel in a complex image is encoded as two single-precision floating-point values, 
which represent the real and imaginary components of the complex pixel. You can 
extract the following four components from a complex image: the real part, imaginary 
part, magnitude, and phase. 

Image Files Image Files 
An image file is composed of a header followed by pixel values. Depending on the file 
format, the header contains image information about the horizontal and vertical 
resolution, pixel definition, and the original palette. Image files may also store 
information about calibration, pattern matching templates, and overlays. The 
following are common image file formats: 

• Bitmap (BMP) 
• Tagged image file format (TIFF) 
• Portable network graphics (PNG)—Offers the capability of storing image 

information about spatial calibration, pattern matching templates, custom data, 
and overlays 

• Joint Photographic Experts Group format (JPEG) 
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• Joint Photographic Experts Group 2000 format (JPEG2000) 
• Audio Video Interleave (AVI)—Offers the capability of storing multiple image frames 

in a single file 
• National Instruments internal image file format (AIPD)—Used for saving floating-

point, complex, and HSL images 

The following table lists the image file formats supported for each image type: 

  BMP TIFF PNG JPEG JPEG2000 AVI AIPD 

8-bit Unsigned Grayscale ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

16-bit Unsigned Grayscale   ✓ ✓   ✓   ✓ 

16-bit Signed Grayscale   ✓ ✓   ✓   ✓ 

32-bit Floating-Point Grayscale             ✓ 

32-bit RGB Color ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

64-bit RGB Color   ✓ ✓   ✓   ✓ 

32-bit HSL Color             ✓ 

Complex             ✓ 

Internal Representation of aInternal Representation of a  Vision Image Vision Image 
The following figure illustrates how a Vision image is represented in system memory. In 
addition to the image pixels, the stored image includes additional rows and columns 
of pixels called the image border and the left and right alignments. Specific processing 
functions involving pixel neighborhood operations use image borders. The alignment 
regions ensure that the first pixel of the image is 64-byte aligned in memory. The size 
of the alignment blocks depend on the image width and border size. Aligning the 
image increases processing speed by as much as 30%. 

The line width is the total number of pixels in a horizontal line of an image, which 
includes the sum of the horizontal resolution, the image borders, and the left and right 
alignments. The horizontal resolution and line width may be the same length if the 
horizontal resolution is a multiple of 32 bytes and the border size is 0. 
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1.  Image 
2. Image Border 
3. Vertical Resolution 
4. Left Alignment 
5. Horizontal Resolution 
6. Right Alignment 
7.  Line Width 

Image Borders Image Borders 
Many image processing functions process a pixel by using the values of its neighbors. A 
neighbor is a pixel whose value affects the value of a nearby pixel when an image is 
processed. Pixels along the edge of an image do not have neighbors on all four sides. If 
you need to use a function that processes pixels based on the value of their 
neighboring pixels, specify an image border that surrounds the image to account for 
these outlying pixels. You define the image border by specifying a border size and the 
values of the border pixels. 

The size of the border should accommodate the largest pixel neighborhood required 
by the function you are using. The size of the neighborhood is specified by the size of a 
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2D array. For example, if a function uses the eight adjoining neighbors of a pixel for 
processing, the size of the neighborhood is 3 × 3, indicating an array with three 
columns and three rows. Set the border size to be greater than or equal to half the 
number of rows or columns of the 2D array rounded down to the nearest integer value. 
For example, if a function uses a 3 × 3 neighborhood, the image should have a border 
size of at least 1; if a function uses a 5 × 5 neighborhood, the image should have a 
border size of at least 2. In Vision, an image is created with a default border size of 3, 
which can support any function using up to a 7 × 7 neighborhood without any 
modification. 

Vision provides three ways to specify the pixel values of the image border. The 
following figure illustrates these options. Figure A shows the pixel values of an image. 
By default, all image border pixels are uninitialized. You can set all of the border pixels 
to have a value of 0, as shown in figure B. You can copy the values of the pixels along 
the edge of the image into the border pixels, as shown in figure C, or you can mirror the 
pixel values along the edge of the image into the border pixels, as shown in figure D. 
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The method you use to fill the border pixels depends on the processing function you 
require for your application. Review how the function works before choosing a border-
filling method because your choice can drastically affect the processing results. For 
example, if you are using a function that detects edges in an image based on the 
difference between a pixel and its neighbors, do not set the border pixel values to zero. 
As shown in figure B, an image border containing zero values introduces significant 
differences between the pixel values in the border and the image pixels along the 
border, which causes the function to detect erroneous edges along the border of the 
image. If you are using an edge detection function, copy or mirror the pixel values 
along the border into the border region to obtain more accurate results. 

In Vision, most image processing functions that use neighbors automatically set pixel 
values in the image border using neighborhoods. The grayscale filtering operations 
low pass, Nth order, and edge detection use the mirroring method to set pixels in the 
image border. The binary morphology, grayscale morphology, and segmentation 
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functions copy the pixel values along the border into the border region. The correlate, 
circles, reject border, remove particles, skeleton, and label functions set the pixel 
values in the border to zero. 

Image Masks Image Masks 
An image mask isolates parts of an image for processing. If a function has an image 
mask parameter, the function process or analysis depends on both the source image 
and the image mask. 

An image mask is an 8-bit binary image that is the same size as or smaller than the 
inspection image. Pixels in the image mask determine whether corresponding pixels in 
the inspection image are processed. If a pixel in the image mask has a nonzero value, 
the corresponding pixel in the inspection image is processed. If a pixel in the image 
mask has a value of 0, the corresponding pixel in the inspection image is not 
processed. 

When to Use 

Use image masks when you want to focus your processing or inspection on particular 
regions in the image. 

Concepts 

Pixels in the source image are processed if corresponding pixels in the image mask 
have values other than zero. The following figure shows how a mask affects the output 
of the function that inverts the pixel values in an image. Figure A shows the inspection 
image. Figure B shows the image mask. Pixels in the mask with zero values are 
represented in black, and pixels with nonzero values are represented in white. Figure C 
shows the inverse of the inspection image using the image mask. Figure D shows the 
inverse of the inspection image without the image mask. 

Note The border of an image is taken into account only for processing. The 
border is never displayed or stored in a file. 

Digital Images

© National Instruments 19



The Effect of an Image Mask 

You can limit the area in which your function applies an image mask to the bounding 
rectangle of the region you want to process. This technique saves memory by limiting 
the image mask to only the part of the image containing significant information. To 
keep track of the location of this region of interest (ROI) in regard to the original image, 
Vision sets an offset. An offset defines the coordinate position in the original image 
where you want to place the origin of the image mask. 

The following figure illustrates the different methods of applying image masks. Figure 
A shows the ROI in which you want to apply an image mask. Figure B shows an image 
mask with the same size as the inspection image. In this case, the offset is set to [0, 0]. 
A mask image also can be the size of the bounding rectangle of the ROI, as shown in 
figure C, where the offset specifies the location of the mask image in the reference 
image. You can define this offset to apply the mask image to different regions in the 
inspection image. 

1. Region of Interest 
2. Image Mask 

the following figure illustrates the use of a mask with two different offsets. Figure A 
shows the inspection image, and figure B shows the image mask. Figure C and Figure D 
show the results of a function using the image mask given the offsets of [0, 0] and [3, 
1], respectively. 
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Related concepts: 

• Regions of Interest 

Display Display 
This section contains information about image display, palettes, regions of interest, 
and nondestructive overlays. 

Image Display Image Display 

Displaying images is an important component of a vision application because it gives 
you the ability to visualize your data. Image processing and image visualization are 
distinct and separate elements. Image processing refers to the creation, acquisition, 
and analysis of images. Image visualization refers to how image data is presented and 
how you can interact with the visualized images. A typical imaging application uses 
many images in memory that the application never displays. 
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When to Use 

Use display functions to visualize your image data, retrieve generated events and the 
associated data from an image display environment, select ROIs from an image 
interactively, and annotate the image with additional information. 

Concepts 

Display functions display images, set attributes of the image display environment, 
assign color palettes to image display environments, close image display 
environments, and set up and use an image browser in image display environments. 
Some ROI functions—a subset of the display functions—interactively define ROIs in 
image display environments. These ROI functions configure and display different 
drawing tools, detect draw events, retrieve information about the region drawn on the 
image display environment, and move and rotate ROIs. Nondestructive overlays 
display important information on top of an image without changing the values of the 
image pixels. 

In-Depth Discussion 

The following section describes the display modes available in Vision and the 16-bit 
grayscale display mapping methods. 

Display Modes 

One of the key components of displaying images is the display mode that the video 
adapter operates. The display mode indicates how many bits specify the color of a 
pixel on the display screen. Generally, the display mode available from a video adapter 
ranges from 8 bits to 32 bits per pixel, depending the amount of video memory 
available on the video adapter and the screen resolution you choose. 

If you have an 8-bit display mode, a pixel can be one of 256 different colors. If you have 
a 16-bit display mode, a pixel can be one of 65,536 colors. In 24-bit or 32-bit display 
mode, the color of a pixel on the screen is encoded using 3 or 4 bytes, respectively. In 
these modes, information is stored using 8 bits each for the red, green, and blue 
components of the pixel. These modes offer the possibility to display about 16.7 
million colors. 
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Understanding your display mode is important to understanding how Vision displays 
the different image types on a screen. Image processing functions often use grayscale 
images. Because display screen pixels are made of red, green, and blue components, 
the pixels of a grayscale image cannot be rendered directly. 

In 24-bit or 32-bit display mode, the display adapter uses 8 bits to encode a grayscale 
value, offering 256 gray shades. This color resolution is sufficient to display 8-bit 
grayscale images. However, higher bit depth images, such as 16-bit grayscale images, 
are not accurately represented in 24-bit or 32-bit display mode. To display a 16-bit 
grayscale image, either ignore the least significant bits or use a mapping function to 
convert 16 bits to 8 bits. 

Mapping Methods for 16-Bit Image Display 

The following techniques describe how Vision converts 16-bit images to 8-bit images 
and displays them using mapping functions. Mapping functions evenly distribute the 
dynamic range of the 16-bit image to an 8-bit image. 

• Full Dynamic—The minimum intensity value of the 16-bit image is mapped to 0, 
and the maximum intensity value is mapped to 255. All other values in the image 
are mapped between 0 and 255 using the equation shown below. This mapping 
method is general purpose because it ensures the display of the complete dynamic 
range of the image. Because the minimum and maximum pixel values in an image 
are used to determine the full dynamic range of that image, the presence of noisy 
or defective pixels (for non-Class A sensors) with minimum or maximum values can 
affect the appearance of the displayed image. Vision uses the following technique 
by default: 
z = x − y

v − y × 255 

where: 

• z is the 8-bit pixel value, 
• x is the 16-bit value, 
• y is the minimum intensity value, 
• v is the maximum intensity value. 

• 90% Dynamic—The intensity corresponding to 5% of the cumulative histogram is 
mapped to 0, the intensity corresponding to 95% of the cumulated histogram is 
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mapped to 255. Values in the 0 to 5% range are mapped to 0, while values in the 95 
to 100% range are mapped to 255. This mapping method is more robust than the 
full dynamic method and is not sensitive to small aberrations in the image. This 
method requires the computation of the cumulative histogram or an estimate of 
the histogram. Refer to image analysis, for more information on histograms. 

• Given Percent Range—This method is similar to the 90% Dynamic method, except 
that the minimum and maximum percentages of the cumulative histogram that 
the software maps to 8-bit are user defined. 

• Given Range—This technique is similar to the Full Dynamic method, except that 
the minimum and maximum values to be mapped to 0 and 255 are user defined. 
You can use this method to enhance the contrast of some regions of the image by 
finding the minimum and maximum values of those regions and computing the 
histogram of those regions. A histogram of this region shows the minimum and 
maximum intensities of the pixels. Those values are used to stretch the dynamic 
range of the entire image. 

• Downshifts—This technique is based on shifts of the pixel values. This method 
applies a given number of right shifts to the 16-bit pixel value and displays the 
least significant bit. This technique truncates some of the lowest bits, which are 
not displayed. This method is very fast, but it reduces the real dynamic of the 
sensor to 8-bit sensor capabilities. It requires knowledge of the bit-depth of the 
imaging sensor that has been used. For example, an image acquired with a 12-bit 
camera should be visualized using four right shifts in order to display the eight 
most significant bits acquired with the camera. If you are using a National 
Instruments image acquisition device, this technique is the default used by 
Measurement & Automation Explorer (MAX). 

Related concepts: 

• Image Analysis 

Palettes Palettes 

At the time a grayscale image is displayed on the screen, Vision converts the value of 
each pixel of the image into red, green, and blue intensities for the corresponding pixel 
displayed on the screen. This process uses a color table, called a palette, which 
associates a color to each possible grayscale value of an image. Vision provides the 
capability to customize the palette used to display an 8-bit grayscale image. 
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When to Use 

With palettes, you can produce different visual representations of an image without 
altering the pixel data. Palettes can generate effects, such as photonegative displays or 
color-coded displays. In the latter case, palettes are useful for detailing particular 
image constituents in which the total number of colors is limited. 

Displaying images in different palettes helps emphasize regions with particular 
intensities, identify smooth or abrupt gray-level variations, and convey details that 
might be difficult to perceive in a grayscale image. For example, the human eye is 
much more sensitive to small intensity variations in a bright area than in a dark area. 
Using a color palette may help you distinguish these slight changes. 

Concepts 

A palette is a pre-defined or user-defined array of RGB values. It defines for each 
possible gray-level value a corresponding color value to render the pixel. The gray-
level value of a pixel acts as an address that is indexed into the table, returning three 
values corresponding to a red, green, and blue (RGB) intensity. This set of RGB values 
defines a palette in which varying amounts of red, green, and blue are mixed to 
produce a color representation of the value range. 

In the case of 8-bit grayscale images, pixels can take 28, or 256, values ranging from 0 
to 255. Color palettes are composed of 256 RGB elements. A specific color is the result 
of applying a value between 0 and 255 for each of the three color components: red, 
green, and blue. If the red, green, and blue components have an identical value, the 
result is a gray level pixel value. 

A gray palette associates different shades of gray with each value so as to produce a 
linear and continuous gradation of gray, from black to white. You can set up the palette 
to assign the color black to the value 0 and white to 255, or vice versa. Other palettes 
can reflect linear or nonlinear gradations going from red to blue, light brown to dark 
brown, and so on. 

Vision has five predefined color palettes. Each palette emphasizes different shades of 
gray. 
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In-Depth Discussion 

The following sections introduce the five predefined palettes available in NI Vision. The 
graphs in each section represent the color tables used by each palette. The horizontal 
axes of the graphs represent the input gray-level range [0, 255], and the vertical axes 
represent the RGB intensities assigned to a given gray-level value. 

Gray Palette 

This palette has a gradual gray-level variation from black to white. Each value is 
assigned to an equal amount of red, green, and blue in order to produce a gray-level. 

Temperature Palette 

This palette has a gradation from light brown to dark brown. 0 is black and 255 is 
white. 

Rainbow Palette 

This palette has a gradation from blue to red with a prominent range of greens in the 
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middle value range. 0 is blue and 255 is red. 

Gradient Palette 

This palette has a gradation from red to white with a prominent range of light blue in 
the upper value range. 0 is black and 255 is white. 

Binary Palette 

This palette has 17 cycles of 15 different colors. The following table illustrates these 
colors, where g is the gray-level value. 

g = R G B Resulting Color 

1 255 0 0 Red 

2 0 255 0 Green 

3 0 0 255 Blue 

4 255 255 0 Yellow 

5 255 0 255 Purple 
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g = R G B Resulting Color 

6 0 255 255 Aqua 

7 255 127 0 Orange 

8 255 0 127 Magenta 

9 127 255 0 Bright green 

10 127 0 255 Violet 

11 0 127 255 Sky blue 

12 0 255 127 Sea green 

13 255 127 127 Rose 

14 127 255 127 Spring green 

15 127 127 255 Periwinkle 

The values 0 and 255 are special cases. A value of 0 results in black, and a value of 255 
results in white. 

This periodic palette is appropriate for the display of binary and labeled images. 

Regions of Interest Regions of Interest 

A region of interest (ROI) is an area of an image in which you want to perform your 
image analysis. When to Use 

Use ROIs to focus your processing and analysis on part of an image. You can define an 
ROI using standard contours, such as an oval or rectangle, or freehand contours. You 
also can perform any of the following options: 
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• Construct an ROI in an image display environment. 
• Associate an ROI with an image display environment. 
• Extract an ROI associated with an image display environment. 
• Erase the current ROI from an image display environment. 
• Transform an ROI into an image mask. 
• Transform an image mask into an ROI. 

Concepts 

An ROI describes a region or multiple regions of an image in which you want to focus 
your processing and analysis. These regions are defined by specific contours. Vision 
supports the following contour types. 

Icon Contour Name 

Point 

Line 

Rectangle 

Oval 

Polygon 

Freehand Region 

Annulus 

Broken Line 

Freehand Line 

Rotated Rectangle 

You can define an ROI interactively, programmatically, or with an image mask. Define 
an ROI interactively by using the tools from the tools palette to draw an ROI on a 
displayed image. For more information about defining ROIs programmatically or with 
an image mask, refer to your Vision user manual. 

Nondestructive Overlay Nondestructive Overlay 

A nondestructive overlay enables you to annotate the display of an image with useful 
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information without actually modifying the image. You can overlay text, lines, points, 
complex geometric shapes, and bitmaps on top of your image without changing the 
underlying pixel values in your image; only the display of the image is affected. You can 
also group several different overlays together to indicate a similarity between the 
overlays. Overlay groups act as a single overlay and allow you to apply common 
overlay functions to the entire group, such as clear, copy, and merge. The following 
figure shows how you can use the overlay to depict the orientation of each particle in 
the image. 

When to Use 

You can use nondestructive overlays for many purposes, such as the following: 

• Highlighting the location in an image where objects have been detected. 
• Adding quantitative or qualitative information to the displayed image, such as the 

match score from a pattern matching function. 
• Displaying ruler grids or alignment marks. 

Concepts 

Overlays do not affect the results of any analysis or processing functions—they affect 
only the display. The overlay is associated with an image, so there are no special 
overlay data types. You need only to add the overlay to your image. By default, Vision 
clears the overlay anytime you change the size or orientation of the image because the 
overlay ceases to have meaning. However, you can set the properties for an overlay 
group so that transformations applied to the image are also applied to the overlay 
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group. You can save overlays with images using the PNG file format. 

Setting Up Your Imaging System Setting Up Your Imaging System 
Before you acquire, analyze, and process images, you must set up your imaging 
system. Five factors comprise a imaging system: field of view, working distance, 
resolution, depth of field, and sensor size. The following figure illustrates these 
concepts. 
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1. Resolution—The smallest feature size on your object that the imaging system can 
distinguish 

2. Field of view—The area of the object under inspection that the camera can acquire 
3. Working distance—The distance from the front of the camera lens to the object 

under inspection 
4. Sensor size—The size of a sensor's active area, typically defined by the sensor's 

horizontal dimension 
5. Depth of field—The maximum object depth that remains in focus 
6. Image—The image under inspection. 
7. Pixel—The smallest division that makes up a digital image. 
8. Pixel resolution—The minimum number of pixels needed to represent the object 

under inspection 

For additional information about the fundamental parameters of an imaging system, 
refer to the Application Notes sections of the Edmund Industrial Optics Optics and 
Optical Instruments Catalog, or visit Edmund Industrial Optics at 
www.edmundoptics.com. 

Acquiring Quality Images 

The manner in which you set up your system depends on the type of analysis and 
processing you need to do. Your imaging system should produce images with high 
enough quality so that you can extract the information you need from the images. Five 
factors contribute to overall image quality: resolution, contrast, depth of field, 
perspective, and distortion. 

Resolution 

There are two kinds of resolution to consider when setting up your imaging system: 
pixel resolution and resolution. Pixel resolution refers to the minimum number of 
pixels you need to represent the object under inspection. You can determine the pixel 
resolution you need by the smallest feature you need to inspect. Try to have at least 
two pixels represent the smallest feature. You can use the following equation to 
determine the minimum pixel resolution required by your imaging system: 

(length of object's longest axis / size of object's smallest feature) × 2 
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If the object does not occupy the entire field of view, the image size will be greater than 
the pixel resolution. 

Resolution indicates the amount of object detail that the imaging system can 
reproduce. Images with low resolution lack detail and often appear blurry. Three 
factors contribute to the resolution of your imaging system: field of view, the camera 
sensor size, and number of pixels in the sensor. When you know these three factors, 
you can determine the focal length of your camera lens. 

Field of View 

The field of view is the area of the object under inspection that the camera can 
acquire. The following figure describes the relationship between pixel resolution and 
the field of view. 

Figure A shows an object that occupies the field of view. Figure B shows an object that 
occupies less space than the field of view. If w is the size of the smallest feature in the x 
direction and h is the size of the smallest feature in the y direction, the minimum x 
pixel resolution is: 

wfov
w × 2 

The minimum y pixel resolution is: 

hfov
h × 2 

Choose the larger pixel resolution of the two for your imaging application. 
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Sensor Size and Number of Pixels in the Sensor 

The camera sensor size is important in determining your field of view, which is a key 
element in determining your minimum resolution requirement. The sensor's diagonal 
length specifies the size of the sensor's active area. The number of pixels in your 
sensor should be greater than or equal to the pixel resolution. Choose a camera with a 
sensor that satisfies your minimum resolution requirement. 

Lens Focal Length 

When you determine the field of view and appropriate sensor size, you can decide 
which type of camera lens meets your imaging needs. A lens is defined primarily by its 
focal length. The relationship between the lens, field of view, and sensor size is as 
follows: 

focal length = (sensor size × working distance) / field of view. 

If you cannot change the working distance, you are limited in choosing a focal length 
for your lens. If you have a fixed working distance and your focal length is short, your 
images may appear distorted. However, if you have the flexibility to change your 
working distance, modify the distance so that you can select a lens with the 
appropriate focal length and minimize distortion. 

Contrast 

Resolution and contrast are closely related factors contributing to image quality. 
Contrast defines the differences in intensity values between the object under 
inspection and the background. Your imaging system should have enough contrast to 
distinguish objects from the background. Proper lighting techniques can enhance the 
contrast of your system. 

Depth of Field 

The depth of field of a lens is its ability to keep objects of varying heights in focus. If 
you need to inspect objects with various heights, chose a lens that can maintain the 
image quality you need as the objects move closer to and further from the lens. 
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Perspective 

Perspective errors often occur when the camera axis is not perpendicular to the object 
you are inspecting. Figure A shows an ideal camera position. Figure B shows a camera 
imaging an object from an angle. 

1. Lens Distortion 
2. Perspective Error 
3. Known Orientation Offset 

Perspective errors appear as changes in the object's magnification depending on the 
object's distance from the lens. Figure A shows a grid of dots. Figure B illustrates 
perspective errors caused by a camera imaging the grid from an angle. 

Try to position your camera perpendicular to the object you are trying to inspect to 
reduce perspective errors. If you need to take precise measurements from your image, 
correct perspective error by applying calibration techniques to your image. 
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Distortion 

Nonlinear distortion is a geometric aberration caused by optical errors in the camera 
lens. A typical camera lens introduces radial distortion. This causes points to appear 
further away from the optical center of the lens than they really are. Figure C illustrates 
the effect of distortion on a grid of dots. When distortion occurs, information in the 
image is misplaced relative to the center of the field of view, but the information is not 
necessarily lost. Therefore, you can undistort your image through spatial calibration. 

Spatial Calibration Spatial Calibration 
This section describes how to calibrate an imaging setup so that you can convert pixel 
coordinates to real-world coordinates. Converting pixel coordinates to real-world 
coordinates is useful when you need to make accurate measurements from inspection 
images using real-world units. 

Introduction 

Spatial calibration is the process of computing pixel to real-world unit transformations 
while accounting for many errors inherent to the imaging setup. Calibrating your 
imaging setup is important when you need to make accurate measurements in real-
world units. 

An image contains information in the form of pixels. Spatial calibration allows you to 
translate a measurement from pixel units into another unit, such as inches or 
centimeters. This conversion is easy if you know a conversion ratio between pixels and 
real-world units. For example, if one pixel equals one inch, a length measurement of 10 
pixels equals 10 inches. 

This conversion may not be straightforward because perspective projection and lens 
distortion affect the measurement in pixels. Calibration accounts for possible errors by 
constructing mappings that you can use to convert between pixel and real world units. 
You also can use the calibration information to correct perspective or nonlinear 
distortion errors for image display and shape measurements. 

Vision calibration software supports area scan cameras using rectilinear or telecentric 
lenses. Vision calibration software may not accurately calibrate true fisheye or 
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curvilinear lenses. 

When to Use When to Use 

Use the Vision calibration tools to do the following: 

• Calibrate your imaging setup automatically by imaging a standard pattern, such as 
a calibration template, or by providing reference points. 

• Convert measurements such as lengths, areas, or widths between real-world units 
and pixel units. 

• Apply a learned calibration mapping to correct an image acquired through a 
calibrated setup. 

• Assign an arbitrary calibration axis to measure positions in real-world units relative 
to a point in an image. 

Calibration Algorithms This section describes the calibration algorithms that are 
supported by Vision. The following table provides a brief description of when to use 
each algorithm. Refer to individual subsections for detailed information. 

Name When to Use 

Simple 
Calibration 

Use simple calibration when your camera is perpendicular to the plane of the object 
under inspection and distortion is negligible. For example, simple calibration can be 
used with an imaging setup that uses a telecentric lens. 

Perspective 
Calibration 

Use perspective calibration to correct perspective distortion introduced by a camera 
that is not perpendicular to plane of the object under inspection. 

Distortion 
Modeling 

Use a distortion model to correct distortion introduced by lens imperfections. Vision 
supports the following distortion models: 

• Division—Corrects radial distortion. 
• Polynomial—Corrects radial and tangential distortion. 

If your camera is also not perpendicular to the object under inspection, you can 
combine distortion modelling with perspective calibration. 
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Camera 
Modeling 

Use a camera model to model detailed camera characteristics, including the focal 
length, image center, and distortion model. 

Camera models are most commonly used in robotics applications to determine the 
relationship of the camera to the object under inspection. 

Because a camera model includes a distortion model, you do not need to compute a 
separate distortion model. 

Microplane 
Calibration Use microplane calibration when the working plane is nonlinear. 

Simple Calibration 

The simple calibration algorithm performs a direct conversion of pixel coordinates and 
real-world units. 

Perspective Calibration 

The perspective calibration algorithm computes a pixel to real-world mapping for the 
entire image, which allows you to easily convert between pixel coordinates and real-
world units. 

The following figure contains multiple dots of the same size in real world values which 
are distorted by perspective projection: 

Distortion Modeling 

A distortion model uses one or more calibration grids to model distortion introduced 
by lens imperfections and correct distortion for the entire image. Distortion modeling 
can model radial and tangential distortion. 

Digital Images

38 ni.com



The following figures illustrate typical radial lens distortion. 

Figure A illustrates barrel distortion and figure B illustrates pincushion distortion. You 
can use both the division model and the polynomial model to correct for radial 
distortion. 

Tangential distortion occurs when the camera sensor is not aligned with the optical 
axis. Use the polynomial model if your image exhibits tangential distortion. 

Camera Modeling 

A camera model uses multiple calibration grids to model detailed camera 
characteristics, including the focal length, image center, and distortion model. Using a 
camera model, you can apply mathematical calculations to determine values such as 
the pose of an object. 

Microplane Calibration 

The microplane calibration algorithm computes pixel to real-world mappings in a 
rectangular region centered on each point in a calibration grid. Vision interpolates the 
mapping information around each point based on neighboring points. 

Use microplane calibration to correct distortion introduced by a nonlinear working 
plane. The following figure illustrates nonlinear distortion: 
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Concepts Concepts 

The calibration software uses a calibration algorithm and a list of known pixel to real-
world mappings to compute calibration information for the entire image. The 
calibration software uses these known mappings to compute the pixel to real-world 
mapping for the entire image. Individual calibration algorithms may have specific 
requirements for creating the list of pixel to real-world mappings. 

After you calibrate an image, you can define a calibration axis in order to express pixel 
measurements in real-world units, or spatially correct a portion of a distorted image. 

You can also review statistical results to evaluate the quality or state of your calibration 
system. 

Mapping Pixel Coordinates to Real-World Coordinates 

You can specify a list of pixel to real-world mappings in two ways, depending on the 
calibration algorithm you select. You can manually map pixel coordinates to real-world 
coordinates, or you can use a calibration grid. 

The resulting calibration information is valid only for the imaging setup that you used 
to create the mapping. Any change in the imaging setup that violates the mapping 
information compromises the accuracy of the calibration information. 

Defining Mappings Manually 

To define mappings manually, input a list of real world points and the corresponding 
pixel coordinates to the calibration software. The following table describes the 
algorithms that allow you to define mappings manually: 
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Name Description 

Simple 
Calibration 

Simple calibration transforms pixel coordinates to real-world coordinates by scaling 
the image horizontally and vertically. Provide the calibration software with the 
horizontal and vertical distance between pixels in real-world units. 

Perspective 
Calibration 

Provide a set of pixel to real-world mappings to perspective calibration to correct the 
perspective distortion. A minimum of 4 pixel to real-world mappings are required to 
correct the perspective distortion, but additional mappings may provide better 
results. 

Using a Calibration Grid 

A calibration grid consists of a grid of equidistant points similar to the grid of dots 
shown in figure A. 

To use a calibration grid, provide the calibration with the horizontal (dx) and vertical 
(dy) spacing between the points in real-world units. The calibration software uses the 
image of the grid, shown in figure B, and the spacing between the dots in the grid to 
generate the list of pixel to real-world mappings required for the calibration process. 

The following algorithms support using a calibration grid: 

• Distortion Model, 
◦ Division 
◦ Polynomial 
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• Camera Model, 
• Microplane Calibration. 

Refer to the following guidelines to achieve accurate results with a calibration grid: 

• The calibration grid should cover most of the field of view or area under 
inspection. 

• A minimum of 4 pixel to real-world mappings are required to correct distortion in 
the image, but additional mappings may provide better results. 

Using Multiple Calibration Grid Images 

Some calibration algorithms may require multiple calibration grids. For example, a 
distortion model can only be learned for points that are present in a calibration grid 
image. If the points do not cover the entire field of view or area under inspection, the 
distortion model may be inaccurate. 

Vision calibration software can use multiple calibration grid images. The following 
figure illustrates multiple calibration grid images obtained by repositioning the 
calibration grid within a single field of view. 

When multiple images are supplied, the calibration software uses a least square 
method to optimize the distortion model. After learning the distortion model, you 
must perform perspective calibration to set the working plane on which you want to 
make measurements and enable pixel to real-world mappings. 

The following figure illustrates the steps involved in using multiple calibration grid 
images. 
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First, learn the distortion or camera model using points from multiple calibration grid 
images. Then learn the perspective calibration for the working plane on which you 
want to make the measurement. If the working plane changes, you must relearn the 
perspective calibration. 

Using Multiple Calibration Grid Images in Multiple Planes 

To compute a camera model, you must provide multiple grid images from at least 
three different projection planes. The following figure illustrates the same calibration 
grid in multiple projection planes. 

For accurate results, the calibration grids used to calculate the camera model should 
cover a minimum relative angle of 45 degrees. The following figures illustrate different 
relative angle coverages: 

The leftmost figure illustrates two calibration grids with a relative angle range of 20 
degrees. The rightmost figure illustrates two calibration grids with a relative angle of 
90 degrees. A camera model calculated for the left figure would be less accurate than 
the camera model calculated for the right figure. For example, the point where the 
grids intersect in the right figure is much more clearly defined than in the other figures. 
If the relative angle between calibration grids is too small, the calibration software 
indicates that it does not have sufficient data to compute the camera model. 

For the most accurate results, use multiple calibration grid images to compute a 
camera model, as illustrated in the following figure: 
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Calibration Axis 

To express measurements in real-world units, you must define a calibration axis. To 
define a calibration axis, specify the following information: 

• The origin of the calibration axis, expressed in pixel coordinates. 
• The angle between the calibrated x-axis and the horizontal axis of the image, 

expressed in degrees. 
• The direction of the calibrated vertical axis, either direct or indirect. 

The following figure illustrates a default calibration axis and a user-defined calibration 
axis. The origins of the coordinate systems lie at the center of the circled dots. Point A 
indicates the origin for a default calibration axis starting at the top leftmost pixel of an 
image. Point B indicates the origin of a user-defined calibration axis. 

The calibration axis angle, defined by θ, specifies the orientation of the calibrated x1 

axis with respect to the horizontal axis in the image. 

The calibration axis originating at point A uses an indirect vertical axis, while the 
calibration axis originating at point B uses a direct vertical axis. 
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The following figures illustrate vertical axis directions. An indirect axis orientation, as 
shown in figure A, corresponds to a typical digital image where the top left pixel serves 
as the origin. A direct axis orientation, as shown in figure B, corresponds to the 
orientation of a real-world cartesian Y-axis. 

Default Calibration Axis Definition 

If the calibration uses multiple calibration grid images, the calibration axis is defined in 
the working plane image. 

The calibration process defines a default calibration axis as follows: 

1. The origin is set according to the following conditions: 
◦ If you use manually defined reference points, the origin is placed at point 0, 0 

relative to the points you define. 
◦ If you use a calibration grid image, the origin is placed at the center of the left, 

top-most point in the calibration grid image. 
2. The angle is set to zero. This aligns the x-axis with the topmost row of points in the 

calibration grid image. 
3. The vertical axis direction is set to indirect. This aligns the y-axis to the leftmost 

column of points in the calibration grid image. 
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If you specify a list of points instead of using a calibration grid, the points define the 
default calibration axis origin, angle, and vertical axis direction. 

Redefining a Calibration Axis 

You can use Vision software to redefine a calibration axis. For example, you may want 
to define a calibration axis based on measurements taken from a part under 
inspection. 

The following figure shows an inspection application whose objective is to determine 
the location of the hole in the board with respect to the corner of the board. The board 
is on a stage that can translate in the x and y directions and can rotate about its center. 
The corner of the board is located at the center of the stage. 

In the initial setup, shown in figure A, the defined calibration axis aligns with the 
corner of the board using the following parameters: 

• The origin of the calibration axis is defined as the location in pixels of the corner of 
the board. 

• The angle of the calibration axis is set to 180 degrees. 
• The axis direction is set to indirect. 

In this example, you can use pattern matching to find the location in pixels of the hole, 
as illustrated by the crosshair mark in figure A. Convert the location of the hole in 
pixels to a real world location. This conversion returns the real world location of the 
hole with respect to the defined calibration axis. 

During the inspection process, the stage may translate and rotate by a known amount. 
This causes the board to occupy a new location in the camera's field of view, which 
makes the board appear translated and rotated in subsequent images, as shown in 
figure B. Because the board has moved, the original calibration axis no longer aligns 
with the corner of the board. Therefore, measurements made using this calibration 
axis are inaccurate. 

Use the information about how much the stage has moved to determine the new 
location of the corner of the board in the image. Use the Set Calibration function to 
update the calibration axis to reflect the new position, as illustrated in figure C. The 
origin of the updated calibration axis becomes the new pixel location of the corner of 
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the board, and the angle of the calibration axis is the angle by which the stage has 
rotated. 

Calibration Quality Information 

Distortion is specified in relative terms. For example, a lens which exhibits 2 percent 
barrel radial distortion over a given field will image a point in the corner of the field 2 
percent too far from the optical axis. In the resulting image, a corner that should be 
400 pixels from the optical axis measures 408 pixels away from the optical axis. 

Vision calibration software provides a percentage distortion statistic to indicate the 
quality of a calibrated system. Vision software calculates the error divided by the 
distance from the optical axis for each pixel. The average result is presented as the 
percentage distortion statistic. 

Use the percentage distortion statistic to determine whether the selected calibration 
algorithm is adequate for your application. For example, you may receive a high 
percentage distortion statistic if you use perspective calibration or a sparse calibration 
grid to correct an image exhibiting nonlinear or lens distortion. You can also use the 
percentage distortion statistic to determine whether there is a problem with the 
calibrated system. For example, if your lens introduces negligible distortion, a high 
percentage distortion statistic may indicate a problem such as a physically distorted 
calibration template. 

Error Map 

Vision calibration software computes an error map, along with the following error 
statistics: 

• Mean error, 
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• Maximum error, 
• Standard deviation. 

The error map is an estimate of the positional error that you can expect when you 
convert a pixel coordinate into a real-world coordinate. The error map is a 2D array 
that contains the expected positional error for each pixel in the image. 

The error value of the pixel coordinate (i, j) indicates the largest possible location error 
for the estimated real-world coordinate (x, y) as compared to the true real-world 
location. The following equation shows how to calculate the error value. 

e(i, j) = √(x − xtrue)2
+ (y − ytrue)2

 

The error value indicates the radial distance from the true real world position in which 
the estimated real world coordinates can exist. The error value has a confidence 
interval of 95%, which implies that the positional error of the estimated real-world 
coordinate is equal to or smaller than the error value 95% of the time. A pixel 
coordinate with a small error value indicates that its estimated real-world coordinate is 
computed very accurately. A large error value indicates that the estimated real-world 
coordinate for a pixel may not be accurate. 

Use the error map to determine whether your imaging setup and calibration 
information satisfy the accuracy requirements of your inspection application. If the 
error values are greater than the positional errors that your application can tolerate, 
you need to improve your imaging setup. An imaging system with high lens distortion 
usually results in an error map with high values. If you are using a lens with 
considerable distortion, you can use the error map to determine the position of the 
pixels that satisfy the accuracy requirements of your application. Because the effect of 
lens distortion increases toward the image borders, pixels close to the center of the 
image have lower error values than the pixels at the image borders. 

Image Correction 

Image correction involves transforming a distorted image acquired in a calibrated 
setup into an image where perspective errors and lens distortion are corrected. Vision 
corrects an image by applying the transformation from pixel to real-world coordinates 
for each pixel in the input image. Then Vision applies simple shift and scaling 
transformations to position the real-world coordinates into a new image. Vision uses 
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interpolation during the scaling process to generate the new image. 

When you learn for correction, you have the option of constructing a correction table. 
The correction table is a lookup table, stored in memory, that contains the real-world 
location information of all the pixels in the image. The lookup table greatly increases 
the speed of image correction but requires more memory and increases your learning 
time. Use this option when you want to correct several images at a time in your vision 
application. 

Correction Area 

You can correct an entire image or regions in the image based on user-defined ROIs or 
the calibration ROI defined by the calibration software. The following figure illustrates 
the different image areas you can specify for correction. Vision learns calibration 
information for only the regions you specify. 

Tip Correcting images is a time-intensive operation. You may be able to get 
the measurements you need without image correction. For example, you can 
use Vision particle analysis functions to compute calibrated measurements 
directly from an image that contains calibration information but has not been 
corrected. Also, you can convert pixel coordinates returned by edge detection 
tools into real-world coordinates. 
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1. Full Image—Corrects the entire image regardless of the calibration ROI and the 
user-defined ROI. 

2. User or Calibration ROI—Corrects pixels in both the user-defined ROI and the 
calibration ROI. 

3. User ROI—Corrects only the pixels inside the user-defined ROI specified during the 
learn calibration phase. 

4. User and Calibration ROI—Corrects only the pixels that lie in the intersection of the 
user-defined ROI and the calibration ROI. 

5. Calibration ROI—Corrects only the pixels inside the calibration ROI. The calibration 
ROI is computed by the calibration algorithm. 

The valid coordinate indicates whether the pixel coordinate you are trying to map to a 
real-world coordinate lies within the image region you corrected. For example, if you 
corrected only the pixels within the calibration ROI but you try to map a pixel outside 
the calibration ROI to real-world coordinates, the Corrected Image Learn ROI 
parameter indicates an error. 

Scaling Mode 

The scaling mode defines how to scale a corrected image. Two scaling mode options 
are available: scale to fit and scale to preserve area. The following illustrates the 
scaling modes. Figure A shows the original image. With the scale to fit option, the 
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corrected image is scaled to fit in an image the same size as the original image, as 
shown in figure B. With the scale to preserve area option, the corrected image is scaled 
such that features in the image retain the same area as they did in the original image, 
as shown in figure C. Images that are scaled to preserve area are usually larger than 
the original image. Because scaling to preserve the area increases the size of the 
image, the processing time for the function may increase. 

In-Depth Discussion In-Depth Discussion 

This section describes the factors responsible for producing an image and how those 
factors can be used to map real-world coordinates to image coordinates. This section 
also describes how Vision software corrects for distortion, and how you can calculate 
the pose of an object in an image. 

The following illustration shows projective mapping: 
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where: 

• the calibration target is represented in a real-world coordinate system (Xw, Yw, Zw), 
• the camera coordinate system is represented as (xc, yc, zc), with the z axis aligned 

with the optical axis and the x and y axes aligned with the horizontal and vertical 
axes of the image plane, 

• an intermediate plane, parallel to the image plane, illustrates the shape of the 
calibration target in an image. 

A camera coordinate axis is displaced from a real-world coordinate axis by the 
following transformation: Pc = R(Pw – T) 

where: 

• Pw is a point in the real-world coordinate system, 

• Pc is the homogenous point in the camera coordinate system, 

• R is the rotation matrix between the real-world coordinate axis and the camera 
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coordinate axis, 

• T is the origin of the real-world coordinate axis minus the camera coordinate axis. 

Homography 

A physical projection, or homography, defines a geometric mapping of points from one 
plane to another. In calibration, a homography can describe the conversion of 3D 
coordinates in the real world to pixel coordinates in the image. 

A physical projection transformation maps the real-world point P(Xw, Yw, Zw) to the 
image point p(xw, yw). 

A typical homography can be expressed as p = sHP, 

where: 

• p is the image plane projection expressed in camera coordinates [Xc Yc 1]T that 
correspond to 2D image coordinates, 

• P is a real-world point expressed in 3D real world coordinates [Xw Yw Zw 1]T.., 

• s is a scaling factor, 

• H is homography. 

In Vision calibration software, homography (H) is a 3 × 3 matrix which is the product of 
two matrices: a camera matrix (M) and a homography matrix (W). 

Camera Matrix 

A camera matrix (M) describes the following internal camera parameters: 

• focal length 

Note Because p is defined in homogenous coordinates, you must divide 
through by z to recover the actual image coordinates. 
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• principle point position 
• pixel size 
• pixel skew angle 

Internal camera parameters are represented with the following matrix: 

where, 

fx = F
sx  

fy =
F
sy  

and 

• F is the focal length, in millimeters, 

• sx is the horizontal size of a pixel in the camera sensor, in pixels per millimeter, 

• syis the vertical size of a pixel in the camera sensor, in pixels per millimeter, 

• cx is the horizontal displacement of the imager from the optical axis, in 
millimeters, 

• cy is the vertical displacement of the imager from the optical axis, in millimeters, 

• α is the pixel skew angle of y with respect to x. α is typically equal to 0. 

Note Because a is typically equal to 0, M is defined as: 
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The camera focal length (F) and pixel dimensions  (sx, sy) cannot be directly calculated. 
Camera calibration can only calculate the derivative focal length and pixel dimension 
combinations (fx, fy). 

Homography Matrix 

A homography matrix (W) consists of the rotation matrix and translation vector that 
relate a point in a real-world plane and a point in an image plane. The physical 
projection transformation matrix can be expressed as: 

W = [R t] 

where: 

• R equals the rotation matrix, 

• t equals the translation vector. 

The rotation matrix (R) can be expressed as 3 separate 3 × 1 matrices, so that: 

R = [r1 r2 r3] 

Thus, the original homography: 

p = sHP 

can be expressed as: 

. 

Because calibration is performed with a planar calibration target, we can generalize 
that Z = 0 to further simplify the homography as: 

. 
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. 

Lens ans Camera Distortion 

There are two common types of distortion. Lens characteristics may introduce radial 
distortion, while a misalignment of the lens and camera sensor may introduce 
tangential distortion. 

The following illustration shows radial distortion: 

The following illustration shows tangential distortion: 
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Vision provides division and polynomial distortion models which can correct distortion 
in an image. 

Division Distortion Model 

The division distortion model can correct radial distortion. The division distortion 
model uses a single coefficient parameter (K) to model distortion. 

The division distortion model can be represented as: 

xcorrected = 2x

1 + √1 − 4κ(x2 + y2)  
ycorrected = 2y

1 + √1 − 4κ(x2 + y2)  
. 

where, 

K > 0 corrects pincushion distortion, 

K < 0 corrects barrel distortion. 

The following illustration shows barrel distortion: 
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The following illustration shows pincushion distortion: 

Use the inverse equations to distort corrected coordinates: 

x = x

1 + κ(x2 + y2)  
y = y

1 + κ(x2 + y2)  
Polynomial Distortion Model 

The polynomial distortion model can correct both radial and tangential distortion. 

Using the Polynomial Distortion Model to Correct Radial Distortion 

The polynomial distortion model uses one or more coefficient parameters (K) to model 
distortion. The distortion model for radial distortion can be represented as: 

xcorrected = x(1 + K1r2 + K2r4 + K3r6 + K4r8K4r10 + Kn + r(n × 2)) 
ycorrected = y(1 + K1r2 + K2r4 + K3r6 + K4r8K4r10 + Kn + r(n × 2)) 
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You can specify the number of coefficients required to model radial distortion for your 
specific lens. 

Using the Polynomial Distortion Model to Correct Tangential Distortion 

The polynomial distortion model uses two parameters, P1 and P2, to characterize 
tangential distortion. The distortion model for tangential distortion can be 
represented as: 

Determining the Pose of an Object 

The Homography section explains that a typical homography can be expressed as p = 
sHP 

where: 

• p is the image plane projection expressed in camera coordinates [Xc Yc 1]T that 
correspond to 2D image coordinates, 

• P is a real-world point expressed in 3D real world coordinates [Xw Yw Zw 1]T, 

• s is a scaling factor, 

• H is homography. 

In Vision calibration software, homography (H) is a 3 × 3 matrix which is the product of 
two matrices: a camera matrix (M) and a homography matrix (W). 

The Homography Matrix section explains that the original homography p = sHP can be 
simplified as p = sM[r1 r2 t]P 

where: 

• p is the image plane projection expressed in camera coordinates [Xc Yc 1]T that 
correspond to 2D image coordinates, 

• P equals a real-world point expressed in 3D real world coordinates [Xw Yw Zw 1]T, 
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• s equals a scaling factor, 

• M equals the camera matrix: 

• r1 and r2 equal the simplified rotational vector R, 

• t equals the translation vector. 

Calculating the Pose of an Object 

To calculate the pose of the working plane, you must complete the following steps: 

1. Learn the camera model and generate the camera matrix (M). 
2. Perform perspective correction and generate the homography matrix (W). 
3. Using the homography (H) and camera matrix (M) information provided by NI 

Vision software, apply the following matrix transformation to calculate the 
rotational and translational coefficients. 

RRT = I 

where I is the identity matrix: 

∥ r1 ∥ = ∥ r2 ∥  
r3 = r1 × r2 

4. Use the calculated coefficients to derive the Euler angles for an object to 
determine the pose. 
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Image Processing and Analysis Image Processing and Analysis 
This section describes conceptual information about image analysis and processing, 
operators, and frequency domain analysis. 

Image Analysis Image Analysis 
This section contains information about histograms, line profiles, and intensity 
measurements. 

Image analysis combines techniques that compute statistics and measurements based 
on the gray-level intensities of the image pixels. You can use the image analysis 
functions to understand the content of the image and to decide which type of 
inspection tools to use to solve your application. Image analysis functions also provide 
measurements that you can use to perform basic inspection tasks such as presence or 
absence verification. 

Histogram Histogram 

A histogram counts and graphs the total number of pixels at each grayscale level. From 
the graph, you can tell whether the image contains distinct regions of a certain gray-
level value. 

A histogram provides a general description of the appearance of an image and helps 
identify various components such as the background, objects, and noise. 

When to Use 

The histogram is a fundamental image analysis tool that describes the distribution of 
the pixel intensities in an image. Use the histogram to determine if the overall intensity 
in the image is high enough for your inspection task. You can use the histogram to 
determine whether an image contains distinct regions of certain grayscale values. You 
also can use a histogram to adjust the image acquisition conditions. 

You can detect two important criteria by looking at the histogram. 
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• Saturation—Too little light in the imaging environment leads to underexposure of 
the imaging sensor, while too much light causes overexposure, or saturation, of 
the imaging sensor. Images acquired under underexposed or saturated conditions 
will not contain all the information that you want to inspect from the scene being 
observed. It is important to detect these imaging conditions and correct for them 
during setup of your imaging system. You can detect whether a sensor is 
underexposed or saturated by looking at the histogram. An underexposed image 
contains a large number of pixels with low gray-level values. This appears as a 
peak at the lower end of the histogram. An overexposed or saturated image 
contains a large number of pixels with very high gray-level values. 

• Lack of contrast—A widely-used type of imaging application involves inspecting 
and counting parts of interest in a scene. A strategy to separate the objects from 
the background relies on a difference in the intensities of both, for example, a 
bright part and a darker background. In this case, the analysis of the histogram of 
the image reveals two or more well-separated intensity populations. Tune your 
imaging setup until the histogram of your acquired images has the contrast 
required by your application. 

Concepts 

The histogram is the function H defined on the grayscale range [0, . . ., k, . . ., 255] such 
that the number of pixels equal to the gray-level value k is: 

H(k) = nk 

where 

• k is the gray-level value, 
• nk is the number of pixels in an image with a gray-level value equal to k, 
• ∑ nk from k = 0 to 255 is the total number of pixels in an image. 

The histogram plot in the following figure reveals which gray levels occur frequently 
and which occur rarely. 

The following image shows grayscale range: 
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Two types of histograms can be calculated: the linear and cumulative histograms. 

In both cases, the horizontal axis represents the gray-level value that ranges from 0 to 
255. For a gray-level value k, the vertical axis of the linear histogram indicates the 
number of pixels nk set to the value k, and the vertical axis of the cumulative histogram 
indicates the percentage of pixels set to a value less than or equal to k. 

Linear Histogram 

The density function is 

Hlinear(k) = nk 

where 

• HLinear(k) is the number of pixels equal to k. 

The probability function is 

Plinear(k) =
nk
n  

where 

• PLinear(k) is the probability that a pixel is equal to k. 
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Cumulative Histogram 

The distribution function is 

HCumul(k) = ∑i = 0

k
ni 

where 

• HCumul(k) is the number of pixels that are less than or equal to k. 

The probability function is 

PCumul(k) = ∑
i = 0

k ni
n

 

where 

• PCumul(k) is the probability that a pixel is less than or equal to k. 

Interpretation 

The gray-level intervals featuring a concentrated set of pixels reveal the presence of 
significant components in the image and their respective intensity ranges. 

The linear histogram reveals that the image is composed of three major elements. 
The cumulative histogram of the same image shows that the two left-most peaks 
compose approximately 80% of the image, while the remaining 20% corresponds to 
the third peak. 

Histogram Scale 

The vertical axis of a histogram plot can be shown in a linear or logarithmic scale. A 
logarithmic scale lets you visualize gray-level values used by small numbers of pixels. 
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These values might appear unused when the histogram is displayed in a linear scale. 

In a logarithmic scale, the vertical axis of the histogram gives the logarithm of the 
number of pixels per gray-level value. The use of minor gray-level values becomes 
more prominent at the expense of the dominant gray-level values. The logarithmic 
scale emphasizes small histogram values that are not typically noticeable in a linear 
scale. The following figure illustrates the difference between the display of the 
histogram of the same image in a linear and logarithmic scale. In this particular image, 
three pixels are equal to 0. 

The following image shows a linear vertical scale: 

The following image shows a logarithmic vertical scale: 

Histogram of Color Images 

The histogram of a color image is expressed as a series of three tables, each 
corresponding to the histograms of the three primary components in the color model 
in the following table. 

Color Model Components 

RGB Red, Green, Blue 

HSL Hue, Saturation, Luminance 
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Line Profile Line Profile 

A line profile plots the variations of intensity along a line. It returns the grayscale 
values of the pixels along a line and graphs it. 

When to Use 

The line profile utility is helpful for examining boundaries between components, 
quantifying the magnitude of intensity variations, and detecting the presence of 
repetitive patterns. 

Concepts 

The following figure illustrates a typical line profile. 

The peaks and valleys represent increases and decreases of the light intensity along 
the line selected in the image. Their width and magnitude are proportional to the size 
and intensity of their related regions. 

For example, a bright object with uniform intensity appears in the plot as a plateau. 
The higher the contrast between an object and its surrounding background, the 
steeper the slopes of the plateau. Noisy pixels, on the other hand, produce a series of 
narrow peaks. 

Intensity Measurements Intensity Measurements 

Intensity measurements measure the grayscale image statistics in an image or regions 
in an image. 

When to Use 

You can use intensity measurements to measure the average intensity value in a region 
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of the image to determine, for example, the presence or absence of a part or a defect in 
a part. 

Concepts 

Vision contains the following densitometry parameters: 

• Minimum Gray Value—Minimum intensity value in gray-level units 
• Maximum Gray Value—Maximum intensity value in gray-level units 
• Mean Gray Value—Mean intensity value in the particle expressed in gray-level units 
• Standard Deviation—Standard deviation of the intensity values 

Structural Similarity Index Structural Similarity Index 

Structural Similarity (SSIM) Index is an image quality metric. SSIM index is computed 
for the image with respect to the reference image. The reference image is usually 
needs to be of perfect quality. This quantitative measure considers three parameters 
namely luminance, contrast and structural information between the two images to 
computed the SSIM value. 

When to Use 

• SSIM can be used in television industry to determine the quality of video streamed 
from the satellites. 

• SSIM can be used as a benchmark to check the performance of other image 
progressing algorithms, like image compression. 

Concepts 

The human visual system is adapted to extract structural information. The SSIM 
algorithm separates out the similarity measurements into three different components: 

• Luminance 
• Contrast 
• Structural 

The luminance between the two signals is determined by the mean intensity of the 
signals. The contrast is determined by the standard deviation. And the structural is 
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determined by the correlation of the two signals. 

L(x, y) = (2μxμy + C1) / (2μx
2 + μy

2 + C1)
 

C(x, y) = (2σxσy + C2) / (2σx
2 + σy

2 + C2)
 

S(x, y) = (σxy + C3) / (σxσy + C3) 

where 

• μx is the mean over a window in Image X, 

• μy is the mean over a window in Image Y, 

• σx is standard deviation (square root of variance) over a window in Image X, 

• σx is standard deviation (square root of variance) over a window in Image Y, 

• σxy is co-variance over a window between Image X and Image Y, 

• x and y refer to a local window in the Image X and Y respectively, 

• C1, C2 and C3 are constants. 

SSIM (x,y) is a multiplication of these three components. 

If C3 is set to C2/2, then over a particular window: 

SSIM(x, y) = ((2μxμy + C1) * (2σxy + C2)) / ((μx
2 + μy

2 + C1) * (σx
2 + σy

2 + C2))
 

The Mean-SSIM is the average over all such local windows. The window is moved 
across the image one pixel at a time. 

Normal SSIM 

In normal SSIM, a circular symmetric Gaussian weighting function is used calculate the 
mean values. Choose Normal SSIM when the image has low contrast or does not 
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contain clear structural information; for example, when the image is a texture sample. 

Fast SSIM 

Fast SSIM uses a faster approach to calculate the variance and mean values, which are 
time-consuming in normal SSIM. The gradient images are calculated using the Roberts 
gradient templates to represent variance. Mean values are calculated by averaging 
pixels in the local window. Fast SSIM is best suited for images which have clear 
structural information, such as strong edges. Because it is based on gradient images, 
Fast SSIM may not be sufficient if the image has low contrast or poor structural 
information. 

Feature Extraction Feature Extraction 

Use feature extraction to extract important or interesting features from an image. 

When to Use 

Use feature extraction on images along with classifiers for applications like: 

• Classification—Identify an unknown sample by comparing a set of its significant 
features to a set of features that conceptually represent classes of known samples. 

• Image Segmentation—Segment an image and find defects in parts of an image. 
• Texture Analysis—Classify textures and identify defects in textures. 

Concepts 

Histogram of Oriented Gradients Concepts 

Vision has 2 feature extraction algorithms: histogram of oriented gradients (HOG) and 
local binary patterns (LBP). 

Histogram of oriented gradients is a technique to extract features from an image. The 
technique counts occurrences of gradient orientation in localized portions of an 
image. 

The concept behind the HOG descriptors is that local object appearance and shape 
within an image can be described by the distribution of intensity gradients or edge 
directions. The implementation of these descriptors can be achieved by dividing the 
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image into a grid of small connected regions, called blocks, and for each block 
constructing a histogram of gradient directions for the pixels within the cell. The 
histograms are concatenated to represents the features. For improved accuracy, the 
local histograms are normalized by calculating a measure of the gradient across a 
block, and then using this value to normalize all pixels within the block. 

Gradient Computation 

The gradients in the x- and y-directions are computed for the whole image or the ROI. 
The kernels used for the computation of gradients in the x- and y-directions are: 

Magnitude = (Ix) + (Iy) 

Agnle = arcatan(Iy / Ix) 
Histogram Computation 

The histogram is computed for each block by binning the gradient magnitude for each 
angle range. Each histogram is normalized to values ranging between 0 and 1 using the 
gradient magnitude. 

The following graphic shows Local Binary Patterns Concepts: 
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The following graphic shows Local Binary Patterns Concepts: 

Binary Value = 10101010 

Decimal Value = 170 

Histogram Computation 

The histogram is computed for each block by counting the LBP values in each bin. 
Each histogram is normalized to values ranging between 0 and 1. 

Grid Based computation for HOG and LBP 

The histograms computed for each block give the features local to the block. All the 
histograms are concatenated to form the final histogram which represents the features 
for the whole image. 

How to Use the Bin Size 

The bin size plays an important role in deciding the accuracy in using the features. Use 
a lower bin size for small images, images with noise, and images which do not have 
finer details to be captured by the user. Use a higher bin sized for large images, in 
images with low noise, and in images where finer details play a significant role. 
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Image Processing Image Processing 
This section contains information about lookup tables, convolution kernels, spatial 
filters, and grayscale morphology. 

Lookup Tables Lookup Tables 

The lookup table (LUT) transformations are basic image-processing functions that 
highlight details in areas containing significant information, at the expense of other 
areas. These functions include histogram equalization, gamma corrections, 
logarithmic corrections, and exponential corrections. 

When to Use 

Use LUT transformations to improve the contrast and brightness of an image by 
modifying the dynamic intensity of regions with poor contrast. 

Concepts 

A LUT transformation converts input gray-level values from the source image into 
other gray-level values in the transformed image. 

A LUT transformation applies the transform T(x) over a specified input range 
[rangeMin, rangeMax] in the following manner: 

• T(x) = dynamicMin if x ≤ rangeMin 
• f(x) if rangeMin < x ≤ rangeMax 
• dynamicMax if x > rangeMax 

where 

• x represents the input gray-level value, 
• dynamicMin = 0 (8-bit images) or the smallest initial pixel value (16-bit and floating 
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point images), 
• dynamicMax = 255 (8-bit images) or the largest initial pixel value (16-bit and 

floating point images), 
• dynamicRange = dynamicMax - dynamicMin, 
• f(x) represents the new value. 

The function scales f(x) so that f(rangeMin) = dynamicMin and f(rangeMax) = 
dynamicMax. f(x) behaves on [rangeMin, rangeMax] according to the method you 
select. 

In the case of an 8-bit resolution, a LUT is a table of 256 elements. The index element 
of the array represents an input gray-level value. The value of each element indicates 
the output value. 

The transfer function associated with a LUT has an intended effect on the brightness 
and contrast of the image. 

Example 

The following example uses the following source image. In the linear histogram of the 
source image, the gray-level intervals [0, 49] and [191, 254] do not contain significant 
information. 

Using the following LUT transformation, any pixel with a value less than 49 is set to 0, 
and any pixel with a value greater than 191 is set to 255. The interval [50, 190] expands 
to [1, 254], increasing the intensity dynamic of the regions with a concentration of 
pixels in the gray-level range [50, 190]. 
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If x ∈ (0, 49), F(x) = 0 

If x ∈ (191, 254), f(x) = 225 

elseF(x) = 1.81 × x − 89.5 

The LUT transformation produces the following image. The linear histogram of the 
new image contains only the two peaks of the interval [50, 190]. 

Predefined Lookup Tables 

Seven predefined LUTs are available in NI Vision: Linear, Logarithmic, Power 1/Y, 
Square Root, Exponential, Power Y, and Square. The following table shows the transfer 
function for each LUT and describes its effect on an image displayed in a palette that 
associates dark colors to low-intensity values and bright colors to high-intensity 
values, such as the Gray palette. 

LUT Transfer 
Function Shading Correction 

Linear 
Increases the intensity dynamic by evenly distributing a given 
gray-level interval [min, max] over the full gray scale [0, 255]. 
Min and max default values are 0 and 255 for an 8-bit image. 
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LUT Transfer 
Function Shading Correction 

Logarithmic Power1/Y 
Square Root 

Increases the brightness and contrast in dark regions. Decreases 
the contrast in bright regions. 

Exponential PowerY 
Square 

Decreases the brightness and contrast in dark regions. Increases 
the contrast in bright regions. 

Logarithmic and Inverse Gamma Correction 

The logarithmic and inverse gamma corrections expand low gray-level ranges 
while compressing high gray-level ranges. When using the Gray palette, these 
transformations increase the overall brightness of an image and increase the contrast 
in dark areas at the expense of the contrast in bright areas. 

The following graphs show how the transformations behave. The horizontal axis 
represents the input gray-level range, and the vertical axis represents the output gray-
level range. Each input gray-level value is plotted vertically, and its point of 
intersection with the look-up curve is plotted horizontally to give an output value. 

The Logarithmic, Square Root, and Power 1/Y functions expand intervals containing 
low gray-level values while compressing intervals containing high gray-level values. 

The higher the gamma coefficient Y, the stronger the intensity correction. The 
Logarithmic correction has a stronger effect than the Power 1/Y function. 
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Logarithmic and Inverse Gamma Correction Examples 

The following series of illustrations presents the linear and cumulative histograms of 
an image after various LUT transformations. The more the histogram is compressed on 
the right, the brighter the image. 

The following illustrations show the original image and histograms. 

A Power 1/Y transformation (where Y = 1.5) produces the following image and 
histograms. 

A Square Root or Power 1/Y transformation (where Y = 2) produces the following image 
and histograms. 

Note Graphics on the left represent the original image, graphics on the top 
right represent the linear histogram, and graphics on the bottom right 
represent the cumulative histogram. 
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A Logarithm transformation produces the following image and histograms. 

Exponential and Gamma Correction 

The exponential and gamma corrections expand high gray-level ranges while 
compressing low gray-level ranges. When using the Gray palette, these 
transformations decrease the overall brightness of an image and increase the contrast 
in bright areas at the expense of the contrast in dark areas. 

The following graphs show how the transformations behave. The horizontal axis 
represents the input gray-level range, and the vertical axis represents the output gray-
level range. Each input gray-level value is plotted vertically, and its point of 
intersection with the look-up curve is plotted horizontally to give an output value. 
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The Exponential, Square, and Power Y functions expand intervals containing high gray-
level values while compressing intervals containing low gray-level values. 

The higher the gamma coefficient Y, the stronger the intensity correction. The 
Exponential correction has a stronger effect than the Power Y function. 

Exponential and Gamma Correction Examples 

The following series of illustrations presents the linear and cumulative histograms of 
an image after various LUT transformations. The more the histogram is compressed, 
the darker the image. 

The following illustrations show the original image and histograms. 

A Power Y transformation (where Y = 1.5) produces the following image and 
histograms. 

A Square or Power Y transformation (where Y = 2) produces the following image and 

Note  Graphics on the left represent the original image, graphics on the top 
right represent the linear histogram, and graphics on the bottom right 
represent the cumulative histogram. 
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histograms. 

An Exponential transformation produces the following image and histograms. 

Equalize 

The Equalize function is a lookup table operation that does not work on a predefined 
LUT. Instead, the LUT is computed based on the content of the image where the 
function is applied. 

The Equalize function alters the gray-level values of pixels so that they become evenly 
distributed in the defined grayscale range, which is 0 to 255 for an 8-bit image. The 
function associates an equal amount of pixels per constant gray-level interval and 
takes full advantage of the available shades of gray. Use this transformation to 
increase the contrast in images that do not use all gray levels. 

The equalization can be limited to a gray-level interval, also called the equalization 
range. In this case, the function evenly distributes the pixels belonging to the 
equalization range over the full interval, which is 0 to 255 for an 8-bit image. The other 
pixels are set to 0. The image produced reveals details in the regions that have an 
intensity in the equalization range; other areas are cleared. 
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Equalization Example 

This example shows how an equalization of the interval [0, 255] can spread the 
information contained in the three original peaks over larger intervals. The 
transformed image reveals more details about each component in the original image. 
The following graphics show the original image and histograms. 

An equalization from [0, 255] to [0, 255] produces the following image and histograms. 

Equalization Example 2 

This example shows how an equalization of the interval [166, 200] can spread the 
information contained in the original third peak (ranging from 166 to 200) to the 
interval [0, 255]. The transformed image reveals details about the component with the 
original intensity range [166, 200] while all other components are set to black. An 

Note In Examples 1 and 2, graphics on the left represent the original image, 
graphics on the top right represent the linear histogram, and graphics on the 
bottom right represent the cumulative histogram. 

Note The cumulative histogram of an image after a histogram equalization 
always has a linear profile, as seen in the preceding example. 
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equalization from [166, 200] to [0, 255] produces the following image and histograms. 

Convolution Kernels Convolution Kernels 

A convolution kernel defines a 2D filter that you can apply to a grayscale image. A 
convolution kernel is a 2D structure whose coefficients define the characteristics of the 
convolution filter that it represents. In a typical filtering operation, the coefficients of 
the convolution kernel determine the filtered value of each pixel in the image. Vision 
provides a set of convolution kernels that you can use to perform different types of 
filtering operations on an image. You also can define your own convolution kernels, 
thus creating custom filters. 

When to Use 

Use a convolution kernel whenever you want to filter a grayscale image. Filtering a 
grayscale image enhances the quality of the image to meet the requirements of your 
application. Use filters to smooth an image, remove noise from an image, enhance the 
edge information in an image, and other related edits. 

Concepts 

A convolution kernel defines how a filter alters the pixel values in a grayscale image. 
The convolution kernel is a 2D structure whose coefficients define how the filtered 
value at each pixel is computed. The filtered value of a pixel is a weighted combination 
of its original value and the values of its neighboring pixels. The convolution kernel 
coefficients define the contribution of each neighboring pixel to the pixel being 
updated. The convolution kernel size determines the number of neighboring pixels 
whose values are considered during the filtering process. 

In the case of a 3 × 3 kernel, illustrated in figure A, the value of the central pixel (shown 
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in black) is derived from the values of its eight surrounding neighbors (shown in gray). 
A 5 × 5 kernel, shown in figure B, specifies 24 neighbors, a 7 × 7 kernel specifies 48 
neighbors, and so forth. 

1. Kernel 
2. Image 

A filtering operation on an image involves moving the kernel from the leftmost and 
topmost pixel in the image to the rightmost and bottommost point in the image. At 
each pixel in the image, the new value is computed using the values that lie under the 
kernel, as shown in the following illustration. 

When computing the filtered values of the pixels that lie along the border of the image 
(the first row, last row, first column, or last column of pixels), part of the kernel falls 
outside the image. For example, the following figure shows that one row and one 
column of a 3 × 3 kernel fall outside the image when computing the value of the 
topmost leftmost pixel. 
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1. Border 
2. Image 
3. Kernel 

Vision automatically allocates a border region when you create an image. The default 
border region is three pixels deep and contains pixel values of 0. You also can define a 
custom border region and specify the pixel values within the region. The size of the 
border region should be greater than or equal to half the number of rows or columns 
in your kernel. The filtering results from along the border of an image are unreliable 
because the neighbors necessary to compute these values are missing, therefore 
decreasing the efficiency of the filter, which works on a much smaller number of pixels 
than specified for the rest of the image. For more information about border regions, 
refer to the digital images section. 

Related concepts: 

• Digital Images 

Spatial Filtering Spatial Filtering 

Filters are divided into two types: linear (also called convolution) and nonlinear. 

A convolution is an algorithm that consists of recalculating the value of a pixel based 
on its own pixel value and the pixel values of its neighbors weighted by the coefficients 
of a convolution kernel. The sum of this calculation is divided by the sum of the 
elements in the kernel to obtain a new pixel value. The size of the convolution kernel 
does not have a theoretical limit and can be either square or rectangular (3 × 3, 5 × 5, 
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5 × 7, 9 × 3, 127 × 127, and so on). 

Convolutions are divided into four families: 

• Gradient 
• Laplacian 
• Smoothing 
• Gaussian 

This grouping is determined by the convolution kernel contents or the weight assigned 
to each pixel, which depends on the geographical position of that pixel in relation to 
the central kernel pixel. 

Vision features a set of standard convolution kernels for each family and for the usual 
sizes (3 × 3, 5 × 5, and 7 × 7). You also can create your own kernels and choose what to 
put into them. The size of the user-defined kernel is virtually unlimited. With this 
capability, you can create filters with specific characteristics. 

When to Use 

Spatial filters serve a variety of purposes, such as detecting edges along a specific 
direction, contouring patterns, reducing noise, and detail outlining or smoothing. 
Filters smooth, sharpen, transform, and remove noise from an image so that you can 
extract the information you need. 

Nonlinear filters either extract the contours (edge detection) or remove the isolated 
pixels. NI Vision has six different methods you can use for contour extraction 
(Differentiation, Gradient, Prewitt, Roberts, Sigma, or Sobel). The Canny Edge 
Detection filter is a specialized edge detection method that locates edges accurately, 
even under low signal-to-noise conditions in an image. 

To harmonize pixel values, choose between two filters, each of which uses a different 
method: NthOrder and LowPass. These functions require that either a kernel size and 
order number or percentage is specified on input. 

Spatial filters alter pixel values with respect to variations in light intensity in their 
neighborhood. The neighborhood of a pixel is defined by the size of a matrix, or mask, 
centered on the pixel itself. These filters can be sensitive to the presence or absence of 
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light-intensity variations. 

Spatial filters fall into two categories: 

• Highpass filters emphasize significant variations of the light intensity usually 
found at the boundary of objects. Highpass frequency filters help isolate abruptly 
varying patterns that correspond to sharp edges, details, and noise. 

• Lowpass filters attenuate variations of the light intensity. Lowpass frequency 
filters help emphasize gradually varying patterns such as objects and the 
background. They have the tendency to smooth images by eliminating details and 
blurring edges. 

Concepts 

The following table describes the different types of spatial filters. 

Filter Type Filters 

Linear Highpass Gradient, Laplacian 

Linear Lowpass Smoothing, Gaussian 

Nonlinear Highpass Gradient, Roberts, Sobel, Prewitt, Differentiation, Sigma 

Nonlinear Lowpass Median, Nth Order, Lowpass 

Linear Filters 

A linear filter replaces each pixel by a weighted sum of its neighbors. The matrix 
defining the neighborhood of the pixel also specifies the weight assigned to each 
neighbor. This matrix is called the convolution kernel. 

If the filter kernel contains both negative and positive coefficients, the transfer 
function is equivalent to a weighted differentiation and produces a sharpening or 
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highpass filter. Typical highpass filters include gradient and Laplacian filters. 

If all coefficients in the kernel are positive, the transfer function is equivalent to a 
weighted summation and produces a smoothing or lowpass filter. Typical lowpass 
filters include smoothing and Gaussian filters. 

Gradient Filter 

A gradient filter highlights the variations of light intensity along a specific direction, 
which has the effect of outlining edges and revealing texture. 

Given the following source image: 

A gradient filter extracts horizontal edges to produce the following image. 

A gradient filter highlights diagonal edges to produce the following image. 
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Kernel Definition 

A gradient convolution filter is a first-order derivative. Its kernel uses the following 
model: 

where a, b, c, and d are integers and x = 0 or 1. 

Filter Axis and Direction 

This kernel has an axis of symmetry that runs between the positive and negative 
coefficients of the kernel and through the central element. This axis of symmetry gives 
the orientation of the edges to outline. For example, if a = 0, b = –1, c = –1, d = –1, and 
x = 0, the kernel is the following: 

The axis of symmetry is located at 135°. 

For a given direction, you can design a gradient filter to highlight or darken the edges 
along that direction. The filter actually is sensitive to the variations of intensity 
perpendicular to the axis of symmetry of its kernel. Given the direction D going from 
the negative coefficients of the kernel towards the positive coefficients, the filter 
highlights the pixels where the light intensity increases along the direction D, and 
darkens the pixels where the light intensity decreases. 

The following two kernels emphasize edges oriented at 135°. 

Image Processing and Analysis

© National Instruments 87



Prewitt #10 highlights pixels where the light intensity increases along the direction 
going from northeast to southwest. It darkens pixels where the light intensity 
decreases along that same direction. This processing outlines the northeast front 
edges of bright regions such as the ones in the illustration. 

Prewitt #2 highlights pixels where the light intensity increases along the direction 
going from southwest to northeast. It darkens pixels where the light intensity 
decreases along that same direction. This processing outlines the southwest front 
edges of bright regions such as the ones in the illustration. 

Edge Extraction and Edge Highlighting 

The gradient filter has two effects, depending on whether the central coefficient x is 
equal to 1 or 0. 

Note Applying Prewitt #10 to an image returns the same results as applying 
Prewitt #2 to its photometric negative because reversing the lookup table of 
an image converts bright regions into dark regions and vice versa. 
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• If the central coefficient is null (x = 0), the gradient filter highlights the pixels where 
variations of light intensity occur along a direction specified by the configuration 
of the coefficients a, b, c, and d. The transformed image contains black-white 
borders at the original edges, and the shades of the overall patterns are darkened. 

If the central coefficient is equal to 1 (x = 1), the gradient filter detects the same 
variations as mentioned above, but superimposes them over the source image. The 
transformed image looks like the source image with edges highlighted. Use this type of 
kernel for grain extraction and perception of texture. 

Notice that Prewitt #15 can be decomposed as follows: 

Note The convolution filter using the second kernel on the right side of the 
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This equation indicates that Prewitt #15 adds the edges extracted by the Kernel C to 
the source image. 

Prewitt #15 = Prewitt #14 + Source Image 

Edge Thickness 

The larger the kernel, the thicker the edges. The following image illustrates gradient 
west-east 3 × 3. 

The following image illustrates gradient west-east 5 × 5. 

Finally, the following image illustrates gradient west-east 7 × 7. 

Laplacian Filters 

A Laplacian filter highlights the variation of the light intensity surrounding a pixel. The 

equation reproduces the source image. All neighboring pixels are multiplied 
by 0 and the central pixel remains equal to itself: (P(i, j) = 1 × P(i, j)). 
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filter extracts the contour of objects and outlines details. Unlike the gradient filter, it is 
omnidirectional. 

Given the following source image: 

A Laplacian filter extracts contours to produce the following image. 

A Laplacian filter highlights contours to produce the following image. 

Kernel Definition 

The Laplacian convolution filter is a second-order derivative, and its kernel uses the 
following model: 
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where a, b, c, and d are integers. 

The Laplacian filter has two different effects, depending on whether the central 
coefficient x is equal to or greater than the sum of the absolute values of the outer 
coefficients. 

Contour Extraction and Highlighting 

If the central coefficient is equal to this sum x = 2(|a| + |b| + |c| + |d|), the Laplacian filter 
extracts the pixels where significant variations of light intensity are found. The 
presence of sharp edges, boundaries between objects, modification in the texture of a 
background, noise, or other effects can cause these variations. The transformed image 
contains white contours on a black background. 

Notice the following source image, Laplacian kernel, and filtered image. 

If the central coefficient is greater than the sum of the outer coefficients (x > 2(a + b + c 
+ d )), the Laplacian filter detects the same variations as mentioned above, but 
superimposes them over the source image. The transformed image looks like the 
source image, with all significant variations of the light intensity highlighted. 
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Notice that the Laplacian #4 kernel can be decomposed as follows: 

This equation indicates that the Laplacian #2 kernel adds the contours extracted by 
the Laplacian #1 kernel to the source image. 

Laplacian #4 = Laplacian #3 + Source Image. 

For example, if the central coefficient of Laplacian #4 kernel is 10, the Laplacian filter 
adds the contours extracted by Laplacian #3 kernel to the source image times 2, and so 
forth. A greater central coefficient corresponds to less-prominent contours and details 
highlighted by the filter. 

Contour Thickness 

Larger kernels correspond to thicker contours. The following image is a Laplacian 3 × 3. 

Note The convolution filter, using the second kernel on the right side of the 
equation, reproduces the source image. All neighboring pixels are multiplied 
by 0, and the central pixel remains equal to itself: ((P(i, j) = 1 × P(i, j)). 
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The following image is a Laplacian 5 × 5. 

The following image is a Laplacian 7 × 7. 

Smoothing Filter 

A smoothing filter attenuates the variations of light intensity in the neighborhood of a 
pixel. It smooths the overall shape of objects, blurs edges, and removes details. 

Given the following source image, 

a smoothing filter produces the following image. 
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Kernel Definition 

A smoothing convolution filter is an averaging filter whose kernel uses the following 
model: 

where a, b, c, and d are positive integers, and x = 0 or 1. 

Because all the coefficients in a smoothing kernel are positive, each central pixel 
becomes a weighted average of its neighbors. The stronger the weight of a 
neighboring pixel, the more influence it has on the new value of the central pixel. 

For a given set of coefficients (a, b, c, d), a smoothing kernel with a central coefficient 
equal to 0 (x = 0) has a stronger blurring effect than a smoothing kernel with a central 
coefficient equal to 1 (x = 1). 

Notice the following smoothing kernels and filtered images. A larger kernel size 
corresponds to a stronger smoothing effect. 
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Gaussian Filters 

A Gaussian filter attenuates the variations of light intensity in the neighborhood of a 
pixel. It smooths the overall shape of objects and attenuates details. It is similar to a 
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smoothing filter, but its blurring effect is more subdued. 

Given the following source image, 

a Gaussian filter produces the following image. 

Kernel Definition 

A Gaussian convolution filter is an averaging filter, and its kernel uses the model 

where, a, b, c, and d are positive integers, and x > 1. 
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Because all the coefficients in a Gaussian kernel are positive, each pixel becomes a 
weighted average of its neighbors. The stronger the weight of a neighboring pixel, the 
more influence it has on the new value of the central pixel. 

Unlike a smoothing kernel, the central coefficient of a Gaussian filter is greater than 1. 
Therefore the original value of a pixel is multiplied by a weight greater than the weight 
of any of its neighbors. As a result, a greater central coefficient corresponds to a more 
subtle smoothing effect. A larger kernel size corresponds to a stronger smoothing 
effect. 

Nonlinear Filters 

A nonlinear filter replaces each pixel value with a nonlinear function of its surrounding 
pixels. Like the linear filters, the nonlinear filters operate on a neighborhood. 

Nonlinear Prewitt Filter 

The nonlinear Prewitt filter is a highpass filter that extracts the outer contours of 
objects. It highlights significant variations of the light intensity along the vertical and 
horizontal axes. 

Each pixel is assigned the maximum value of its horizontal and vertical gradient 
obtained with the following Prewitt convolution kernels: 

Nonlinear Sobel Filter 

The nonlinear Sobel filter is a highpass filter that extracts the outer contours of 
objects. It highlights significant variations of the light intensity along the vertical and 
horizontal axes. 

Each pixel is assigned the maximum value of its horizontal and vertical gradient 
obtained with the following Sobel convolution kernels: 
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As opposed to the Prewitt filter, the Sobel filter assigns a higher weight to the 
horizontal and vertical neighbors of the central pixel. 

Nonlinear Prewitt and Nonlinear Sobel Example 

This example uses the following source image. 

A nonlinear Prewitt filter produces the following image. 

A nonlinear Sobel filter produces the following image. 

Both filters outline the contours of the objects. Because of the different convolution 
kernels they combine, the nonlinear Prewitt has the tendency to outline curved 
contours while the nonlinear Sobel extracts square contours. This difference is 
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noticeable when observing the outlines of isolated pixels. 

Nonlinear Gradient Filter 

The nonlinear gradient filter outlines contours where an intensity variation occurs 
along the vertical axis. 

Roberts Filter 

The Roberts filter outlines the contours that highlight pixels where an intensity 
variation occurs along the diagonal axes. 

Differentiation Filter 

The differentiation filter produces continuous contours by highlighting each pixel 
where an intensity variation occurs between itself and its three upper-left neighbors. 

Sigma Filter 

The Sigma filter is a highpass filter. It outlines contours and details by setting pixels to 
the mean value found in their neighborhood, if their deviation from this value is not 
significant. The example on the left shows an image before filtering. The example on 
the right shows the image after filtering. 

Lowpass Filter 

The lowpass filter reduces details and blurs edges by setting pixels to the mean value 
found in their neighborhood, if their deviation from this value is large. The example on 
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the left shows an image before filtering. The example on the right shows the image 
after filtering. 

Median Filter 

The median filter is a lowpass filter. It assigns to each pixel the median value of its 
neighborhood, effectively removing isolated pixels and reducing detail. However, the 
median filter does not blur the contour of objects. 

You can implement the median filter by performing an Nth order filter and setting the 

order to (f2 – 1)/2 for a given filter size of f × f. 

Nth Order Filter 

The Nth order filter is an extension of the median filter. It assigns to each pixel the Nth 
value of its neighborhood when they are sorted in increasing order. The value N 
specifies the order of the filter, which you can use to moderate the effect of the filter on 
the overall light intensity of the image. A lower order corresponds to a darker 
transformed image; a higher order corresponds to a brighter transformed image. 

To see the effect of the Nth order filter, notice the example of an image with bright 
objects and a dark background. When viewing this image with the Gray palette, the 
objects have higher gray-level values than the background. 
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For a Given Filter Size f × f Example of a Filter Size 3 × 3 

• If N < (f 2 – 1)/2, the Nth order filter has the tendency to 
erode bright regions (or dilate dark regions). 

• If N = 0, each pixel is replaced by its local minimum. 

Order 0 

(smooths 
image, 
erodes 
bright 
objects) 

• If N = (f 2 – 1)/2, each pixel is replaced by its local median 
value. Dark pixels isolated in objects are removed, as well 
as bright pixels isolated in the background. The overall 
area of the background and object regions does not 
change. 

Order 4 

(equivalent 
to a 
median 
filter) 

• If N > (f 2 – 1)/2, the Nth order filter has the tendency to 
dilate bright regions and erode dark regions. 

• If N = f 2 – 1, each pixel is replaced by its local maximum. 

Order 8 

(smooths 
image, 
dilates 
bright 
objects) 

In-Depth Discussion 

If P(i, j) represents the intensity of the pixel P with the coordinates (i, j), the pixels 
surrounding P(i, j) can be indexed as follows (in the case of a 3 × 3 matrix): 

P(i – 1, j – 1) P(i, j – 1) P(i + 1, j – 1) 

P(i – 1, j) P(i, j) P(i + 1, j) 
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P(i – 1, j + 1) P(i, j + 1) P(i + 1, j + 1) 

A linear filter assigns to P(i, j) a value that is a linear combination of its surrounding 
values. 

For example: 

P(i, j) = P(i, j – 1) + P(i – 1, j) + 2P(i, j) + P(i + 1, j) + P(i, j + 1) 

A nonlinear filter assigns to P(i, j) a value that is not a linear combination of the 
surrounding values. 

For example: 

P(i, j) = max(P(i – 1, j – 1), P(i + 1, j – 1), P(i – 1, j + 1), P(i + , 1j + 1)) 

In the case of a 5 × 5 neighborhood, the i and j indexes vary from –2 to 2. The series of 
pixels that includes P(i, j) and its surrounding pixels is annotated as P(n, m). 

Linear Filters 

For each pixel P(i, j) in an image where i and j represent the coordinates of the pixel, the 
convolution kernel is centered on P(i, j). Each pixel masked by the kernel is multiplied 
by the coefficient placed on top of it. P(i, j) becomes either the sum of these products 
divided by the sum of the coefficient or 1, depending on which is greater. 

In the case of a 3 × 3 neighborhood, the pixels surrounding P(i, j) and the coefficients of 
the kernel, K, can be indexed as follows: 

P(i – 1, j – 1) P(i, j – 1) P(i + 1, j – 1) 

P(i – 1, j) P(i, j) P(i + 1, j) 

P(i – 1, j + 1) P(i, j + 1) P(i + 1, j + 1) 
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K(i – 1, j – 1) K(i, j – 1) K(i + 1, j – 1) 

K(i – 1, j) K(i, j) K(i + 1, j) 

K(i – 1, j + 1) K(i, j + 1) K(i + 1, j + 1) 

The pixel P(i, j) is given the value (1 / N)∑ K(a, b)P(a, b), with a ranging from (i – 1) to (i + 1), 
and b ranging from (j – 1) to (j + 1). N is the normalization factor, equal to ∑ K(a, b) or 1, 
whichever is greater. 

If the new value P(i, j) is negative, it is set to 0. If the new value P(i, j) is greater than 255, 
it is set to 255 (in the case of 8-bit resolution). 

The greater the absolute value of a coefficient K(a, b), the more the pixel P(a, b) 
contributes to the new value of P(i, j). If a coefficient v is 0, the neighbor P(a, b) does not 
contribute to the new value of P(i, j) (notice that P(a, b) might be P(i, j) itself). 

If the convolution kernel is: 

then P(i, j) = (–2P(i – 1, j) + P(i, j) + 2P(i + 1, j)) 

If the convolution kernel is: 

then P(i, j) = (P(i, j – 1) + P(i – 1, j) + P(i + 1, j) + P(i, j + 1)) 
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Nonlinear Prewitt Filter 

P(i, j) = max ((P(i + 1, j − 1) − P(i − 1, j − 1) + P(i + 1, j) − P(i − 1, j) + P(i + 1, j + 1) − P(i − 1, j + 1)), (P(i − 1, j + 1) − P(i − 1, j − 1) + P(i, j + 1) − P(i, j − 1) + P(i + 1, j + 1)) − P(i + 1, j − 1)) 
Nonlinear Sobel Filter 

P(i, j) = max ((P(i + 1, j − 1) − P(i − 1, j − 1) + 2P(i + 1, j) − 2P(i − 1, j) + P(i + 1, j + 1) − P(i − 1, j + 1)), (P(i − 1, j + 1) − P(i − 1, j − 1) + P(i, j + 1) − P(i, j − 1) + P(i + 1, j + 1)) − P(i + 1, j − 1)) 
Nonlinear Gradient Filter 

The new value of a pixel becomes the maximum absolute value between its deviation 
from the upper neighbor and the deviation of its two left neighbors. 

P(i, j) = max[|P(i, j – 1) – P(i, j)|, |P(i – 1, j – 1) – P(i – 1, j)|] 

Roberts Filter 

The new value of a pixel becomes the maximum absolute value between the deviation 
of its upper-left neighbor and the deviation of its two other neighbors. 

P(i, j) = max[|P(i – 1, j – 1) – P(i, j)|, |P(i, j – 1) – P(i – 1, j)|] 

Differentiation Filter 

The new value of a pixel becomes the absolute value of its maximum deviation from its 
upper-left neighbors. 

P(i, j) = max[|P(i – 1, j) – P(i, j)|, |P(i – 1, j – 1) – P(i, j)|, |P(i, j – 1) – P(i – 1, j)|] 
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Sigma Filter 

If P(i, j) − M > S 
Then P(i, j) = P(i, j) − M 
Else P(i, j) = M 

Given M, the mean value of P(i, j) and its neighbors, and S, their standard deviation, 
each pixel P(i, j) is set to the mean value M if it falls inside the range [M – S, M + S]. 

Lowpass Filter 

If P(i, j) − M < S 
Then P(i, j) = P(i, j) 
Else P(i, j) = M 

Given M, the mean value of P(i, j) and its neighbors, and S, their standard deviation, 
each pixel P(i, j) is set to the mean value M if it falls outside the range [M – S, M + S]. 

Median Filter 

P(i, j) = median value of the series [P(n, m)] 

Nth Order Filter 

P(i, j) = Nth value in the series [P(n, m)] 

where the P(n, m) are sorted in increasing order. 

The following example uses a 3 × 3 neighborhood. 

The following table shows the new output value of the central pixel for each Nth order 
value. 
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Nth Order  0   1   2   3   4   5   6   7   8 
New Pixel Value  4   5   5   6   8   9  10 12 13 

Notice that for a given filter size f, the Nth order can rank from 0 to f 2 – 1. For example, 

in the case of a filter size 3, the Nth order ranges from 0 to 8 (32 – 1). 

Grayscale Morphology Grayscale Morphology 

Morphological transformations extract and alter the structure of particles in an 
image. They fall into two categories: 

• Binary morphology functions, which apply to binary images. 
• Grayscale morphology functions, which apply to gray-level images. 

In grayscale morphology, a pixel is compared to those pixels surrounding it in order to 
keep the pixels whose values are the smallest (in the case of an erosion) or the largest 
(in the case of a dilation). 

When to Use 

Use grayscale morphology functions to filter or smooth the pixel intensities of an 
image. Applications include noise filtering, uneven background correction, and gray-
level feature extraction. 

Concepts 

The gray-level morphology functions apply to gray-level images. You can use these 
functions to alter the shape of regions by expanding bright areas at the expense of 
dark areas and vice versa. These functions smooth gradually varying patterns and 
increase the contrast in boundary areas. This section describes the following gray-level 
morphology functions: 

• erosion, 
• dilation, 
• opening, 
• closing, 
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• proper-opening, 
• proper-closing, 
• auto-median. 

These functions are derived from the combination of gray-level erosions and dilations 
that use a structuring element. 

Erosion Function 

A gray-level erosion reduces the brightness of pixels that are surrounded by neighbors 
with a lower intensity. The neighborhood is defined by a structuring element. 

Dilation Function 

A gray-level dilation increases the brightness of each pixel that is surrounded by 
neighbors with a higher intensity. The neighborhood is defined by a structuring 
element. The gray-level dilation has the opposite effect of the gray-level erosion 
because dilating bright regions also erodes dark regions. 

Erosion and Dilation Examples 

This example uses the following source image. 

The following table provides example structuring elements and the corresponding 
eroded and dilated images 
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Opening Function 

The gray-level opening function consists of a gray-level erosion followed by a gray-
level dilation. It removes bright spots isolated in dark regions and smooths 
boundaries. The effects of the function are moderated by the configuration of the 
structuring element. 

opening(I) = dilation(erosion (I)) 

This operation does not significantly alter the area and shape of particles because 
erosion and dilation are morphological opposites. Bright borders reduced by the 
erosion are restored by the dilation. However, small bright particles that vanish during 
the erosion do not reappear after the dilation. 

Closing Function 

The gray-level closing function consists of a gray-level dilation followed by a gray-level 
erosion. It removes dark spots isolated in bright regions and smooths boundaries. The 
effects of the function are moderated by the configuration of the structuring element. 

closing(I) = erosion(dilation (I)) 

This operation does not significantly alter the area and shape of particles because 
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dilation and erosion are morphological opposites. Bright borders expanded by the 
dilation are reduced by the erosion. However, small dark particles that vanish during 
the dilation do not reappear after the erosion. 

Opening and Closing Examples 

This example uses the following source image. 

The opening function produces the following image. 

A closing function produces the following image. 

Note Consecutive applications of an opening or closing function always give 
the same results. 
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Proper-Opening Function 

The gray-level proper-opening function is a finite and dual combination of openings 
and closings. It removes bright pixels isolated in dark regions and smooths the 
boundaries of bright regions. The effects of the function are moderated by the 
configuration of the structuring element. 

Proper-Closing Function 

The proper-closing function is a finite and dual combination of closings and openings. 
It removes dark pixels isolated in bright regions and smooths the boundaries of dark 
regions. The effects of the function are moderated by the configuration of the 
structuring element. 

Auto-Median Function 

The auto-median function uses dual combinations of openings and closings. It 
generates simpler particles that have fewer details. 

Erosion Concept and Mathematics 

Each pixel in an image becomes equal to the minimum value of its neighbors. 

For a given pixel P0, the structuring element is centered on P0. 

The pixels masked by a coefficient of the structuring element equal to 1 are then 
referred as Pi. 

P0 = min(Pi) 

A gray-level erosion using a structuring element f × f with all its coefficients set to 1 is 
equivalent to an Nth order filter with a filter size f × f and the value N equal to 0. Refer 
to the nonlinear filters section for more information. 

Dilation Concept and Mathematics 

Each pixel in an image becomes equal to the maximum value of its neighbors. 
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For a given pixel P0, the structuring element is centered on P0. 

The pixels masked by a coefficient of the structuring element equal to 1 are then 
referred as Pi. 

P0 = max(Pi) 

Proper-Opening Concept and Mathematics 

If I is the source image, the proper-opening function extracts the minimum value of 
each pixel between the source image I and its transformed image obtained after an 
opening, followed by a closing, and followed by another opening. 

proper − opening(I) = min(I, OCO(I)) 
or 

proper − opening(I) = min(DEEDDE(I)) 
where: 

• I is the source image, 
• E is an erosion, 
• D is a dilation, 
• O is an opening, 
• C is a closing, 
• F(I) is the image obtained after applying the function F to the image I, 
• GF(I) is the image obtained after applying the function F to the image I followed by 

the function G to the image I. 

Note A gray-level dilation using a structuring element f × f with all its 
coefficients set to 1 is equivalent to an Nth order filter with a filter size f × f 

and the value N equal to f 2 – 1. Refer to the nonlinear filters section for 
more information. 
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Proper-Closing Concept and Mathematics 

If I is the source image, the proper-closing function extracts the maximum value of 
each pixel between the source image I and its transformed image obtained after a 
closing, followed by an opening, and followed by another closing. 

proper − closing(I) = max(I, OCO(I)) 
or 

proper − closing(I) = max(EDDEED(I)) 
where: 

• I is the source image, 
• E is an erosion, 
• D is a dilation, 
• O is an opening, 
• C is a closing, 
• F(I) is the image obtained after applying the function F to the image I, 
• GF(I) is the image obtained after applying the function F to the image I followed by 

the function G to the image I. 

Auto-Median Concept and Mathematics 

If I is the source image, the auto-median function extracts the minimum value of each 
pixel between the two images obtained by applying a proper-opening and a proper-
closing of the source image I. 

auto − median(I) = min(OCO(I), COC(I)) 
or 

auto − median(I) = min(DEEDDE(I), EDDEED(I)) 
where: 
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• I is the source image, 
• E is an erosion, 
• D is a dilation, 
• O is an opening, 
• C is a closing, 
• F(I) is the image obtained after applying the function F to the image I, 
• GF(I) is the image obtained after applying the function F to the image I followed by 

the function G to the image I. 

Related concepts: 

• Spatial Filtering 

Operators Operators 
This section contains information about arithmetic and logic operators, which mask, 
combine, and compare images. 

Introduction Introduction 

Operators perform basic arithmetic and logical operations on images. Use operators to 
add, subtract, multiply, and divide an image with other images or constants. You also 
can perform logical operations, such as AND/NAND, OR/NOR, and XOR/XNOR, and 
make pixel comparisons between an image and other images or a constant. 

When to Use When to Use 

Common applications of these operators include time-delayed comparisons, 
identification of the union or intersection between images, correction of image 
backgrounds to eliminate light drifts, and comparisons between several images and a 
model. You also can use operators to threshold or mask images and to alter contrast 
and brightness. 

Concepts Concepts 

An arithmetic or logical operation between images is a pixel-by-pixel transformation. It 
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produces an image in which each pixel derives its value from the values of pixels with 
the same coordinates in other images. 

If A is an image with a resolution XY, B is an image with a resolution XY, and Op is the 
operator, then the image N resulting from the combination of A and B through the 
operator Op is such that each pixel p of the resulting image N is assigned the value: 

pn = (pa)(Op)(pb) 

where 

• pa is the value of pixel p in image a, 
• pb is the value of pixel p in image b. 

Arithmetic Operators 

The equations in the following table describe the usage of arithmetic operators with 
two images a and b. 

Operator Equation 

Multiply pn = pa × pb 

Divide 

pn = pa / pb 

The divide operator section contains additional information about the divide 
operation, including division by zero. 

Add pn = pa + pb 

Image Processing and Analysis

© National Instruments 115



Operator Equation 

Subtract pn = pa – pb 

Modulo pn = pamodpb 

Absolute 
Difference 

pn = | pa – pb | 

If the resulting pixel value pn is lower than the minimum possible value for the given 
image type, the pixel is set to the lowest possible value. If the resulting pixel value is 
greater than the maximum possible value for the given image type, the pixel is set to 
the maximum possible value. The following table lists the range of possible values for 
each supported image type. 

Image Type Range 

8-bit Unsigned Grayscale 0 ≤ pn ≤ 255 

16-bit Signed Grayscale –32,768 ≤ pn ≤ 32,767 

32-bit Floating-Point Grayscale –∞ ≤ pn ≤ ∞ 

32-bit RGB Color 0 ≤ pn ≤ 255, for each channel (red, green, blue) in the image 

Divide Operator 

Use of the divide operator can produce results that do not directly translate to 
appropriate pixel values for an image. In such cases, Vision uses the methods 
discussed in the following sections to resolve the result of a divide operation to a valid 
pixel value for the image. 

Rounding Results 

Dividing two pixel values sometimes produces a non-integer result. Since most 
common image types accept only integers for the value of a pixel, Vision applies the 
round-to-even rounding method to the result to produce an integer result to the 
operation. For the most part, the round-to-even method works like other traditional 
rounding methods. 

If the digit after the last digit you want to keep is greater than five, or a five followed by 
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one or more non-zero numbers, the last digit is rounded up to the next number. If the 
following digit is less than five, the last digit is rounded down. 

The difference between the round-to-even method and other rounding methods 
occurs when the digit after the last digit you want to keep is exactly equal to five. In 
NI Vision, when the following digit is equal to five, the result is rounded to the nearest 
even number. If the last digit is an odd number, the result is rounded up to the next 
even number. If the last digit to keep is an even number, the result is truncated at the 
last digit to keep. 

Example 

The following examples illustrate using the round-to-even method to round to the 
nearest integer value: 

• 2.7 is rounded to 3 because the next digit is 6 or greater, 
• 2.4 is rounded to 2 because the next digit is 4 or less, 
• 3.5 is rounded to 4 because the next digit is 5, and the last digit to keep, 3, is odd, 
• 2.5 is rounded to 2 because the next digit is 5, and the last digit to keep, 2, is even, 
• 2.501 is rounded to 3 because the next digit is 5, but the last digit to keep is 

followed by one or more non-zero digits. 

Division by Zero 

The following table describes the effect of division by zero on pixels in an image. 

Image Type Divide by Zero Case Result 

8-bitUnsignedGrayscale 0 / 0 0 

8-bitUnsignedGrayscale pa / 0, pa > 0 255 

16-bitSignedGrayscale 0 / 0 0 

16-bitSignedGrayscale pa / 0, pa > 0 32,767 

16-bitSignedGrayscale pa / 0, pa < 0 –32,768 

32-bitFloating-
PointGrayscale 0 / 0 NaN 

32-bitFloating- pa / 0, pa > 0 ∞ 
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Image Type Divide by Zero Case Result 

PointGrayscale 

32-bitFloating-
PointGrayscale 

pa / 0, pa < 0 –∞ 

32-bitRGBColor pa(r): 0 / 0 pa(g): 0 / 0 pa(b): 0 / 0 0 

32-bitRGBColor 
pa(r): pa(r) / 0, pa(r) > 0 pa(g): pa(g) / 0, pa(g) > 0 pa(b): pa(b) / 0, 
pa(b) > 0 255 

Logic and Comparison Operators 

Logic operators are bitwise operators. They manipulate gray-level values coded on one 
byte at the bit level. The equations in the following table describe the usage of logical 
operators. The truth tables for logic operators are presented in the truth tables 
section. 

Operator Equation 

Logical Operators Logical Operators 

AND pn = pa AND pb 

NAND pn = pa NAND pb 

OR pn = pa OR pb 

NOR pn = pa NOR pb 

XOR pn = pa XOR pb 

Logic Difference pn = pa AND (NOTpb) 

Comparison Operators Comparison Operators 

Mask if pb = 0, then pn = 0, else pn = pa 

Mean pn = mean(pa, pb) 

Max pn = max(pa, pb) 

Min pn = min(pa, pb) 

In the case of images with 8-bit resolution, logic operators are mainly designed to do 
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the following: 

• Combine gray-level images with binary mask images, which are composed of 
pixels equal to 0 or 255. 

• Combine or compare images with binary or labeled contents. 

The following table illustrates how logic operators can be used to extract or remove 
information in an image. 

For a given pa If pb = 255, then If pb = 0, then 

AND pa AND 255 = pa pa AND 0 = 0 

NAND pa NAND 255 = NOT pa pa NAND 0 = 255 

OR pa OR 255 = 255 pa NAND 0 = 255 

NOR pa NOR 255 = 0 pa NOR 0 = NOT pa 

XOR pa XOR 255 = NOT pa pa XOR 0 = pa 

Logic Difference pa – NOT 255 = pa pa – NOT 0 = 0 

Truth Tables 

The following truth tables describe the rules used by the logic operators. The top row 
and left column give the values of input bits. The cells in the table give the output 
value for a given set of two input bits. 
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Example 1 

The following figure shows the source grayscale image used in this example. 

Regions of interest have been isolated in a binary format, retouched with 
morphological manipulations, and finally multiplied by 255 to obtain the following 
image mask. 
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The source image AND mask image operation restores the original intensity of the 
object regions in the mask. 

The source image OR mask image operation restores the original intensity of the 
background region in the mask. 

Example 2 

This example demonstrates the use of the OR operation to produce an image 
containing the union of two binary images. The following image represents the first 
image, with a background value of 0 and objects with a gray-level value of 128. 

Image Processing and Analysis

© National Instruments 121



The following figure shows the second image, featuring a background value of 0 and 
objects with gray-level values of 255. 

Image #1 OR Image #2 produces a union, as shown in the following image. 

Frequency Domain Analysis Frequency Domain Analysis 
This section contains information about converting images into the frequency domain 
using the Fast Fourier transform, and information about analyzing and processing 
images in the frequency domain. 

Introduction Introduction 

Frequency filters alter pixel values with respect to the periodicity and spatial 
distribution of the variations in light intensity in the image. Unlike spatial filters, 
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frequency filters do not apply directly to a spatial image, but to its frequency 
representation. The frequency representation of an image is obtained through the Fast 
Fourier Transform (FFT) function, which reveals information about the periodicity and 
dispersion of the patterns found in the source image. 

You can filter the spatial frequencies seen in an FFT image. The inverse FFT function 
then restores a spatial representation of the filtered FFT image. 

Frequency processing is another technique for extracting information from an image. 
Instead of using the location and direction of light-intensity variations, you can use 
frequency processing to manipulate the frequency of the occurrence of these 
variations in the spatial domain. This new component is called the spatial frequency, 
which is the frequency with which the light intensity in an image varies as a function of 
spatial coordinates. 

Spatial frequencies of an image are computed with the FFT. The FFT is calculated in 
two steps—a 1D Fast Fourier transform of the rows, followed by a 1D Fast Fourier 
transform of the columns of the previous results. The complex numbers that compose 
the FFT plane are encoded in a 64-bit floating-point image called a complex image. 
The complex image is formed by a 32-bit floating point number representing the real 
part and a 32-bit floating point number representing the imaginary part. 

In an image, details and sharp edges are associated with moderate to high spatial 
frequencies because they introduce significant gray-level variations over short 
distances. Gradually varying patterns are associated with low spatial frequencies. By 
filtering spatial frequencies, you can remove, attenuate, or highlight the spatial 
components to which they relate. 

Use a lowpass frequency filter to attenuate or remove, or truncate, high frequencies 
present in the image. This filter suppresses information related to rapid variations of 
light intensities in the spatial image. An inverse FFT, used after a lowpass frequency 
filter, produces an image in which noise, details, texture, and sharp edges are 
smoothed. 
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A highpass frequency filter attenuates or removes, or truncates, low frequencies 
present in the complex image. This filter suppresses information related to slow 
variations of light intensities in the spatial image. In this case, an inverse FFT used after 
a highpass frequency filter produces an image in which overall patterns are sharpened 
and details are emphasized. 

A mask frequency filter removes frequencies contained in a mask specified by the user. 
Using a mask to alter the Fourier transform of an image offers more possibilities than 
applying a lowpass or highpass filter. The image mask is composed by the user and 
can describe very specific frequencies and directions in the image. You can apply this 
technique, for example, to filter dominant frequencies as well as their harmonics in 
the frequency domain. 

When to Use When to Use 

Because details and sharp edges introduce significant gray-level variations over short 
distances, they are associated with moderate to high spatial frequencies in an image. 
Gradually varying patterns are associated with low spatial frequencies. 

An image can have extraneous noise introduced during the digitization process, such 
as periodic stripes. In the frequency domain, the periodic pattern is reduced to a 
limited set of high spatial frequencies. Truncating these particular frequencies and 
converting the filtered FFT image back to the spatial domain produces a new image in 
which the grid pattern has disappeared, while the overall features remain. 

Concepts Concepts 

The FFT of an image is a 2D array of complex numbers, also represented as a complex 
image. It represents the frequencies of occurrence of light-intensity variations in the 
spatial domain. The low frequencies correspond to smooth and gradual intensity 
variations found in the overall patterns of the source image. The high frequencies 
correspond to abrupt and short intensity variations found at the edges of objects, 
around noisy pixels, and around details. 

FFT Representation 

There are two possible representations of the Fast Fourier transform of an image: the 
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standard representation and the optical representation. 

Standard Representation 

In the standard representation, high frequencies are grouped at the center of the 
image while low frequencies are located at the edges. The constant term, or null 
frequency, is in the upper-left corner of the image. 

The frequency range is as follows: 

(− N
2 , N

2 ) × (− M
2 , M

2 ) 
where M is the horizontal resolution of the image, and N is the vertical resolution of the 
image. 

The illustration shows an original image: 

Note Vision uses the standard representation to represent complex images 
in memory. Use this representation when building an image mask. 
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The illustration shows the FFT of the same image using standard representation: 

Optical Representation 

In the optical representation, low frequencies are grouped at the center of the image 
while high frequencies are located at the edges. The constant term, or null frequency, 
is at the center of the image. 

The frequency range is as follows: 

(− N
2 , N

2 ) × (− M
2 , M

2 ) 
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The illustration shows an original image: 

The illustration shows the FFT of the same image using optical representation: 
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You can switch from standard representation to optical representation by permuting 
the A, B, C, and D quarters. 

Intensities in the FFT image are proportional to the amplitude of the displayed 
component. 

Lowpass FFT Filters 

A lowpass frequency filter attenuates, or removes, high frequencies present in the FFT 
plane. This filter suppresses information related to rapid variations of light intensities 
in the spatial image. In this case, an inverse FFT produces an image in which noise, 
details, texture, and sharp edges are smoothed. 

A lowpass frequency filter attenuates, or removes, spatial frequencies located outside 
a frequency range centered on the fundamental (or null) frequency. 

Lowpass Attenuation 

Lowpass attenuation applies a linear attenuation to the full frequency range, 
increasing from the null frequency f0 to the maximum frequency fmax. This is done by 
multiplying each frequency by a coefficient C, which is a function of its deviation from 
the fundamental and maximum frequencies. 

Cf = f max − f
fmax − f0  

where, 

• C(f0) = 1 
• C(fmax) = 0 

Note Vision uses optical representation when displaying a complex image. 
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Lowpass Truncation 

Lowpass truncation removes a frequency f if it is higher than the cutoff or truncation 
frequency, fc. This is done by multiplying each frequency f by a coefficient C equal to 0 
or 1, depending on whether the frequency f is greater than the truncation frequency fc. 

If f > fc then C(f) = 0 else C(f) = 1 

The following series of graphics illustrates the behavior of both types of lowpass filters. 
They represent the 3D-view profile of the magnitude of the FFT. 

This example uses the following original FFT. 

After lowpass attenuation, the magnitude of the central peak is the same, and 
variations at the edges almost have disappeared. 
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After lowpass truncation with fc = f0 + 20%( fmax – f0), spatial frequencies outside the 
truncation range [ f0, fc] are removed. The part of the central peak that remains is 
identical to the one in the original FFT plane. 

Highpass FFT Filters 

A highpass FFT filter attenuates, or removes, low frequencies present in the FFT plane. 
It has the effect of suppressing information related to slow variations of light 
intensities in the spatial image. In this case, the Inverse FFT command produces an 
image in which overall patterns are attenuated and details are emphasized. 

Highpass Attenuation 

Highpass attenuation applies a linear attenuation to the full frequency range, 
increasing from the maximum frequency fmax to the null frequency f0. This is done by 
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multiplying each frequency by a coefficient C, which is a function of its deviation from 
the fundamental and maximum frequencies. 

where, 

• C(f0) = 0 
• C(fmax) = 1 

Highpass Truncation 

Highpass truncation removes a frequency f if it is lower than the cutoff or truncation 
frequency, fc. This is done by multiplying each frequency f by a coefficient C equal to 1 
or 0, depending on whether the frequency f is greater than the truncation frequency fc. 

If f < fc 
Then Cf = 0 
Else Cf = 1 

The following series of graphics illustrates the behavior of both types of highpass 
filters. They represent the 3D-view profile of the magnitude of the FFT. This example 
uses the following original FFT image. 
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After highpass attenuation, the central peak has been removed, and variations present 
at the edges remain. 

After highpass truncation with fc = f0 + 20%( fmax – f0), spatial frequencies inside the 
truncation range [f0, fc] are set to 0. The remaining frequencies are identical to the 
ones in the original FFT plane. 

Mask FFT Filters 

A mask FFT filter removes frequencies contained in a mask specified by the user. 
Depending on the mask definition, this filter can act as a lowpass, bandpass, highpass, 
or any type of selective filter. 
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In-Depth Discussion In-Depth Discussion 
Fourier Transform 

The spatial frequencies of an image are calculated by a function called the Fourier 
Transform. 

It is defined in the continuous domain as: 

F(u, v) =
∞

∫
− ∞

∞

∫
− ∞

f(x, y)e−j2π(xu − yv)dxdy
 

where, 

• f(x, y is the light intensity of the point, 
• (x, y, and (u + v) are the horizontal and vertical spatial frequencies. 

The Fourier Transform assigns a complex number to each set (u, v). 

Inversely, a Fast Fourier Transform F(u, v) can be transformed into a spatial image f(x, 
y) of resolution NM using the following formula: 

F(x, y) = 1
NM ∑

u = 0

N − 1

∑
v = 0

M − 1

F(u, v)e
j2π( ux

N +
vy
M )

 

where, 

• N × M is the resolution of the spatial image f (x, y). 

In the discrete domain, the Fourier Transform is calculated with an efficient algorithm 
called the Fast Fourier Transform (FFT). 

F(u, v) = 1
NM ∑

x = 0

N − 1

∑
y = 0

M − 1

F(x, y)e
j2π( ux

N +
vy
M )

 

Because e–j2πux = cos 2πux – jsin2πux, F(u, v) is composed of an infinite sum of sine 
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and cosine terms. Each pair (u, v) determines the frequency of its corresponding sine 
and cosine pair. For a given set (u, v), notice that all values f(x, y) contribute to F(u, v). 
Because of this complexity, the FFT calculation is time consuming. 

Given an image with a resolution N × M and given Δx and Δy the spatial step 
increments, the FFT of the source image has the same resolution NM and its frequency 
step increments Δu and Δv, which are defined in the following equations: 

∆ u = 1
N × ∆ x  

∆ v = 1
M × ∆ y  

FFT Display 

An FFT image can be visualized using any of its four complex components: real part, 
imaginary part, magnitude, and phase. The relation between these components is 
expressed by: 

F(u, v) = R(u, v) + jI(u, v) 

where, 

• R(u is the real part, 
• I(u is the imaginary part, and 

F(u, v) = (F(u, v)) × ejφ(u, v)
 

where, 

• |F(u, v)| is the magnitude, 
• φ(u, v) is the phase. 

The magnitude of F(u, v) is also called the Fourier spectrum and is equal to: 

(F(u, v)) = √R(u, v)2 + I(u, v)2

 

The Fourier spectrum to the power of two is known as the power spectrum or spectral 
density. 
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The phase φ(u, v) is also called the phase angle and is equal to: 

ϕ(u, v) = atan( I(u, v)
R(u, v) ) 

By default, when you display a complex image, the magnitude plane of the complex 
image is displayed using the optical representation. To visualize the magnitude values 
properly, the magnitude values are scaled by the factor m before they are displayed. 
The factor m is calculated as 

128
w × h  

where, 

• w is the width of the image, 
• h is the height of the image. 

Texture Defect Detection Texture Defect Detection 
This section contains information about texture defect detection and analysis. 

Introduction Introduction 

Texture defect detection detects defects in a texture based on a texture classifier 
trained with texture samples that do not contain defects. During inspection, the 
texture defect detection algorithm identifies as defective any regions that do not 
match the trained texture samples. The identified defects appear in the output image 
as blobs. You can use the particle analysis tools in the Vision library to analyze the 
properties of the detected defects. Texture defect detection is not designed for 
continuous web or surface inspection applications. 

Related concepts: 

• Particle Analysis 
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When to Use When to Use 

Texture defect detection recognizes scratches, cracks, stains, and other defects that 
may vary in size and shape on textured surfaces. Use texture defect detection when 
traditional machine vision techniques such as dynamic thresholding and edge 
detection are not adequate to find the defects on the parts being inspected. 
Applications include the automated inspection of materials such as ceramic tiles, 
textiles, lumber, paper, plastic surfaces and glass, which are often characterized by 
irregular texture patterns. 

The following figure shows examples of texture defects that traditional machine vision 
techniques may not adequately detect. 

What to Expect from Texture Defect Detection What to Expect from Texture Defect Detection 

Texture defect detection detects defects in a texture based on a texture classifier 
trained with texture samples that do not contain defects. The texture classifier is 
trained to recognize texture samples that are acceptable in the current inspection. The 
texture defect detection algorithm accepts an image of a texture surface as an input, 
identifies texture defects, and returns a binary image of the texture defects. The 
following figure illustrates typical input and output images. 
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Shift Variation 

Texture defect detection is invariant to shift. For example, if the texture in the 
inspection image shifts vertically or horizontally from the trained texture samples, the 
texture defect detection algorithm continues to correctly identify any texture defects. 

Rotation Variation 

Texture defect detection is invariant to rotation of approximately ±5 degrees. If the 
texture under inspection can shift more than 5 degrees, you must train the classifier 
with texture samples at every expected orientation. The following figures illustrate the 
same texture at distinct orientations that require trained samples for each variation. 
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Scale Variation 

Texture defect detection is invariant to rotation of approximately ±10 degrees. If the 
texture under inspection can vary more than 10 degrees in scale, you must train the 
classifier with texture samples at every expected scale variation. The following figures 
illustrate a difference in scale that require trained samples for each variation. 

In-Depth Discussion In-Depth Discussion 

This section provides additional information you may need for building successful 
texture defect detection applications. 

• The texture defect detection algorithm uses discrete wavelet frame decomposition 
and a statistical approach to characterize visual textures. 

• The algorithm decomposes a texture inspection image into several subbands using 
over-complete and shift-invariant wavelet frames. 

• The algorithm partitions each subband image into non-overlapping windows, and 
uses a gray-level co-occurrence matrix (GLCM) to analyze the coefficient 
distribution of each window. Second order statistics, or Haralick features, are 
calculated from the GLCM representations. 

• The algorithm concatenates Haralick features extracted from all subbands in a high 
dimensional feature space. 

• A one-class support vector machine (SVM) is trained with a general description 
of the texture under inspection in the same high dimensional feature space. During 
inspection, Haralick features extracted from the inspection image are classified 
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using the previously trained texture defect classifier as texture or defective pixels. 

Wavelet Frame Decomposition 

The first step in texture defect detection is a multi-resolution analysis of the texture in 
the inspection image, inspired by psycho-visual findings that humans perceive images 
in a multi-scale manner. The texture defect detection algorithm uses discrete wavelet 
frame transforms (DWFT) proposed by Unser1 to obtain translation-invariant 
characteristics from textures with minimum dependencies between the transform 
coefficients. Wavelet frame transforms are wavelet transform variations in which the 
output of the filter banks are not subsampled. As a result, each subband image has the 
same size as the input image and performs better in texture classification and 
segmentation. 

For texture analysis, discrete wavelet transforms (DWT) for hierarchical signal analysis 
and decomposition are implemented through an iterative filtering and downsampling 
operation with lowpass and highpass filters h and g. The following figure illustrates 
one stage of a 2-dimensional DWT where 2↓1 denotes downsampling by a factor of 2. 

The filters h and g and their corresponding reconstruction counterparts satisfy the 
general perfect reconstruction constraint h(z) ˜ h(z – 1) + g(z) ˜ g(z – 1) = 1 in the z-
transform domain. At each iteration, the coefficients of the coarse approximation, si + 1, 
and the detail coefficients, di + 1, are calculated from current coefficients, si, by: 

1. For more information about discrete wavelet frame transforms see Unser, M. "Texture Classification 
and Segmentation Using Wavelet Frames," Image Processing, IEEE Transactions on 4, no. 11 (1995) 
1549–1560. 
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( si + 1(k) = (h × si(k)) ↓ 2

di + 1(k) = (g × di(k)) ↓ 2(i = 0, ..., I) )
 

where, 

• s0(k) = f(k) is the input signal to the filter bank. 

This concept is extended to 2-dimensional discrete signals (images) where 
2-dimensional filters are obtained by the tensor product of 1-dimensional lowpass and 
highpass filters h and g along the rows and columns. After one stage of decomposition 
the image at resolution i is decomposed into four subband images—one coarse 

approximation s i + 1
LL  , and three detail images d i + 1

LH  , d i + 1
HL  , and sd i + 1

HH  . The 
three detail subband images are referred to as the horizontal (H), vertical (V), and 
diagonal (D) details, respectively. 

Unser proposes an over-complete DWFT decomposition, showing that it constitutes a 
tight frame of I2. Unser implements the following fast iterative decomposition 
algorithm. 

( si + 1(k) = (h) ↓ 2 × si(k)

di + 1(k) = (g) ↓ 2 × di(k) i = (0, ..., I) )
 

where, 

• s0(k) = f(k) is the input signal to the filter bank. 

The following figure illustrates one stage of a 2-dimensional DWFT where the 
1-dimensional filters [h]↑2i and [g]↑2i are used to perform successive convolution 
along the rows and columns of the image. 
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The 1-dimensional filters [h]↑2i and [g]↑2i are the filters h and g expanded by inserting 
an appropriate number of zeroes (2i – 1) between taps of filter h. Because there is no 
dyadic subsampling in this DWFT, the decomposed subband images are the same size 
as the original image. 

The texture defect detection algorithm performs two levels of decomposition for each 
inspection image. The first decomposition step produces a coarse approximation A 
and horizontal, vertical, and diagonal details H, V, and D. The coarse approximation A 
is decomposed again to produce subbands AA, AV, AH, and AD. The following figure 
illustrates the subband images derived from two-level decomposition. 

Wavelet Types 

By default, the texture defect detection algorithm uses biorthogonal wavelets for 
subband decomposition, which means that the analysis filters h and g are different 
from synthesis filters ˜h and ˜g. When compared to orthogonal wavelets, biorthogonal 
wavelets have higher regularity, have finite impulse response, and preserve linear 
phase better. 

Statistical Feature Extraction 

Psychological findings by Julesz2 indicate that the human eye cannot make a 
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preattentive discrimination of textures that have identical first and second order 
statistics. Therefore, an automatic inspection system that competes with human 
inspectors should consider second order statistics. Haralick et al.3 define second order 
statistical features based on the gray-level co-occurrence matrix (GLCM). Haralick 
features are commonly used for texture identification. 

Gray-Level Co-Occurrence Matrix (GLCM) 

To extract Haralick features, the texture defect detection algorithm constructs a GLCM 
from a texture image I(x, y). The GLCM estimates the joint probability that a pixel value 

occurs at a displacement vector d→ from another pixel value. Given that a texture 
image I(x, y) is an N × M matrix consisting of G different grey shades, the GLCM for its 

GLCM for displacement vector d→ = (dx, dy) is a G × G matrix: 

P →
d

(i, j) = ∑
x = 1

N

∑
y = 1

M

∂ (I (x, y) = i ∧ I(x + dx, y + dy) = j)
 

where, 

• δ{true} = 1 and δ{false} = 0, 
• the number in element (i, j) of the GLCM matrix Pd(i, j) indicates the number of 

times pixel level i occurs at displacement vector d→ from pixel level j. 

The following figures illustrate a GLCM for a 4 × 4 pixel texture sample I(x, y) that 
consists of 8 pixel values. Figure A illustrates the texture sample. Figure B illustrates the 
pixel values for the texture sample. Figure C illustrates the corresponding GLCM for 

displacement vector d→ = (1, 0). The GLCM is an 8 × 8 matrix P(i, j) that represents the 
number of times a pixel value j occurs to the right of a pixel value i. For example, the 
pixel value 2 is twice located to the right of pixel value 1 in the texture sample. Thus, 
P(0, 1)(1, 2) = 2. Similarly, P(0, 1)(8, 1) = 1 because only once does pixel value 1 occur to 

2. For more information about the role of second-order statistics in human perception see Julesz, B., 
Gilbert, E., Shepp, L., and Frisch, H. "Inability of Humans to Discriminate between Visual Textures that 
Agree in Second-Order Statistics Revisited," Perception 2 (1973) 391–405. 

3. For more information about Haralick features see Haralick, R., Shanmugam, K., and Dinstein, I. 
"Textural Features for Image Classification," Systems, Man and Cybernetics, IEEE Transactions on 3 
no. 6 (1973) 610–621. 
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the right of pixel value 8. 

In applications like texture classification, the co-occurrence matrix can be extracted 
from the entire texture. In texture defect detection, however, it is better to extract the 
co-occurrence matrix from local features. The co-occurrence matrix can be extracted 
locally either by partitioning the texture into adjacent windows and calculating the 
GLCM for each window, or by moving a single window over the texture and calculating 
a GLCM that is associated with the center pixel in each instance of the window. By 
default, the texture defect detection algorithm calculates co-occurrence matrices 
locally from wavelet decomposed subband images using adjacent 15 × 15 windows; 
however, you can change the size of the window and the overlap between windows. 

Haralick Feature Extraction 

The texture defect detection algorithm extracts five Haralick features—entropy, 
dissimilarity, contrast, homogeneity, and correlation—from the GLCM calculated at 
each partition of the subband texture. 

Entropy = ∑i = 1

G ∑j = 1

G
P(i, j)(−InPi, j) 

Dissimilarity = ∑i = 1

G ∑j = 1

G
Pi, j(i − j)2

 
Contrast = ∑i = 1

G ∑j = 1

G
Pi, j(i − j)2
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Homogeneity = ∑
i = 1

G

∑
j = 1

G
Pi, j

1 + (i − j)2

 

Correlation = ∑
i = 1

G

∑
j = 1

G

( (i − μ1)(j − μj)
√σ

i
2σ

j
2 )

 

where, 

• μi = ∑G
i, j = 1 iPi, j and μj = ∑G

i, j = 1 jPi, j are the GLCM means, and 

• σi = ∑G
i, j = 1 Pi, j(1 – μi)2 and σj = ∑G

i, j = 1 Pi, j(1 – μj)2 are the GLCM variances. 

The following figure illustrates the High Low wavelet subband and its five 
corresponding Haralick feature maps. Note that the Haralick features clearly 
distinguish the texture defect from the texture, with the entropy and contrast features 
exhibiting the highest differentiation for this example. 

Image Processing and Analysis

144 ni.com



The number of feature vector elements extracted to represent a texture sample is 
equivalent to the number of selected wavelet subbands multiplied by 5 (the number of 
Haralick features extracted from each wavelet subband). For example, if an application 
uses all 8 subbands, the size of the resulting feature vector is 40. 

Support Vector Machine Classifier 

The final stage of texture defect detection involves classifying pixels as either texture 
or defect, based on the texture features extracted from a neighborhood around the 
pixel. This type of classification is an outlier detection or one-class classification 
problem. In a one-class classification problem, a known class is represented by 
numerous trained samples while an unknown class is represented by few or no 
samples. For example, a known class may consist of texture samples and an unknown 
class may consist of texture defects that vary so greatly in size, shape, or orientation 
that they are impossible to document. 

The texture defect detection uses a one-class SVM classifier. SVM classifiers identify 
a separating surface, or hyperplane, located at the maximum possible distance from 
the nearest data point in either of two classes4. SVM classifiers have very good 
generalization capabilities and perform well in high dimensional feature spaces. 

Related concepts: 

• Support Vector Machines 

Flat Field Correction Flat Field Correction 
This section contains information about flat field correction. 

Introduction to Flat Field Correction Introduction to Flat Field Correction 

Flat field correction is the process of correcting the non-uniform intensity in images. 
Non-uniform intensity occurs in the images due to lens light fall off (also known as 
vignetting), non-linear surfaces, and non-uniform lighting. 

4. For more information about texture inspection with SVM classifiers see Jahanbin, S., Bovik, A., Perez, 
E., Nair, D. "Automated Inspection of Textured Surfaces by Support Vector Machines," SPIE 
Conference on Optics and Photonics San Diego, California, August 2–6 (2009). 
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Flat field correction requires flat field images, also called bright field images, and dark 
field images from the imaging setup. Flat field images are mandatory for correcting the 
images. 

Flat field images need to be captured using the imaging setup with a bright 
background or the flat field images can be estimated programmatically using a 
mathematical model. Once flat field images are captured or estimated, they can be 
used to correct the non-uniform intensity in the images. 

The following illustracion shows an image with non-uniform intensity and the flat field 
corrected image. 

When to Use Flat Field Correction When to Use Flat Field Correction 

Use flat field correction to do the following: 

• Correct non-uniform intensity in an image. 
• Pre-process an image before applying edge detection or pattern matching. 
• Correct intensity fall off to emphasize a defect in the image. 
• Correct sensor dust and impurity. 

The following illustration showssensor dust and lighting issues due to improper line 
light setup. 
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Flat Field Correction Concepts Flat Field Correction Concepts 

Flat field correction uses the following equation to correct images: 

where, 

• Image is the image to be corrected, 
• Dark Field Image is the image that captures the dark currents in the sensor, 
• Flat Field Image is the image intensity profile image, 
• Correction Factor is a constant to bias the brightness of the corrected image. 

Optimized Correction 

The flat field correction algorithm provides an option to correct the image faster by 
storing the following equation component in memory. 

When the optimized correction is enabled, the algorithm computes and stores the 
above component when the flat field image is first used. The stored value is reused for 
each image thereafter. The flat field correction equation with the optimization 
enabled: 
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Flat Field Correction In-Depth Discussion Flat Field Correction In-Depth Discussion 

NI Vision provides two techniques to generate flat field images. 

• User-controlled—Capture images with a bright background using an actual 
imaging setup. 

• Estimation—Estimate the flat field image using the Estimate Flat Field Model 
algorithm. 

User-controlled Technique 

Use this technique: 

• to achieve an accurate representation of back ground intensity, 
• to remove sensor noise, such as dust, 
• if the imaging setup is easily accessible in an industrial environment, and 

recapturing the images are necessary due to lighting changes. 

In this technique, use your imaging set up to capture flat field images with a bright 
background after removing the object under inspection. Typically, multiple images are 
captured (more than 10), and then averaged to create the flat field image. Capture the 
dark field images by covering the camera lens. 

This process should be be repeated whenever the imaging setup (lens, light, and 
position) changes. It is important to capture multiple frames to nullify the texture of 
the background. Use the IMAQ Compute Median Image VI and the IMAQ Compute 
Average Image VI to obtain the median or average of multiple images. Pass the flat field 
and dark field images to the IMAQ Flat Field Correction VI to create a corrected image. 

Estimation Technique 

The following images illustrate the flat field estimation process. Image A is an image to 
estimate the flat field image. Image B illustrates the sampling points. Image C 
illustrates the fitted 2D polynomial model. Image D is the estimated flat field image 
using the surface fit. 
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The flat field image can be estimated more accurately by enabling the Estimate 
Background? boolean in the VI. This parameter detects the background region in the 
image and performs a surface fit using only background pixels. The following figure 
illustrates the detected background region by masking the foreground objects. 

The Estimate Background? option provides the following options to detect the 
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background region: 
• Polynomial—Uses a polynomial algorithm with a specified Polynomial Degree to 

estimate the background. 
• Background Correction—Performs background correction to eliminate non-

uniform lighting effects and then performs thresholding using the interclass 
variance thresholding algorithm. 

• NiBlack—Computes thresholds for each pixel based on its local statistics using the 
NiBlack local thresholding algorithm. 
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Particle Analysis Particle Analysis 
This section describes conceptual information about particle analysis, including 
thresholding, morphology, and particle measurements. 

Introduction 

You can use particle analysis to detect connected regions or groupings of pixels in an 
image and then make selected measurements of those regions. These regions are 
commonly referred to as particles. A particle is a contiguous region of nonzero pixels. 
You can extract particles from a grayscale image by thresholding the image into 
background and foreground states. Zero valued pixels are in the background state, and 
all nonzero valued pixels are in the foreground. 

Particle analysis consists of a series of processing operations and analysis functions 
that produce information about particles in an image. Using particle analysis, you can 
detect and analyze any 2D shape in an image. 

When to Use 

Use particle analysis when you are interested in finding particles whose spatial 
characteristics satisfy certain criteria. In many applications where computation is time-
consuming, you can use particle filtering to eliminate particles that are of no interest 
based on their spatial characteristics, and keep only the relevant particles for further 
analysis. 

You can use particle analysis to find statistical information, such as the presence of 
particles, their number and size, and location. This information allows you to perform 
many machine vision inspection tasks, such as detecting flaws on silicon wafers, 
detecting soldering defects on electronic boards, or web inspection applications such 
as finding structural defects on wood planks or detecting cracks on plastics sheets. You 
also can locate objects in motion control applications. 

In applications where there is a significant variance in the shape or orientation of an 
object, particle analysis is a powerful and flexible way to search for the object. You can 
use a combination of the measurements obtained through particle analysis to define a 
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feature set that uniquely defines the shape of the object. 

Concepts 

A typical particle analysis process scans through an entire image, detects all the 
particles in the image, and builds a detailed report on each particle. You can use 
multiple parameters such as perimeter, angle, area, and center of mass to identify and 
classify these particles. Using multiple parameters can be faster and more effective 
than pattern matching in many applications. 

By using different sets of parameters, you can also uniquely identify a feature in an 
image. For example, you could use the area of the template particle as a criterion for 
removing all particles that do not match it within some tolerance. You then can 
perform a more refined search on the remaining particles using another list of 
parameter tolerances. 

The following figure shows a sample list of parameters that you can obtain in a particle 
analysis application. The binary image in this example was obtained by thresholding 
the source image and removing particles that touch the border of the image. You can 
use these parameters to identify and classify particles. The following figure shows the 
values obtained for the particle enclosed in a rectangle. 
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To use particle analysis, first create a binary image using a thresholding process. You 
then can improve the binary image using morphological transformations and make 
measurements on the particles in the image. 

Image Segmentation Image Segmentation 
This section contains information about segmenting images using global grayscale 
thresholding, global color thresholding, local thresholding, and morphological 
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segmentation. Image segmentation is the process of separating objects from the 
background and each other so that each object can be identified and characterized. 
Refer to particle measurements for information about characterizing objects after 
segmentation. 

Related concepts: 

• Particle Measurements 

Thresholding Thresholding 

Thresholding uses the pixel values in an image to segment the image into two regions: 
a particle region, which contains the objects under inspection, and a background 
region. 

A range of pixel values is defined, either by the user or automatically, as the threshold. 
Any pixel value outside the range becomes 0, and any pixel value inside the range 
becomes 1, or a user-defined value. Thresholding results in a binary image. 

When to Use 

Use thresholding to create a binary image and focus inspection on specific areas of 
interest. 

Thresholding is often the first step in machine vision applications such as particle 
analysis, golden template comparison, and binary particle classification. 

Vision supports the following thresholding methods: 

• Global Grayscale Thresholding—Use Global Grayscale Thresholding on grayscale 
images with uniform lighting. Global Grayscale Thresholding can be performed 
with the following methods: 

• Manual Threshold—Enables the user to manually set the threshold range. 
Recommended on images with good contrast and uniform lighting. 

• Clustering—Thresholds the image into more than two classes. This is the most 
common automatic thresholding method. 

• Entropy—Detects small areas of interest in the image. This method is used for 
applications such as fault detection. 
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• Inter Variance—Use for images in which classes are not overly 
disproportionate, and when the object of interest and the background contain 
a comparable number of pixels. For satisfactory results, the smallest class must 
be at least 5% of the largest one. 

• Metric—Calculates a value for each threshold that is determined by the 
surfaces representing the initial gray scale. Use this method when the object of 
interest and the background contain a comparable number of pixels. 

• Moments—Use for images that have poor contrast. 
• Global Color Thresholding—Use Global Color Thresholding on color images with 

uniform lighting. 
• Local Thresholding—Use Local Thresholding to isolate regions of interest in 

images that exhibit non-uniform lighting changes, such as shadows or a strong 
illumnination gradient. Local Thresholding can be performed with the following 
methods: 

• Niblack Algorithm—Effective for applications such as display inspection and 
OCR images. 

• Sauvola Algorithm—Results in less noise and preserves the shape of the 
particles. 

• Modified Sauvola Algorithm—Less computationally intensive than the 
Sauvola algorithm. 

• Background Correction Algorithm—Reduces noise in large, empty areas. 

Global Grayscale Thresholding 

Global grayscale thresholding includes manual thresholding and automatic 
thresholding techniques. 

When to Use 

Global thresholding works best when the inspection images exhibit uniform lighting 
both within each image and across multiple images. 

Concepts 

Particles are characterized by an intensity range. They are composed of pixels with 
gray-level values belonging to a given threshold interval (overall luminosity or gray 
shade). All other pixels are considered to be part of the background. 
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Thresholding sets all pixels that belong to a range of pixel values, called the threshold 
interval, to 1 or a user-defined value, and it sets all other pixels in the image to 0. Pixels 
inside the threshold interval are considered part of a particle. Pixels outside the 
threshold interval are considered part of the background. 

The following figure shows the histogram of an image. All pixels in the image whose 
values range from 166 to 255 are considered particle pixels. 

Manual Threshold 

The threshold interval in a manual threshold has two user-defined parameters: lower 
threshold and upper threshold. All pixels that have gray-level values equal to or 
greater than the lower threshold and equal to or smaller than the upper threshold are 
selected as pixels belonging to particles in the image. 

Manual Thresholding Example 

This example uses the following source image. 

Highlighting the pixels that belong to the threshold interval [166, 255] (the brightest 
areas) produces the following image. 
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Automatic Threshold 

Vision has five automatic thresholding techniques. 

• Clustering 
• Entropy 
• Inter Variance 
• Metric 
• Moments 

In contrast to manual thresholding, these techniques do not require that you set the 
lower and upper threshold values. These techniques are well suited for conditions in 
which the light intensity varies from image to image. 

Clustering is the only multi-class thresholding method available. Clustering operates 
on multiple classes so you can create tertiary or higher-level images. 

The other four methods—entropy, metric, moments, and interclass variance—are 
reserved for strictly binary thresholding techniques. The choice of which algorithm to 
apply depends on the type of image to threshold. 

Depending on your source image, it is sometimes useful to invert the original grayscale 
image before applying an automatic threshold function, such as entropy and 
moments. This is especially true for cases in which the background is brighter than the 
foreground. 

Clustering 

Clustering is the most frequently used automatic thresholding method. Use the 
clustering method when you need to threshold the image into more than two classes. 
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Clustering sorts the histogram of the image within a discrete number of classes 
corresponding to the number of phases perceived in an image. The gray values are 
determined, and a barycenter is determined for each class. This process repeats until it 
obtains a value that represents the center of mass for each phase or class. 

Example of Clustering 

This example uses a clustering technique in two and three phases on an image. Notice 
that the results from this function are generally independent of the lighting conditions 
as well as the histogram values from the image. 

This example uses the following original image. 

Clustering in two phases produces the following image. 

Clustering in three phases produces the following image. 
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Entropy 

Based on a classical image analysis technique, entropy is best for detecting particles 
that are present in minuscule proportions on the image. For example, this function 
would be suitable for fault detection. 

Inter Variance 

Inter variance is based on discriminant analysis. An optimal threshold is determined by 
maximizing the interclass variation with respect to the threshold. 

Metric 

For each threshold, a value determined by the surfaces representing the initial gray 
scale is calculated. The optimal threshold corresponds to the smallest value. 

Moments 

This technique is suited for images that have poor contrast. The moments method is 
based on the hypothesis that the observed image is a blurred version of the 
theoretically binary original. The blurring that is produced from the acquisition 
process, caused by electronic noise or slight defocalization, is treated as if the 
statistical moments of average and variance were the same for both the blurred image 
and the original image. This function recalculates a theoretical binary image. 

In-Depth Discussion 

All automatic thresholding methods use the histogram of an image to determine the 
threshold. The following figure explains the notations used to describe the parameters 
of the histogram. These notations are used throughout this section to show how each 
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automatic thresholding method calculates the threshold value for an image. 

• i represents the gray level value, 
• k represents the gray level value chosen as the threshold, 
• h(i) represents the number of pixels in the image at each gray level value, 
• N represents the total number of gray levels in the image (256 for an 8-bit image), 
• n represents the total number of pixels in the image. 

Use the automatic thresholding techniques to determine the threshold pixel value k 
such that all gray-level values less than or equal to k belong to one class 0 and the 
other gray level values belong to another class 1. 

Clustering 

The threshold value is the pixel value k for which the following condition is true: 

μ1 + μ2
2 = k 

where: 

• μ1 is the mean of all pixel values that lie between 0 and k, 
• and μ2 is the mean of all the pixel values that lie between k + 1 and 255. 

Entropy 

In this method, the threshold value is obtained by applying information theory to the 
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histogram data. In information theory, the entropy of the histogram signifies the 
amount of information associated with the histogram. Let 

p(i) =
h(i)

∑i = 0
N − 1

h(i)  

represent the probability of occurrence of the gray level i. The entropy of a histogram 
of an image with gray levels in the range [0, N – 1] is given by 

H = ∑i = 0

N − 1
p(i)log2pb(i) 

If k is the value of the threshold, then the two entropies 

Hb = − ∑i = 0

k
p(i)log2pb(i) 

Hw = − ∑i = k + 1

N − 1
pw(i)log2pw(i) 

represent the measures of the entropy (information) associated with the black and 
white pixels in the image after thresholding. Pb(i) is the probability of the background, 
and Pb(w) is the probability of the object. 

The optimal threshold value is gray-level value that maximizes the entropy in the 
thresholded image given by 

Hb + Hw 

Simplified, the threshold value is the pixel value k at which the following expression is 
maximized: 

− 1

∑i = 0
k

h(i) ∑
i = 0

k

log2(h(i) + 1)h(i) − 1

∑i = k + 1
N − 1

h(i) ∑
i = k + 1

N − 1

log2(h(i) + 1)h(i) + log2(∑i = 0

k
h(i)∑i = k + 1

N − 1
h(i))

 

Inter Variance 

The threshold value is the pixel value k at which the following expression is maximized: 
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σB
2(k) =

(μTω(k) − μ(k))2

ω(k)(1 − ω(k))  

where 

μ(k) = ∑i = 0

k
ip(i) 

μT = ∑i = 0

N − 1
ip(i) 

ω(k) = ∑i = 0

k
p(i) 

where, 

• σB
2k 

is the Interclass Variance. 
• μ(k) 

is the mean of the class containing bins 0 to k. 
• μT 

is the overall mean. 
• ω(k) 

is the class probability. 

Metric 

The threshold value is the pixel value k at which the following expression is minimized: 

∑
i = 0

k

h(i)((i − μ1)) + ∑
i = k + 1

N − 1

h(i)((i − μ2))
 

where, 

• μ1 is the mean of all pixel values in the image that lie between 0, 
• k, and μ2 is the mean of all the pixel values in the image that lie between k + 1 and 

255. 

Moments 

In this method the threshold value is computed in such a way that the moments of the 
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image to be thresholded are preserved in the binary output image. 

The kth moment m of an image is calculated as 

mk = 1
n ∑i = 0

i = N − 1
ikh(i)

 

where n is the total number of pixels in the image. 

Global Color Thresholding 

Color thresholding converts a color image into a binary image. 

When to Use 

Threshold a color image when you need to isolate features for analysis and processing 
or to remove unnecessary features. 

Concepts 

To threshold a color image, specify a threshold interval for each of the three color 
components. A pixel in the output image is set to 1 if and only if its color components 
fall within the specified ranges. Otherwise, the pixel value is set to 0. 

The following figure shows the histograms of each plane of a color image stored in RGB 
format. The gray shaded region indicates the threshold range for each of the color 
planes. For a pixel in the color image to be set to 1 in the binary image, its red value 
should lie between 130 and 200, its green value should lie between 100 and 150, and 
its blue value should lie between 55 and 115. 

Note Before performing a color threshold, you may need to enhance your 
image with lookup tables or the equalize function. 
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To threshold an RGB image, first determine the red, green, and blue values of the pixels 
that constitute the objects you want to analyze after thresholding. Then, specify a 
threshold range for each color plane that encompasses the color values of interest. You 
must choose correct ranges for all three color planes to isolate a color of interest. 

The following figure shows the histograms of each plane of a color image stored in HSL 
format. The gray shaded region indicates the threshold range for each of the color 
planes. For a pixel in the color image to be set to 1 in the binary image, its hue value 
should lie between 165 and 215, its saturation value should lie between 0 and 30, and 
its luminance value should lie between 25 and 210. 
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The hue plane contains the main color information in an image. To threshold an HSL 
image, first determine the hue values of the pixels that you want to analyze after 
thresholding. In some applications, you may need to select colors with the same hue 
value but various saturation values. Because the luminance plane contains only 
information about the intensity levels in the image, you can set the luminance 
threshold range to include all the luminance values, thus making the thresholding 
process independent from intensity information. 

Local Thresholding 

Local thresholding, also known as locally adaptive thresholding, is like global 
grayscale thresholding in that both create a binary image by segmenting a grayscale 
image into a particle region and a background region. Unlike global grayscale 
thresholding, which categorizes a pixel as part of a particle or the background based 
on a single threshold value derived from the intensity statistics of the entire image, 
local thresholding categorizes a pixel based on the intensity statistics of its 
neighboring pixels. 

When to Use 

Use local thresholding to isolate objects of interest from the background in images 
that exhibit nonuniform lighting changes. Nonuniform lighting changes, such as those 
resulting from a strong illumination gradient or shadows, often make global 
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thresholding ineffective. 

The following figure shows the effect of global thresholding and local thresholding on 
an image with nonuniform lighting changes. Figure A shows the original inspection 
image of LCD digits. Figure B shows how a global threshold segments the inspection 
image. Notice that many of the nondigit pixels in the bottom, right corner are 
erroneously selected as particles. Figure C shows how a local threshold segments the 
inspection image. Only pixels belonging to LCD digits are selected as particles. 

Concepts 

The local thresholding algorithm calculates local pixel intensity statistics—such as 
range, variance, surface fitting parameters, or their logical combinations—for each 
pixel in an inspection image. The result of this calculation is the local threshold value 
for the pixel under consideration. The algorithm compares the original intensity value 
of the pixel under consideration to its local threshold value and determines whether 
the pixel belongs to a particle or the background. 

A user-defined window specifies which neighboring pixels are considered in the 
statistical calculation. The default window size is 32 × 32. 

The window size should be approximately the size of the smallest object you want to 
separate from the background. The following figure shows a simplified local 
thresholding window. 

Note Even-numbered window dimensions and odd-numbered window 
dimensions produce the same center pixel. For example, in the following 
figure, the pixel under consideration is the same for a 4 × 4 local thresholding 
window as it is for a 3 × 3 local thresholding window. 
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1. Image 
2. Local Thresholding Window 
3. Pixel under Consideration 

A typical local thresholding function requires a large amount of computation time. 
Also, the time a typical local thresholding function takes to complete often varies 
depending on the window size. This lack of determinism prevents local thresholding 
from being used in real-time applications. The Vision local thresholding function uses 
a fully optimized, efficient algorithm implementation whose computation speed is 
independent of the window size. This significantly reduces the computation cost and 
makes using the function in a real-time segmentation applications possible. 

The following sections describe the algorithms available in the Vision local 
thresholding function. 

Note The pixel intensities of all of the pixels in the window, including the 
pixel under consideration, are used to calculate the local threshold value. 

Note You must specify whether you are looking for dark objects on a light 
background or light objects on a dark background regardless of which 
algorithm you use. 
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Niblack Algorithm 

This algorithm has been experimentally shown to be the best among eleven locally 
adaptive thresholding algorithms, based on a goal-directed evaluation from OCR and 
map image segmentation applications. The algorithm is effective for many image 
thresholding applications, such as display inspection and OCR. 

The Niblack algorithm is sensitive to the window size and produces noisy 
segmentation results in areas of the image with a large, uniform background. To solve 
this problem, the Vision local thresholding function computes a deviation factor that 
the algorithm uses to correctly categorize pixels. 

Background Correction Algorithm 

This algorithm combines the local and global thresholding concepts for image 
segmentation. The following figure illustrates the background correction algorithm. 

The background-corrected image is thresholded using the interclass variance 
automatic thresholding method described in the automatic threshold section of this 
chapter. 

In-Depth Discussion 

The following sections provide an in-depth discussion of the algorithms used by each 
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thresholding method. 

Niblack 

In the Niblack algorithm, the local threshold value T(i, j) at pixel (i, j) is calculated as 

T(i, j) = m(i, j) + k.ω (i, j) 

where, 

• m(i, j) is the local sample mean, 
• k is the deviation Niblack/Sauvola factor, 
• ?(i, j) is the standard deviation. 

Each image pixel I(i, j) is categorized as a particle or background pixel based on the 
following: 

if I(i, j) > T(i, j), I(i, j) = particle 

else I(i, j) = background 

Sauvola 

In the Sauvola algorithm, the windowed standard deviation is normalized by dividing 
the windowed standard deviation by the dynamic range of the standard deviation (R). 
This results in less noise and preserves the shape of the particles. In the Sauvola 
algorithm, the local threshold value T(i, j) at pixel (i, j) is calculated as 

T(i, j) = m(i, j) * (1 + k * (1 −
ω(i, j)

R ))
 

where: 

• m(i, j) and w(i, j) are the mean and standard deviation calculated in a window, 
• k is the Niblack/Sauvola deviation factor, 

Tip Setting k to 0 to increases the computation speed of the Niblack 
algorithm. 
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• R is the Sauvola deviation range. 

Modified Sauvola 

In the Modified Sauvola algorithm, the windowed mean deviation is normalized by 
dividing it by the dynamic range of the standard deviation (R). This method uses mean 
deviation instead of standard deviation, making it less computationally intensive than 
the Sauvola algorithm. In the Modified Sauvola algorithm, the local threshold value T(i, 
j) at pixel (i, j) is calculated as: 

T(i, j) = m(i, j) * (1 + k * (1 −
ɗ(i, j)

R ))
 

ɗ(i, j) = I(i, j) − m(i, j) 

where 

• m(i, j) is the local mean and ɗ(i, j) are the local mean deviation, 
• k is the Niblack/Sauvola deviation factor, 
• R is the Sauvola deviation range. 

Background Correction 

In the background correction algorithm, the background-corrected image B(i, j) is 
calculated as: 

B(i, j) = I(i, j) – m(i, j) 

where: 

• m(i, j) is the local mean at pixel (i, j). 

Thresholding Considerations 

A critical and frequent problem in segmenting an image into particle and background 
regions occurs when the boundaries are not sharply demarcated. In such a case, the 
determination of a correct threshold interval becomes subjective. Therefore, you may 
want to enhance your images before thresholding to outline where the correct borders 
lie. You can use lookup tables, filters, FFTs, or equalize functions to enhance your 
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images. Observing the intensity profile of a line crossing a boundary area is also 
helpful in selecting a correct threshold value. Finally, keep in mind that morphological 
transformations can help you retouch the shape of binary particles and, therefore, 
correct unsatisfactory selections that occurred during thresholding. 

Morphological Segmentation Morphological Segmentation 

In some image analysis and machine vision applications—such as industrial defect 
inspection or biomedical imaging—segmentation based on thresholding or edge 
detection is not sufficient because the image quality is insufficient or the objects under 
inspection touch or overlap. In such applications, morphological segmentation is an 
effective method of image segmentation. Morphological segmentation partitions an 
image based on the topographic surface of the image. The image is separated into 
non-overlapping regions with each region containing a unique particle. 

When to Use 

Thresholding can segment objects from the background only if the objects are well 
separated from each other and have intensity values that differ significantly from the 
background. Binary morphology operators, such as close or open, often return 
inaccurate results when segmenting overlapping particles. 

Use morphological segmentation to segment touching or overlapping objects from 
each other and from the background. Also, use morphological segmentation when the 
objects have intensity values similar to the background. 

Concepts 

Morphological segmentation is a multiple-step process involving several Vision 
functions. The following list describes each morphological segmentation step and 
where to find more information about each step. 

1. Use a global or local threshold to create a binary image. Refer to global 
grayscale thresholding, global color thresholding, or local 

Note The morphological segmentation process described in the following 
section works best when the objects under inspection are convex. 
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thresholding for more information about thresholding. 
2. If necessary, use binary morphology operations to improve the quality of the 

image by filling holes in particles or remove extraneous noise from the image. 
3. Use the Danielsson function to transform the binary image into a grayscale 

distance map in which each particle pixel is assigned a gray-level value equal to its 
shortest Euclidean distance from the particle border. 

4. Perform a watershed transform on the distance map to find the watershed 
separation lines. 

5. Superimpose the watershed lines on the original image using an image mask. 

The following figure summarizes the morphological segmentation process and shows 
an example of each step. 
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Watershed Transform 

In geography, a watershed is an area of land from which all rain that falls on the land 
flows into a specific body of water. In imaging, the watershed transform algorithm 
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considers the objects under inspection to be the bodies of water. The following figure 
illustrates this concept. 

• Figure A shows an inspection image after it has been thresholded. 
• Figure B shows the distance map of objects in the image using the gradient palette. 
• Figure C shows the topographic surface of the distance map. 

Each object from the inspection image forms a deep, conical lake called a catchment 
basin. The pixels to which the distance map function assigned the highest value 
represent the deepest parts of each catchment basin. The image background 
represents the land surrounding the catchment basins. 

To understand how a watershed transform works, imagine that the catchment basins 
are dry. If rain were to fall evenly across the image, the basins would fill up at the same 
rate. Eventually, the water in the basins represented by the circle and square would 
merge, forming one lake. To prevent the two lakes from becoming one, the watershed 
transform algorithm builds a dam, or watershed line, where the waters would begin to 
mix. 

Figure A shows the same distance map as Figure B with a line through the bottom two 
objects. Figure B shows the intensities of the pixels along the line in figure A. Notice the 
watershed line preventing the waters from the two catchment basins from mixing. 
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As the rainfall continues, the rising water in all three lakes would begin to flood the 
land. The watershed transform algorithm builds dams on the land to prevent the flood 
waters from each lake from merging. The following figure shows the watershed 
transform image after segmentation is complete. The water from each catchment 
basin is represented by a different pixel value. The black lines represent the watershed 
lines. 

In-Depth Discussion 

Vincent and Soille's Algorithm 

The Vincent and Soille's algorithm fills catchment basins from the bottom up. Imagine 
that a hole is located in each local minimum. When the topographic surface is 
immersed in water, water starts filling all the catchment basins, minima of which are 
under the water level. If two catchment basins are about to merge as a result of further 
immersion, the algorithm builds a vertical dam up to the highest surface altitude. The 
dam represents the watershed line. The core algorithm of the Vision watershed 
transform function is based on Vincent and Soille's algorithm. The concept behind the 
Vision implementation of Vincent and Soille's algorithm is to sort the pixels in 
decreasing order of their grayscale values, followed by a flooding step consisting of a 
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fast breadth-first scanning of all pixels in the order of their grayscale values. 

Related concepts: 

• Thresholding 
• Binary Morphology 
• Advanced Morphology Operations 
• Image Masks 

Binary Morphology Binary Morphology 
This section contains information about element structuring, connectivity, and 
primary and advanced binary morphology operations. 

Introduction Introduction 

Binary morphological operations extract and alter the structure of particles in a binary 
image. You can use these operations during your inspection application to improve the 
information in a binary image before making particle measurements, such as the area, 
perimeter, and orientation. 

A binary image is an image containing particle regions with pixel values of 1 and a 
background region with pixel values of 0. Binary images are the result of the 
thresholding process. Because thresholding is a subjective process, the resulting 
binary image may contain unwanted information, such as noise particles, particles 
touching the border of images, particles touching each other, and particles with 
uneven borders. By affecting the shape of particles, morphological functions can 
remove this unwanted information, thus improving the information in the binary 
image. 

Structuring Elements Structuring Elements 

Morphological operators that change the shape of particles process a pixel based on 
its number of neighbors and the values of those neighbors. A neighbor is a pixel whose 
value affects the values of nearby pixels during certain image processing functions. 
Morphological transformations use a 2D binary mask called a structuring element to 
define the size and effect of the neighborhood on each pixel, controlling the effect of 
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the binary morphological functions on the shape and the boundary of a particle. 

When to Use 

Use a structuring element when you perform any primary binary morphology 
operation or the Separation advanced binary morphology operation. You can modify 
the size and the values of a structuring element to alter the shape of particles in a 
specific way. However, study the basic morphology operations before defining your 
own structuring element. 

Concepts 

The size and contents of a structuring element specify which pixels a morphological 
operation takes into account when determining the new value of the pixel being 
processed. A structuring element must have an odd-sized axis to accommodate a 
center pixel, which is the pixel being processed. The contents of the structuring 
element are always binary, composed of 1 and 0 values. The most common structuring 
element is a 3 × 3 matrix containing values of 1. This matrix, shown below, is the 
default structuring element for most binary and grayscale morphological 
transformations. 

Three factors influence how a structuring element defines which pixels to process 
during a morphological transformation: the size of the structuring element, the values 
of the structuring element sectors, and the shape of the pixel frame. 

Structuring Element Size 

The size of a structuring element determines the size of the neighborhood surrounding 
the pixel being processed. The coordinates of the pixel being processed are 
determined as a function of the structuring element. In the following figure, the 
coordinates of the pixels being processed are (1, 1), (2, 2), and (3, 3), respectively. The 
origin (0, 0) is always the top, left corner pixel. 
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Using structuring elements requires an image border. A 3 × 3 structuring element 
requires a minimum border size of 1. In the same way, structuring elements of 5 × 5 
and 7 × 7 require a minimum border size of 2 and 3, respectively. Bigger structuring 
elements require corresponding increases in the image border size. 

The size of the structuring element determines the speed of the morphological 
transformation. The smaller the structuring element, the faster the transformation. 

Structuring Element Values 

The binary values of a structuring element determine which neighborhood pixels to 
consider during a transformation in the following manner: 

• If the value of a structuring element sector is 1, the value of the corresponding 
source image pixel affects the central pixel's value during a transformation. 

• If the value of a structuring element sector is 0, the morphological function 
disregards the value of the corresponding source image pixel. 

The following figure illustrates the effect of structuring element values during a 
morphological function. A morphological transformation using a structuring element 
alters a pixel P0 so that it becomes a function of its neighboring pixel values. 

Note Vision images have a default border size of 3. This border size enables 
you to use structuring elements as large as 7 × 7 without any modification. If 
you plan to use structuring elements larger than 7 × 7, specify a 
correspondingly larger border when creating your image. 
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Pixel Frame Shape 

A digital image is a 2D array of pixels arranged in a rectangular grid. Morphological 
transformations that extract and alter the structure of particles allow you to process 
pixels in either a square or hexagonal configuration. These pixel configurations 
introduce the concept of a pixel frame. Pixel frames can either be aligned (square) or 
shifted (hexagonal). The pixel frame parameter is important for functions that alter the 
value of pixels according to the intensity values of their neighbors. Your decision to use 
a square or hexagonal frame affects how Vision analyzes the image when you process 
it with functions that use this frame concept. Vision uses the square frame by default. 

The following figure illustrates the difference between a square and hexagonal pixel 
frame when a 3 × 3 and a 5 × 5 structuring element are applied. 

Note Pixels in the image do not physically shift in a horizontal pixel frame. 
Functions that allow you to set the pixel frame shape merely process the 
pixel values differently when you specify a hexagonal frame. 
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If a morphological function uses a 3 × 3 structuring element and a hexagonal frame 
mode, the transformation does not consider the elements [2, 0] and [2, 2] when 
calculating the effect of the neighbors on the pixel being processed. If a morphological 
function uses a 5 × 5 structuring element and a hexagonal frame mode, the 
transformation does not consider the elements [0, 0], [4, 0], [4, 1], [4, 3], [0, 4], and 
[4, 4]. 

The following figure illustrates a morphological transformation using a 3 × 3 
structuring element and a rectangular frame mode. 

The following figure illustrates a morphological transformation using a 3 × 3 
structuring element and a hexagonal frame mode. 
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The following table illustrates the effect of the pixel frame shape on a neighborhood 
given three structuring element sizes. The gray boxes indicate the neighbors of each 
black center pixel. 

Square Frame 

In a square frame, pixels line up normally. The following figure shows a pixel in a 
square frame surrounded by its eight neighbors. If d is the distance from the vertical 
and horizontal neighbors to the central pixel, then the diagonal neighbors are located 
at a distance of 

√2 
d from the central pixel. 
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In a hexagonal frame, the even lines of an image shift half a pixel to the right. 
Therefore, the hexagonal frame places the pixels in a configuration similar to a true 
circle. The following figure shows a pixel in a hexagonal frame surrounded by its six 
neighbors. Each neighbor is an equal distance d from the central pixel, which results in 
highly precise morphological measurements. 

Related concepts: 

• Image Borders 

Connectivity Connectivity 

After you identify the pixels belonging to a specified intensity threshold, Vision groups 
them into particles. This grouping process introduces the concept of connectivity. You 
can set the pixel connectivity in some functions to specify how Vision determines 
whether two adjoining pixels are included in the same particle. 

When to Use 

Use connectivity-4 when you want Vision to consider pixels to be part of the same 
particle only when the pixels touch along an adjacent edge. Use connectivity-8 when 
you want Vision to consider pixels to be part of the same particle even if the pixels 
touch only at a corner. 

Concepts 

With connectivity-4, two pixels are considered part of the same particle if they are 
horizontally or vertically adjacent. With connectivity-8, two pixels are considered part 
of the same particle if they are horizontally, vertically, or diagonally adjacent. The 
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following figure illustrates the two types of connectivity. 

The following figure illustrates how connectivity-4 and connectivity-8 affect the way 
the number of particles in an image are determined. In figure A, the image has two 
particles with connectivity-4. In figure B, the same image has one particle with 
connectivity-8. 

In-Depth Discussion 

In a rectangular pixel frame, each pixel P0 has eight neighbors, as shown in the 
following graphic. From a mathematical point of view, the pixels P1, P3, P5, and P7 are 
closer to P0 than the pixels P2, P4, P6, and P8. 

If D is the distance from P0 to P1, then the distances between P0 and its eight neighbors 
can range from D to 
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√2 
D, as shown in the following figure. 

Connectivity-4 

A pixel belongs to a particle if it is located a distance of D from another pixel in the 
particle. In other words, two pixels are considered to be part of the same particle if 
they are horizontally or vertically adjacent. They are considered as part of two 
different particles if they are diagonally adjacent. In the following figure, the particle 
count equals 4. 

Connectivity-8 

A pixel belongs to a particle if it is located a distance of D or 

√2 
D from another pixel in the particle. In other words, two pixels are considered to be 
part of the same particle if they are horizontally, vertically, or diagonally adjacent. In 
the following figure, the particle count equals 1. 
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Primary Morphology Operations Primary Morphology Operations 

Primary morphological operations work on binary images to process each pixel based 
on its neighborhood. Each pixel is set either to 1 or 0, depending on its neighborhood 
information and the operation used. These operations always change the overall size 
and shape of particles in the image. 

When to Use 

Use the primary morphological operations for expanding or reducing particles, 
smoothing the borders of objects, finding the external and internal boundaries of 
particles, and locating particular configurations of pixels. 

You also can use these transformations to prepare particles for quantitative analysis, 
to observe the geometry of regions, and to extract the simplest forms for modeling and 
identification purposes. 

Concepts 

The primary morphology functions apply to binary images in which particles have 
been set to 1 and the background is equal to 0. They include three fundamental binary 
processing functions: erosion, dilation, and hit-miss. The other transformations are 
combinations of these three functions. 

This section describes the following primary morphology transformations: 

• Erosion 
• Dilation 
• Opening 
• Closing 
• Inner gradient 
• Outer gradient 
• Hit-miss 
• Thinning 
• Thickening 
• Proper-opening 
• Proper-closing 
• Auto-median 
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Erosion and Dilation Functions 

An erosion eliminates pixels isolated in the background and erodes the contour of 
particles according to the template defined by the structuring element. 

For a given pixel P0, the structuring element is centered on P0. The pixels masked by a 
coefficient of the structuring element equal to 1 are then referred as Pi. 

• If the value of one pixel Pi is equal to 0, then P0 is set to 0, else P0 is set to 1. 
• If AND(Pi) = 1, then P0 = 1, else P0 = 0. 

A dilation eliminates tiny holes isolated in particles and expands the particle contours 
according to the template defined by the structuring element. This function has the 
opposite effect of an erosion because the dilation is equivalent to eroding the 
background. 

For any given pixel P0, the structuring element is centered on P0. The pixels masked by 
a coefficient of the structuring element equal to 1 then are referred to as Pi. 

• If the value of one pixel Pi is equal to 1, then P0 is set to 1, else P0 is set to 0. 
• If OR(Pi) = 1, then P0 = 1, else P0 = 0. 

The following figure illustrates the effects of erosion and dilation. Figure A is the binary 
source image. Figure B represents the source image after erosion, and figure C shows 
the source image after dilation. 

Note In the following descriptions, the term pixel denotes a pixel equal to 1, 
and the term particle denotes a group of pixels equal to 1. 

Particle Analysis

186 ni.com



The following figure is the source image for the examples in the following tables, in 
which gray cells indicate pixels equal to 1. 

The following tables show how the structuring element can control the effects of 
erosion or dilation, respectively. The larger the structuring element, the more 
templates can be edited and the more selective the effect. 

Structuring 
Element After Erosion Description 

A pixel is cleared if it is equal to 1 and if its three upper-left 
neighbors do not equal 1. 

The erosion truncates the upper-left particle borders. 

A pixel is cleared if it is equal to 1 and if its lower and right 
neighbors do not equal 1. 

The erosion truncates the bottom and right particle borders but 
retains the corners. 

Structuring 
Element After Erosion Description 

A pixel is set to 1 if it is equal to 1 or if one of its three upper-left 
neighbors equals 1. 

The dilation expands the lower-right particle borders. 

A pixel is set to 1 if it is equal to 1 or if it its lower or right neighbor 
equals 1. 
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Structuring 
Element After Erosion Description 

The dilation expands the upper and left particle borders. 

Opening and Closing Functions 

The opening function is an erosion followed by a dilation. This function removes small 
particles and smooths boundaries. This operation does not significantly alter the area 
and shape of particles because erosion and dilation are dual transformations, in which 
borders removed by the erosion function are restored during dilation. However, small 
particles eliminated during the erosion are not restored by the dilation. If I is an image, 

opening(I) = dilation(erosion(I)). 

The closing function is a dilation followed by an erosion. This function fills tiny holes 
and smooths boundaries. This operation does not significantly alter the area and 
shape of particles because dilation and erosion are morphological complements, 
where borders expanded by the dilation function are then reduced by the erosion 
function. However, erosion does not restore any tiny holes filled during dilation. If I is 
an image, 

closing(I) = erosion(dilation(I)). 

The following figures illustrate examples of the opening and closing function. 

 1   1   1 

 1   1   1 

 1   1   1 

Original Image Structuring Element After Opening After Closing 
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 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 0   0   1   0   0 

 0   1   1   1   0 

 1   1   1   1   1 

 0   1   1   1   0 

 0   0   1   0   0 

Structuring Element After Opening Structuring Element After Closing 

Inner Gradient Function 

The internal edge subtracts the eroded image from its source image. The remaining 
pixels correspond to the pixels eliminated by the erosion process. If I is an image, 

internal edge(I) = I – erosion(I) = XOR(I, erosion(I)). 

Outer Gradient Function 

The external edge subtracts the source image from the dilated image of the source 
image. The remaining pixels correspond to the pixels added by the dilation process. If I 
is an image, 

internal edge(I) = dilation(I) – I = XOR(I, dilation(I)). 

Figure A shows the binary source image. Figure B shows the image produced from an 
extraction using a 5 × 5 structuring element. The superimposition of the internal edge 
is shown in white, and the external edge is shown in gray. The thickness of the 
extended contours depends on the size of the structuring element. 
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Hit-Miss Function 

The hit-miss function locates particular configurations of pixels. This function extracts 
each pixel located in a neighborhood exactly matching the template defined by the 
structuring element. Depending on the configuration of the structuring element, the 
hit-miss function can locate single isolated pixels, cross-shape or longitudinal 
patterns, right angles along the edges of particles, and other user-specified shapes. 
The larger the size of the structuring element, the more specific the researched 
template can be. Refer to the following table for strategies on using the hit-miss 
function. 

In a structuring element with a central coefficient equal to 0, a hit-miss function 
changes all pixels set to 1 in the source image to the value 0. 

For a given pixel P0, the structuring element is centered on P0. The pixels masked by 
the structuring element are then referred to as Pi. 

• If the value of each pixel Pi is equal to the coefficient of the structuring element 
placed on top of it, then the pixel P0 is set to 1, else the pixel P0 is set to 0. 

• In other words, if the pixels Pi define the exact same template as the structuring 
element, then P0 = 1, else P0 = 0. 

Figures B, C, D, and E show the result of three hit-miss functions applied to the same 
source image, represented in figure A. Each hit-miss function uses a different 
structuring element, which is specified above each transformed image. Gray cells 
indicate pixels equal to 1. 
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A second example of the hit-miss function shows how, when given the binary image 
shown in the following figure, the function can locate various patterns specified in the 
structuring element. The results are displayed in the following table. 

Strategy Structuring 
Element Resulting Image 

Use the hit-miss function to locate pixels isolated in a 
background. 

The structuring element on the right extracts all pixels 
equal to 1 that are surrounded by at least two layers of 
pixels that are equal to 0. 

 0   0   0   0   0 

 0   0   0   0   0 

 0   0   1   0   0 

 0   0   0   0   0 

 0   0   0   0   0 

Use the hit-miss function to locate single pixel holes in 
particles. 

The structuring element on the right extracts all pixels 
equal to 0 that are surrounded by at least one layer of 
pixels that are equal to 1. 

 1   1   1 

 1   0   1 

 1   1   1 

Particle Analysis

© National Instruments 191



Strategy Structuring 
Element Resulting Image 

Use the hit-miss function to locate pixels along a vertical 
left edge. 

The structuring element on the right extracts pixels 
surrounded by at least one layer of pixels equal to 1 to 
the left and pixels that are equal to 0 to the right. 

 1   1   0 

 1   1   0 

 1   1   0 

Thinning Function 

The thinning function eliminates pixels that are located in a neighborhood matching a 
template specified by the structuring element. Depending on the configuration of the 
structuring element, you also can use thinning to remove single pixels isolated in the 
background and right angles along the edges of particles. A larger structuring element 
allows for a more specific template. 

The thinning function extracts the intersection between a source image and its 
transformed image after a hit-miss function. In binary terms, the operation subtracts 
its hit-miss transformation from a source image. 

Do not use this function when the central coefficient of the structuring element is 
equal to 0. In such cases, the hit-miss function can change only the value of certain 
pixels in the background from 0 to 1. However, the subtraction of the thinning function 
then resets these pixels back to 0. 

If I is an image, 

thinning(I) = I – hit-miss(I) = XOR (I, hit-miss(I)). 

Figure A shows the binary source image used in the following example of thinning. 
Figure B illustrates the resulting image, in which single pixels in the background are 
removed from the image. This example uses the following structuring element: 
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Another thinning example uses the source image shown in figure A. Figures B, C, and D 
show the results of three thinnings applied to the source image. Each thinning uses a 
different structuring element, which is specified above each transformed image. Gray 
cells indicate pixels equal to 1. 

Thickening Function 

The thickening function adds to an image those pixels located in a neighborhood that 
matches a template specified by the structuring element. Depending on the 
configuration of the structuring element, you can use thickening to fill holes and 
smooth right angles along the edges of particles. A larger structuring element allows 
for a more specific template. 

The thickening function extracts the union between a source image and its 
transformed image, which was created by a hit-miss function using a structuring 
element specified for thickening. In binary terms, the operation adds a hit-miss 
transformation to a source image. 

Do not use this function when the central coefficient of the structuring element is 
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equal to 1. In such cases, the hit-miss function can turn only certain particle pixels 
from 1 to 0. However, the addition of the thickening function resets these pixels to 1. 

If I is an image, 

thickening(I) = I + hit-miss(I) = OR (I, hit-miss(I)). 

Figure A represents the binary source file used in the following thickening example. 
Figure B shows the result of the thickening function applied to the source image, 
which filled single pixel holes using the following structuring element: 

 

Figure A represents the source image for another thickening example. Figures B, C, and 
D show the results of three thickenings as applied to the source image. Each 
thickening uses a different structuring element, which is specified on top of each 
transformed image. Gray cells indicate pixels equal to 1. 

Proper-Opening Function 

The proper-opening function is a finite and dual combination of openings and 
closings. It removes small particles and smooths the contour of particles according to 
the template defined by the structuring element. 

If I is the source image, the proper-opening function extracts the intersection between 
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the source image I and its transformed image obtained after an opening, followed by a 
closing, and then followed by another opening: 

proper-opening(I) = AND(I, OCO(I)) 

or 

proper-opening(I) = AND(I, DEEDDE(I)) 

where: 

• I is the source image, 
• E is an erosion, 
• D is a dilation, 
• O is an opening, 
• C is a closing, 
• F(I) is the image obtained after applying the function F to the image I, 
• GF(I) is the image obtained after applying the function F to the image I followed by 

the function G to the image I. 

Proper-Closing Function 

The proper-closing function is a finite and dual combination of closings and openings. 
It fills tiny holes and smooths the inner contour of particles according to the template 
defined by the structuring element. 

If I is the source image, the proper-closing function extracts the union of the source 
image I and its transformed image obtained after a closing, followed by an opening, 
and then followed by another closing: 

proper-closing(I) = OR(I, COC(I)) 

or 

proper-closing(I) = OR(I, EDDEED(I)) 

where: 

• I is the source image, 
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• E is an erosion, 
• D is a dilation, 
• O is an opening, 
• C is a closing, 
• F(I) is the image obtained after applying the function F to the image I, 
• GF(I) is the image obtained after applying the function F to the image I followed by 

the function G to the image I. 

Auto-Median Function 

The auto-median function is a dual combination of openings and closings. It generates 
simpler particles that contain fewer details. 

If I is the source image, the auto-median function extracts the intersection between the 
proper-opening and proper-closing of the source image I: 

auto-median(I) = AND(OCO(I), COC(I)) 

or 

auto-median(I) = AND((DEEDDEI), EDDEED(I)) 

where: 

• I is the source image, 
• E is an erosion, 
• D is a dilation, 
• O is an opening, 
• C is a closing, 
• F(I) is the image obtained after applying the function F to the image I, 
• GF(I) is the image obtained after applying the function F to the image I followed by 

the function G to the image I. 

Advanced Morphology Operations Advanced Morphology Operations 

The advanced morphology operations are built upon the primary morphological 
operators and work on particles as opposed to pixels. Each of the operations have 
been developed to perform specific operations on the particles in a binary image. 
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When to Use 

Use the advanced morphological operations to fill holes in particles, remove particles 
that touch the border of the image, remove unwanted small and large particles, 
separate touching particles, find the convex hull of particles, and more. 

You can use these transformations to prepare particles for quantitative analysis, 
observe the geometry of regions, extract the simplest forms for modeling and 
identification purposes, and so forth. 

Concepts 

The advanced morphology functions are conditional combinations of fundamental 
transformations, such as binary erosion and dilation. The functions apply to binary 
images in which a threshold of 1 has been applied to particles and where the 
background is equal to 0. 

Border Function 

The border function removes particles that touch the border of the image. These 
particles may have been truncated during the digitization of the image, and their 
elimination them helps to avoid erroneous particle measurements and statistics. 

Hole Filling Function 

The hole filling function fills the holes within particles. 

Labeling Function 

The labeling function assigns a different gray-level value to each particle. The 
image produced is not a binary image, but a labeled image using a number of gray-
level values equal to the number of particles in the image plus the gray level 0 used in 
the background area. 

Note In this section of the manual, the term pixel denotes a pixel equal to 1, 
and the term particle denotes a group of pixels equal to 1. 
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The labeling function identifies particles using either connectivity-4 or connectivity-8 
criteria. For more information on connectivity, refer to the connectivity section. 

Lowpass and Highpass Filters 

The lowpass filter removes small particles according to their widths as specified by a 
parameter called filter size. For a given filter size N, the lowpass filter eliminates 
particles whose widths are less than or equal to (N – 1) pixels. These particles 
disappear after (N – 1) / 2 erosions. 

The highpass filter removes large particles according to their widths as specified by a 
parameter called filter size. For a given filter size N, the highpass filter eliminates 
particles with widths greater than or equal to N pixels. These particles do not 
disappear after (N / 2 + 1) erosions. 

Both the highpass and lowpass morphological filters use erosions to select particles 
for removal. Since erosions or filters cannot discriminate particles with widths of 2k 
pixels from particles with widths of 2k – 1 pixels, a single erosion eliminates both 
particles that are 2 pixels wide and 1 pixel wide. 

The following table shows the effect of lowpass and highpass filtering. 

Filter Size (N) Highpass Filter Lowpass Filter 

N is an even 
number (N = 2k) 

• Removes particles with a width 
greater than or equal to 2k 

• Uses k – 1 erosions 

• Removes particles with a width 
less than or equal to 2k – 1 

• Uses k – 1 erosions 

N is an odd 
number (N = 2k + 
1) 

• Removes particles with a width 
greater than or equal to 2k + 1 

• Uses k erosions 

• Removes particles with a width 
less than or equal to 2k 

• Uses k erosions 

Figure A represents the binary source image used in this example. Figure B shows how, 
for a given filter size, a highpass filter produces the following image. Gray particles and 
white particles are filtered out by a lowpass and highpass filter, respectively. 
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Separation Function 

The separation function breaks narrow isthmuses and separates touching particles 
with respect to a user-specified filter size. This operation uses erosions, labeling, and 
conditional dilations. 

For example, after thresholding an image, two gray-level particles overlapping one 
another might appear as a single binary particle. You can observe narrowing where the 
original particles have intersected. If the narrowing has a width of M pixels, a 
separation using a filter size of (M + 1) breaks it and restores the two original particles. 
This applies to all particles that contain a narrowing shorter than N pixels. 

For a given filter size N, the separation function segments particles with a narrowing 
shorter than or equal to (N – 1) pixels. These particles are divided into two parts after 
(N – 1) / 2 erosions. 

The above definition is true when N is an odd number, but should be modified slightly 
when N is an even number, due to the use of erosions in determining whether a 
narrowing should be broken or kept. The function cannot discriminate a narrowing 
with a width of 2k pixels from a narrowing with a width of (2k – 1) pixels, therefore, one 
erosion breaks both a narrowing that is two pixels wide as well as a narrowing that is 
one pixel wide. 

The precision of the separation is limited to the elimination of constrictions that have a 
width smaller than an even number of pixels: 

• If N is an even number (2k), the separation breaks a narrowing with a width smaller 
than or equal to (2k – 2) pixels. It uses (k – 1) erosions. 

• If N is an odd number (2k + 1), the separation breaks a narrowing with a width 
smaller than or equal to 2k. It uses k erosions. 
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Skeleton Functions 

A skeleton function applies a succession of thinnings until the width of each particle 
becomes equal to one pixel. The skeleton functions are both time- and memory-
consuming. They are based on conditional applications of thinnings and openings that 
use various configurations of structuring elements. 

L-Skeleton uses the following type of structuring element: 

M-Skeleton uses the following type of structuring element: 

Skiz is an L-Skeleton performed on an inverse of the image. 

L-Skeleton Function 

The L-skeleton function indicates the L-shaped structuring element skeleton function. 
Using the source image in figure A, the L-skeleton function produces the image in 
figure B. 
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M-Skeleton Function 

The M-skeleton function extracts a skeleton with more dendrites or branches. Using 
the source image from figure A, the M-skeleton function produces the image shown in 
following figure. 

Skiz Function 

The skiz (skeleton of influence zones) function behaves like an L-skeleton function 
applied to the background regions instead of the particle regions. It produces median 
lines that are at an equal distance from the particles. 

Using the source image from figure A, the skiz function produces the image in the 
following figure, which is shown superimposed on the source image. 

Segmentation Function 

The segmentation function is applied only to labeled images. It partitions an image 
into segments that are centered around a particle such that they do not overlap or 
leave empty zones. Empty zones are caused by dilating particles until they touch one 
another. 

Note The segmentation function is time-consuming. Reduce the image to its 
minimum significant size before selecting this function. 
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In the following figure, binary particles, which are shown in black, are superimposed 
on top of the segments, which are shown in gray shades. 

When applied to an image with binary particles, the transformed image turns red 
because it is entirely composed of pixels set to 1. 

Comparisons Between Segmentation and Skiz Functions 

The segmentation function extracts segments that contain only one particle. A 
segment represents the area in which this particle can be moved without intercepting 
another particle, assuming that all particles move at the same speed. 

The edges of these segments give a representation of the external skeletons of the 
particles. Unlike the skiz function, segmentation does not involve median distances. 

You can obtain segments using successive dilations of particles until they touch each 
other and cover the entire image. The final image contains as many segments as there 
were particles in the original image. However, if you consider the inside of closed skiz 
lines as segments, you may produce more segments than particles originally present 
in the image. Consider the upper-right region in the following figure. This image shows 
the following features: 

• original particles in black, 
• segments in shades of gray, 
• skiz lines. 
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Distance Function 

The distance function assigns a gray-level value to each pixel equal to the shortest 
distance to the particle border. This distance may be equal to the distance to the outer 
particle border or to a hole within the particle. 

Danielsson Function 

The Danielsson function also creates a distance map but is a more accurate algorithm 
than the classical distance function. Because the destination image is 8-bit, its pixels 
cannot have a value greater than 255. Any pixels with a distance to the edge greater 
than 255 are set to 255. 

For example, a circle with a radius of 300 yields 255 concentric rings whose pixel values 
range from 1 to 255 from the perimeter of the circle inward. The rest of the circle is 
filled with a solid circle whose pixel value is 255 and radius is 45. 

Figure A shows the source threshold image used in the following example. The image 
is sequentially processed with a lowpass filter, hole filling, and the Danielsson 
function. The Danielsson function produces the distance map image shown in figure B. 

Tip Use the Danielsson function instead of the distance function when 
possible. 
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View the resulting image with a binary palette. In this palette, each level corresponds 
to a different color. Thus, you easily can determine the relation of a set of pixels to the 
border of a particle. The first layer, which forms the border, is red. The second layer, 
closest to the border, is green, the third layer is blue, and so forth. 

Circle Function 

The circle function separates overlapping circular particles using the Danielsson 
coefficient to reconstitute the form of an particle, provided that the particles are 
essentially circular. The particles are treated as a set of overlapping discs that are then 
separated into separate discs. This allows you to trace circles corresponding to each 
particle. 

Illustration A shows the source image for the following example. Figure B shows the 
image after the circle function is applied to the image. 
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Convex Hull Function 

The convex hull function is useful for closing particles so that measurements can be 
made on the particle, even when the particle contour is discontinuous. 

The convex hull function calculates a convex envelope around each particle, effectively 
closing the particle. The image to which you apply a convex hull function must be 
binary. 

Figure A shows the original labeled image used in this example. Figure B shows the 
results after the convex hull function is applied to the image. 

Related concepts: 

• Connectivity 

Morphological Reconstruction Morphological Reconstruction 

Morphological reconstruction is useful for constructing an image from small 
components or for removing features from an image, without altering the shape of the 
objects in the image. Morphological reconstruction works on grayscale images and 
binary images. Use morphological reconstruction for applications such as: 

• Segmenting magnetic resonance images (MRI) of structures inside the body. 
• H-dome extraction for detecting clustered microcalcifications in digital 

mammograms. 
• Removing shadows from images. 
• Identifying language scripts. 
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• Finding the connected paths in a network or map. 

Concepts 

The morphological reconstruction process is based on a source image, a marker 
image, and marker points. 

• Source Image—The source image, which in some research papers is referred to as 
the mask image, is the reference image used in the morphological reconstruction. 

• Marker Image—The reconstruction process occurs on the marker image, which is 
created by applying dilations or erosions on the source image. The marker 
image can also be taken from existing images. The marker image should have the 
same dimensions as the source image. 

• Marker Points—Marker points are user-specified points in the image that specifiy 
where the reconstruction process should start. 

Reconstruction by Dilation 

Reconstruction by dilation reconstructs bright regions in grayscale images and 
reconstructs particles in binary images. Starting at the marker points, neighboring 
pixels are reconstructed by spreading the brightness value. Reconstruction by dilation 
starts with the maximal gray valued pixels of the marker and reconstructs the 
neighboring pixels ranging from 0 to the maximal valued pixel. Refer to Primary 
Morphology Operations for more information about dilation. 

Reconstruction by Erosion 

Reconstruction by erosion reconstructs dark regions in a grayscale image and holes in 
a binary image. Starting at the marker points, neighboring pixels are reconstructed by 
spreading the darkness value. Reconstruction by erosion starts with the minimal 
valued pixels of the marker and reconstructs the neighboring pixels ranging from the 
minimal valued pixel to the image maximum value (for example, the image maximum 
value is 255 for U8 images). Refer to Primary Morphology Operations for more 
information about erosion. 

Connectivity 

Grayscale morphological reconstruction uses a structuring element to determine 
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the type of connectivity. In general, a 3 x 3 structuring element is used to specify the 
connectivity. Higher order kernels are supported, but grayscale morphological 
reconstruction is optimized for the 3 x 3 connectivity-4 and connectivity-8 kernels. 

Binary morphological reconstruction supports connectivity-4 and connectivity-8. 
Image border calculations are handled internally, unless the marker image and the 
destination image are same size. In this case, the image should have a minimum 
border size of half the kernel size. 

Reconstruction with ROI 

You can limit morphological reconstruction to the area bounded by an ROI. The image 
reconstruction happens inside the ROI of the marker image and the parts of the image 
outside of the ROI will remain unchanged. If marker points are used instead of a 
marker image, the points inside the ROI are used to reconstruct the image. 

Binary Morphological Reconstruction 

Use binary morphological reconstruction to find connected particles or holes in a 
binary image. It can also be used to extract the particles or holes which are connected 
a set of pixels in a marker image. 

The following example extracts the particles connected to a rectangle boundary. 

The following example extracts the particles based on mophological properties. 
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Grayscale Morphological Reconstruction 

Use grayscale morphological reconstruction to segment an image based on its 
grayscale values. This type of reconstruction is useful for counting the number of 
objects in an image, removing shadows, and identifying language scripts. 

The following examples segment the image based on its grayscale values. The marker 
point, shown in red in the source image, is where the segmentation process begins. 

Creating Marker Images 

The following examples show how to generate a marker image for morphological 
reconstruction based on morphology and based on H-Dome extraction. 

Creating a Marker Image Based on Morphological Properties 

When performing reconstruction based on morphological properties, the goal is to 
extract the particles which are thicker than the specified value. Figure A shows the 
source image. Apply a distance transform on the image. Figure B shows the result 
of the distance transform of the source image. Threshold the image based on the 
specified thickness value, eliminating all particles that are narrower than the thickness 
value. Figure C shows the threshold output, which is used as the marker image. 
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Creating a Marker Image for H-Dome Extraction 

Grayscale morphological reconstruction can be used to count the number of objects in 
a given image. Create the marker image by subtracting a constant value from the pixels 
in the source image. The number of H-Domes in the output gives an estimate of the 
total number of seeds in the source image. In the following example, a constant value 
of 30 is used. The H-Dome image is created by subtracting the reconstructed image 
from the source image. 

In-Depth Discussion 

The function OP(q) forms the basic operation of morphological reconstruction. OP(q) 
is applied to each pixel during reconstruction. In general, if OP(q) is applied multiple 
times on all the pixels of an image, the resultant will be the reconstructed image. 

Reconstruction by dilation is characterized by the equation: 

OP(q) = Min(Max(M(q), K), I(q))) 

Reconstruction by erosion is characterized by the equation: 

OP(q) = Max(Min(M(q), K), I(q))) 

where: 

• M is the marker image, 
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• K is the kernel, 
• I is the source image. 

The reconstruction process uses two algorithms: the downhill filter and the hyrid 
reconstruction algorithm. 

Downhill Filter 

The downhill filter is used for binary, U8, U16, and I16 images. It operates through a 
controlled process of region growing by ordered aggregation of surface pixels onto an 
expanding shell. The maximum value of the marker image is determined and the 
reconstruction is applied to all neighboring pixels of the maximal valued pixel until all 
pixels are reconstructed. 

Hybrid Algorithm 

The hybrid algorithm is used on the SGL grayscale images. Hybrid reconstruction 
combines a sequential and a queue-based algorithm. The sequential technique 
applies the reconstruction of pixels by scanning the image in raster and anti-raster 
order. The queue-based technique starts with the regional maximas and applies the 
Breadth First Search (BFS) on them. 

Related concepts: 

• Primary Morphology Operations 
• Structuring Elements 
• Connectivity 
• Advanced Morphology Operations 

Particle Measurements Particle Measurements 
This section contains tables that list and describe the NI Vision particle measurements. 
The tables include definitions, symbols, and equations for particle measurements. 

Note Some equation symbols may be defined inside tables later in the 
chapter. 
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Introduction 13 Introduction 13 

A particle is a group of contiguous nonzero pixels in an image. Particles can be 
characterized by measurements related to their attributes, such as particle location, 
area, and shape. 

When to Use 

Use particle measurements when you want to make shape measurements on particles 
in a binary image. 

Pixel Measurements versus Real-World Measurements 

In addition to making conventional pixel measurements, Vision particle analysis 
functions can use calibration information attached to an image to make 
measurements in calibrated real-world units. In applications that do not require the 
display of corrected images, you can use the calibration information attached to the 
image to make real-world measurements directly without using time-consuming 
image correction. 

In pixel measurements, a pixel is considered to have an area of one square unit, 
located entirely at the center of the pixel. In calibrated measurements, a pixel is a 
polygon with corners defined as plus or minus one half a unit from the center of the 
pixel. The following illustrates this concept. 

1. Point to Polygon 
2. Pixel Coordinates to Real-World Coordinates 

A pixel at (3, 8) is a square with corners at (2.5, 7.5), (3.5, 7.5), (3.5, 8.5), and (2.5, 8.5). 
To make real-world measurements, the four corner coordinates are transformed from 
pixel coordinates into real-world coordinates. Using real-world coordinates, the area 
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and moments of the pixel can be integrated. Similarly, the area and moments of an 
entire particle can be computed using the calibrated particle contour points. 

Particle Measurements Particle Measurements 

This section contains tables that list and describe the Vision particle measurements. 
The tables include definitions, symbols, and equations for particle measurements. 

Particle Concepts 

The following table contains concepts relating to particle measurements. 

Concept Definition 

Bounding 
Rect 

Smallest rectangle with sides parallel to the x-axis and y-axis that completely encloses 
the particle. 

Perimeter 

Length of a boundary of a region. Because the boundary of a binary image is 
comprised of discrete pixels, Vision subsamples the boundary points to approximate a 
smoother, more accurate perimeter. Boundary points are the pixel corners that form 
the boundary of the particle. Refer to the introduction for an illustration of pixel 
corners. 

Particle Contiguous region of zero-valued pixels completely surrounded by pixels with nonzero 

Note Some equation symbols may be defined inside tables later in the 
section. 

Particle Analysis

212 ni.com



Concept Definition 

hole values. Refer to the particle holes section for more information. 

Angle Degrees of rotation measured counter-clockwise from the x-axis, such that 0 ≤ θ < 180. 

Equivalent 
Rect Rectangle with the same perimeter and area as the particle. 

Equivalent 
Ellipse Ellipse with the same perimeter and area as the particle. 

Max Feret 
Diameter 

Line segment connecting the two perimeter points that are the furthest apart. 

1. Max Feret Diameter Start—Highest, leftmost of the two points defining the Max 
Feret Diameter 

2. Max Feret Diameter End—Lowest, rightmost of the two points defining the Max 
Feret Diameter 

3. Max Feret Diameter Orientation 
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Concept Definition 

4. Particle Perimeter 
5. Max Feret Diameter 

Convex 
Hull 

Smallest convex polygon containing all points in the particle. The following figure 
illustrates two particles, shown in gray, and their respective convex hulls, the areas 
enclosed by black lines. 

Max Horiz. 
Segment 
Length 

Longest row of contiguous pixels in the particle. This measurement is always given as a 
pixel measurement. 

Sum Moments of various orders relative to the x-axis and y-axis. 

Moment 
of Inertia 

Moments about the particle center of mass. Provides a representation of the pixel 
distribution in a particle with respect to the particle center of mass. Moments of inertia 
are shift invariant. 

Norm. 
Moment 
of Inertia 

Moment of Inertia normalized with regard to the particle area. Normalized moments of 
inertia are shift and scale invariant. 

Hu 
Moment 

Moments derived from the Norm. Moment of Inertia measurements. Hu Moments are 
shift, scale, and rotation invariant. 
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Particle Holes 

A particle hole is a contiguous region of zero-valued pixels completely surrounded by 
pixels with nonzero values. A particle located inside a hole of a bigger particle is 
identified as a separate particle. The area of a hole that contains a particle includes the 
area covered by that particle. 

Particle # Area Area of Hole Area of Particle& Holes 

1 A B + C A + B + C 

2 D 0 D 

3 E F + G E + F + G 

4 G 0 G 

Hole measurements are valuable when analyzing particles similar to the one in figure 
A. For example, if you threshold a cell with a dark nucleus (figure A) so that the nucleus 
appears as a hole in the cell (figure B), you can make the following cell measurements: 

• Area of Hole—Returns the size of the nucleus. 
• Area of Particle and Hole—Returns the size of the entire cell. 
• Area of Hole/Area of Particle and Hole—Returns the percentage of the cell that the 

nucleus occupies. 

Particle Analysis

© National Instruments 215



Coordinates 

The following table lists the Vision particle measurements relating to coordinates. 

Measurement Definition Symbol Equation 

Center of 
Mass 

Point representing the average position of the total particle 
mass, assuming every point in the particle has a constant 
density. The center of mass can be located outside the particle 
if the particle is not convex. 

— — 

First Pixel 

Highest, leftmost particle pixel. The first pixel is always given as 
a pixel measurement. The black squares in the following figure 
represent the first pixel of each particle. 

— — 

Center of 
Mass x X-coordinate of the particle Center of Mass. x 

∑x
A  

Center of 
Mass y Y-coordinate of the particle Center of Mass. y 

∑y
A  

First Pixel x X-coordinate of the first particle pixel. — — 
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Measurement Definition Symbol Equation 

First Pixel y Y-coordinate of the first particle pixel. — — 

Bounding 
Rect Left X-coordinate of the leftmost particle point. BL — 

Bounding 
Rect Top Y-coordinate of highest particle point. BT — 

Bounding 
Rect Right X-coordinate of the rightmost particle point. BR — 

Bounding 
Rect Bottom Y-coordinate of the lowest particle point. BB — 

Max Feret 
Diameter 
Start x 

X-coordinate of the Max Feret Diameter Start. Fx1 — 

Max Feret 
Diameter 
Start y 

Y-coordinate of the Max Feret Diameter Start. Fy1 — 

Max Feret 
Diameter End 
x 

X-coordinate of the Max Feret Diameter End. Fx2 — 

Max Feret 
Diameter End 
y 

Y-coordinate of the Max Feret Diameter End. Fy2 — 
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Measurement Definition Symbol Equation 

Max Horiz. 
Segment 
Length Left 

X-coordinate of the leftmost pixel in the Max Horiz. Segment. 
Max Horiz. Segment Length Left is always given as a pixel 
measurement. 

— — 

Max Horiz. 
Segment 
Length Right 

X-coordinate of the rightmost pixel in the Max Horiz. Segment. 
Max Horiz. Segment Length Right is always given as a pixel 
measurement. 

— — 

Max Horiz. 
Segment 
Length Row 

Y-coordinate for all of the pixels in the Max Horiz. Segment. Max 
Horiz. Segment Length Row is always given as a pixel 
measurement. 

— — 

Lengths 

the following table lists the Vision particle relating to length. 

Measurement Definition Symbol               Equation              

Bounding 
Rect Width 

Distance between Bounding Rect Left and 
Bounding Rect Right 

. 

W BR – BL 

Bounding 
Rect Height 

Distance between Bounding Rect Top and 
Bounding Rect Bottom. H BB – BT 

Bounding 
Rect Diagonal 

Distance between opposite corners of the 
Bounding Rect. — √W2 + H2

 

Perimeter Length of the outer boundary of the particle. 
Because the boundary is comprised of discrete P — 
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Measurement Definition Symbol               Equation              

pixels, Vision subsamples the boundary points 
to approximate a smoother, more accurate 
perimeter. 

Convex Hull 
Perimeter Perimeter of the Convex Hull. PCH — 

Hole 
Perimeter 

Sum of the perimeters of each hole in the 
particle. — — 

Max Feret 
Diameter 

Distance between the Max Feret Diameter Start 
and the Max Feret Diameter End. F √(Fy2 − Fy1)2

+ (Fx2 − Fx1)2

 

Equivalent 
Ellipse Major 
Axis 

Length of the major axis of the Equivalent 
Ellipse. 

E2a √ p2

2π2 + 2A
π + √ p2

2π2 − 2A
π  

Equivalent 
Ellipse Minor 
Axis 

Length of the minor axis of the Equivalent 
Ellipse. 

E2b √ p2

2π2 + 2A
π − √ p2

2π2 − 2A
π  

Equivalent 
Ellipse Minor 
Axis (Feret) 

Length of the minor axis of the ellipse with the 
same area as the particle, and Major Axis equal 
in length to the Max Feret Diameter. 

EF2b 
4ACH
π · F  

Equivalent 
Rect Long 
Side 

Longest side of the Equivalent Rect. Ra 
1
4 P + √P2 − 16A 
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Measurement Definition Symbol               Equation              

Equivalent 
Rect Short 
Side 

Shortest side of the Equivalent Rect. Rb 
1
4 P − √P2 − 16A 

Equivalent 
Rect Diagonal 

Distance between opposite corners of the 
Equivalent Rect. 

Rd Ra
2 + Rb

2
 

Equivalent 
Rect Short 
Side (Feret) 

Shortest side of the rectangle with the same 
area as the particle, and longest side equal in 
length to the Max Feret Diameter. 

RFb 
ACH

F  

Average 
Horiz. 
Segment 
Length 

Average length of a horizontal segment in the 
particle. Sum of the horizontal segments that do 
not superimpose any other horizontal segment. 
Average Horiz. Segment Length is always given 
as a pixel measurement. 

— 
A

SH  

Average Vert. 
Segment 
Length 

Average length of a vertical segment in the 
particle. Sum of the vertical segments that do 
not superimpose any other vertical segment. 
Average Vert. Segment Length is always given as 
a pixel measurement. 

— 
A

SV  

Hydraulic 
Radius Particle area divided by the particle perimeter. — A

P  

Waddel Disk 
Diameter 

Diameter of a disk with the same area as the 
particle. — 2√ A

π  
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Ellipses 

• Equivalent Ellipse Major Axis—Total length of the major axis of the ellipse that has 
the same area and same perimeter as a particle. This length is equal to 2a. 

This definition gives the following set of equations: 

Area = πab 
Perimeter = π√2(a2 + b2) 
where: 

• a = 1/2 E2a 
• a = 1/2 E2a 

For a given area and perimeter, only one solution (a, b) exists. 

• Equivalent Ellipse Minor Axis—Total length of the minor axis of the ellipse that has 
the same area and same perimeter as a particle. This length is equal to 2b. 

• Ellipse Ratio—Ratio of the major axis of the equivalent ellipse to its minor axis, 
which is defined as 

ellipse major axis
ellipse minor axis + a

b  

The more elongated the equivalent ellipse, the higher the ellipse ratio. The closer the 
equivalent ellipse is to a circle, the closer the ellipse ratio is to 1. 

Rectangles 

• Equivalent Rect Long Side—Length of the long side (Ra) of the rectangle that has 
the same area and same perimeter as a particle. 

This definition gives the following set of equations: 
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A = Area = RaRb 

A = Area = RaRb 
P = Perimeter = 2(RaRb) 

This set of equations can be expressed so that the sum Ra + Rb and the product RaRb 
become functions of the parameters Particle Area and Particle Perimeter. Ra and Rb 
then become the two solutions of the following polynomial equation: 

2x2 − Px + 2A = 0 

Notice that for a given area and perimeter, only one solution (Ra, Rb) exists. 

• Equivalent Rect Short Side—Length of the short side of the rectangle that has the 
same area and same perimeter as a particle. This length is equal to Rb. 

• Equivalent Rect Diagonal—Distance between opposite corners of the Equivalent 
Rect: 

√Ra
2 + Rb

2
 

• Rectangle Ratio—Ratio of the long side of the equivalent rectangle to its short 
side, which is defined as: 
rectangle long side
rectangle short side =

Ra
Rb  

The more elongated the equivalent rectangle, the higher the rectangle ratio. 

The closer the equivalent rectangle is to a square, the closer to 1 the rectangle ratio. 

Hydraulic Radius 

A disk with radius R has a hydraulic radius equal to 

disk area
disk perimeter = πR2

2πR = R
2  
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Areas 

The following table lists the Vision particle area measurements. 

Measurement Definition Symbol Equation 

Area Area of the particle. A — 

Area of Hole Sum of the areas of each hole in the particle. AH — 

Area of Particle & Holes Area of a particle that completely covers the image. AT A + AH 

Convex Hull Area Area of the particle Convex Hull. ACH — 

Image Area Area of the image. AI — 

Image Area 

Figure A shows an image of a calibration grid. The image exhibits nonlinear distortion. 
Figure B shows an image of coins taken with the same camera setup used in figure A. 
The dashed line around figure B defines the image area in pixels. Figure C illustrates 
the image of coins after image correction. The dashed line around figure C defines the 
image area in calibrated units. 
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Quantities 

The following table lists the Vision particle measurements relating to quantity. 

Measurement Definition Symbol 

Number of 
Holes Number of holes in the particle. — 

Number of 
Horiz. Segments 

Number of horizontal segments in the particle. Number of Horiz. 
Segments is always given as a pixel measurement. 

SH 

Number of Vert. 
Segments 

Number of vertical segments in the particle. Number of Vert. Segments 
is always given as a pixel measurement. 

SV 

Angles 

The following table lists the Vision particle angle measurements. The equations are 
given in radians. The results are given in degrees that are mapped into the range 0 to 
180, such that 0 ≤ θ < 180. 

Measurement Definition         Equation        

Orientation 
The angle of the line that passes through the particle Center of 
Mass about which the particle has the lowest moment of 
inertia. 

1
2 atan (

2Ixy
Ixx −

Iyy )
 

Max Feret 
Diameter 
Orientation 

The angle of the Max Feret Diameter. atan ( Fy1 − Fy2
Fx1 − Fx2 )

 

The Orientation angle is measured counterclockwise from the horizontal axis, as 
shown in the following figure. The value can range from 0° to 180°. Angles outside this 
range are mapped into the range. For example, a 190° angle is considered to be a 10° 
angle. 
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1. Line with Lowest Moment of Inertia 
2. Orientation in Degrees 
3. Horizontal Axis 

Ratios 

The following table lists the Vision particle ratio measurements. 

Measurement Definition Equation 

% Area/Image Area Percentage of the particle Area covering the Image Area. 
A
AI

· 100 %
 

% Area/(Area of Particle & 
Holes) 

Percentage of the particle Area in relation to the Area of its 
Particle & Holes 

A
AT

· 100 %
 

Ratio of Equivalent 
Ellipse Axes 

Equivalent Ellipse Major Axis divided by Equivalent Ellipse 
Minor Axis. 

E2a
E2a  

Ratio of Equivalent Rect 
Sides 

Equivalent Rect Long Side divided by Equivalent Rect Short 
Side. 

Ra
Rb  

Note Refer to the max feret diameter entry in the for an illustration of Max 
Feret Diameter Orientation. 
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Factors 

The following table lists the Vision particle factor measurements. 

Measurement Definition Equation 

Elongation 
Factor 

Max Feret Diameter divided by Equivalent Rect Short Side (Feret). The 
more elongated the shape of a particle, the higher its elongation factor. 

F
RFb  

Compactness 
Factor 

Area divided by the product of Bounding Rect Width and Bounding Rect 
Height. The compactness factor belongs to the interval [0, 1]. 

A
W · H  

Heywood 
Circularity 
Factor 

Perimeter divided by the circumference of a circle with the same area. 
The closer the shape of a particle is to a disk, the closer the Heywood 
circularity factor is to 1. 

P
2√πA  

Type Factor Factor relating area to moment of inertia. 
A2

4
⊓ √Ixx · Iyy  

Sums 

The following table lists the Vision particle sum measurements. 

Measurement Symbol 

Sum x ∑x 

Sum y ∑y 

Sum xx ∑xx 

Sum xy ∑xy 

Sum yy ∑yy 

Sum xxx ∑xxx 

Sum xxy ∑xxy 

Sum xyy ∑xyy 

Sum yyy ∑yyy 
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Moments 

The following table lists the Vision particle moment measurements. 

Measurement Symbol                                Equation                               

Moment of 
Inertia xx 

Ixx ∑xx −
∑

x
2

A  

Moment of 
Inertia xy 

Ixy ∑
xy

−
∑x · ∑y

A
 

Moment of 
Inertia yy 

Iyy ∑yy −
∑

y
2

A  

Moment of 
Inertia xxx 

Ixxx ∑xxx
− 3)x∑xx

+ 2)x2∑x  

Moment of 
Inertia xxy 

Ixxy ∑xxy
− 2)x∑xy

− )y∑xx
+ 2)x2∑y  

Moment of 
Inertia xyy 

Ixyy ∑
xyy

− 2)y∑
xy

− x̄∑
yy

+ 2
¯
y2∑

x  

Moment of 
Inertia yyy 

Iyyy ∑
yyy

− 3)y∑
yy

+ 2
¯
y2∑

y  

Norm. 
Moment of 
Inertia xx 

Nxx 
Ixx

A2  

Norm. 
Moment of 
Inertia xy 

Nxy 
Ixy

A2  

Norm. 
Moment of 
Inertia yy 

Nyy 
Iyy

A2  

Norm. 
Moment of 
Inertia xxx 

Nxxx 
Ixxx

A5 / 2  

Norm. 
Moment of 

Nxxy 
Ixxy

A5 / 2  
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Measurement Symbol                                Equation                               

Inertia xxy 

Norm. 
Moment of 
Inertia xyy 

Nxyy 
Ixyy

A5 / 2  

Norm. 
Moment of 
Inertia yyy 

Nyyy 
Iyyy

A5 / 2  

Hu Moment 1 H1 Nxx + Nyy 

Hu Moment 2 H2 (Nxx + Nyy)2
+ 4Nxy

2

 

Hu Moment 3 H3 (Nxxx − Nxyy)2
+ (3Nxxy − Nyyy)2

 

Hu Moment 4 H4 (Nxxx − Nxyy)2
+ (Nxxy − Nyyy)2

 

Hu Moment 5 H5 (Nxxx − 3Nxyy)(Nxxx + 3Nxyy)((Nxxx + 3Nxyy)2
− 3(Nxxy + 3Nyyy)2) + 3(Nxxy − Nyyy)(Nxxy − Nyyy)((3Nxxx + Nxyy)2

Hu Moment 6 H6 (Nxx − Nyy)((Nxxx + Nxyy)2
− (Nxxy + Nyyy)2) + 4Nxy(Nxxx + Nxyy)2

− (Nxxy + Nyyy)
 

Hu Moment 7 H7 (3Nxxy − Nyyy)(Nxxx + Nxyy)((Nyyy + Nxyy)2
− 3(Nxxy + 3Nyyy)2) + (3Nxyy − Nyyy)(Nxxy + Nyyy)(3(Nxxx + Nxyy)2

Related concepts: 

• Introduction 13 
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Machine Vision Machine Vision 
This section describes conceptual information about high-level operations commonly 
used in machine vision applications such as edge detection, pattern matching, 
dimensional measurements, color inspection, binary particle classification, optical 
character recognition, and instrument reading. 

Edge Detection Edge Detection 
This section describes edge detection techniques and tools that locate edges, such as 
the rake, concentric rake, spoke, and caliper. 

Introduction Introduction 

Edge detection finds edges along a line of pixels in the image. Use the edge detection 
tools to identify and locate discontinuities in the pixel intensities of an image. The 
discontinuities are typically associated with abrupt changes in pixel intensity values 
that characterize the boundaries of objects in a scene. 

To detect edges in an image, specify a search region in which to locate edges. You can 
specify the search region interactively or programmatically. When specified 
interactively, you can use one of the line ROI tools to select the search path you want 
to analyze. You also can programmatically fix the search regions based either on 
constant values or the result of a previous processing step. For example, you may want 
to locate edges along a specific portion of a part that has been previously located 
using particle analysis or pattern matching algorithms. The edge detection software 
analyzes the pixels along this region to detect edges. You can configure the edge 
detection tool to find all edges, find the first edge, the best edge, or find the first and 
last edges in the region. 

When to Use When to Use 

Edge detection is an effective tool for many machine vision applications. It provides 
your application with information about the location of object boundaries and the 
presence of discontinuities. 
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Use edge detection in the following three application areas: gauging, detection, and 
alignment. 

Gauging 

Gauging applications make to make critical dimensional measurements, such as 
length, distance, diameter, angle, and quantity, to determine if the product under 
inspection is manufactured correctly. Depending on whether the gauged parameters 
fall inside or outside of the user-defined tolerance limits, the component or part is 
either classified or rejected. 

Gauging is often used both inline and offline in production. During inline processes, 
each component is inspected as it is manufactured. Visual inline gauging inspection is 
a widely used inspection technique in applications such as mechanical assembly 
verification, electronic packaging inspection, container inspection, glass vial 
inspection, and electronic connector inspection. 

Similarly, gauging applications often measure the quality of products offline. First, a 
sample of products is extracted from the production line. Next, measured distances 
between features on the object are studied to determine if the sample falls within a 
tolerance range. You can measure the distances separating the different edges located 
in an image, as well as positions measured using particle analysis or pattern matching 
techniques. Edges also can be combined in order to derive best fit lines, projections, 
intersections, and angles. Use edge locations to compute estimations of shape 
measurements such as circles, ellipses, or polygons. 

The following figure shows a gauging application using edge detection to measure the 
length of the gap in a spark plug. 
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Detection 

Part present/not present applications are typical in electronic connector assembly and 
mechanical assembly applications. The objective of the application is to determine if a 
part is present or not present using line profiles and edge detection. An edge along the 
line profile is defined by the level of contrast between background and foreground and 
the slope of the transition. Using this technique, you can count the number of edges 
along the line profile and compare the result to an expected number of edges. This 
method offers a less numerically intensive alternative to other image processing 
methods such as image correlation and pattern matching. 

The following figure shows a simple detection application in which the number of 
edges detected along the search line profile determines if a connector has been 
assembled properly. Detection of eight edges indicates that there are four wires. Any 
other edge count means that the part has been assembled incorrectly. 
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Use edge detection to detect structural defects, such as cracks, or cosmetic defects, 
such as scratches, on a part. If the part is of uniform intensity, these defects show up as 
sharp changes in the intensity profile. Edge detection identifies these changes. 

Alignment 

Alignment determines the position and orientation of a part. In many machine vision 
applications, the object that you want to inspect may be at different locations in the 
image. Edge detection finds the location of the object in the image before you perform 
the inspection, so that you can inspect only the regions of interest. The position and 
orientation of the part also can be used to provide feedback information to a 
positioning device, such as a stage. 

Figure 11-3 shows the detection of the left boundary of a disk in the image. You can use 
the location of the edges to determine the orientation of the disk. 
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Concepts Concepts 
Definition of an Edge 

An edge is a significant change in the grayscale values between adjacent pixels in an 
image. In Vision, edge detection works on a 1D profile of pixel values along a search 
region, as shown in the following figure. The 1D search region can take the form of a 
line, the perimeter of a circle or ellipse, the boundary of a rectangle or polygon, or a 
freehand region. The software analyzes the pixel values along the profile to detect 
significant intensity changes. You can specify characteristics of the intensity changes 
to determine which changes constitute an edge. 

1. Search Lines 
2. Edges 

Characteristics of an Edge 

The following figure illustrates a common model that is used to characterize an edge. 
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The following list includes the main parameters of this model. 

• Edge strength—Defines the minimum difference in the grayscale values between 
the background and the edge. The edge strength is also called the edge contrast. 
The following figure shows an image that has different edge strengths. The 
strength of an edge can vary for the following reasons: 
◦ Lighting conditions—If the overall light in the scene is low, the edges in image 

will have low strengths. The following figure illustrates a change in the edge 
strength along the boundary of an object relative to different lighting 
conditions. 

◦ Objects with different grayscale characteristics—The presence of a very bright 
object causes other objects in the image with lower overall intensities to have 
edges with smaller strengths. 

• Edge length—Defines the distance in which the desired grayscale difference 
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between the edge and the background must occur. The length characterizes the 
slope of the edge. Use a longer edge length, defined by the size of the kernel used 
to detect edges, to detect edges with a gradual transition between the background 
and the edge. 

• Edge location—The x, y location of an edge in the image. 
• Edge polarity—Defines whether an edge is rising or falling. A rising edge is 

characterized by an increase in grayscale values as you cross the edge. A falling 
edge is characterized by a decrease in grayscale values as you cross the edge. The 
polarity of an edge is linked to the search direction. The following figure shows 
examples of edge polarities. 

Edge Detection Methods 

Vision offers two ways to perform edge detection. Both methods compute the edge 
strength at each pixel along the 1D profile. An edge occurs when the edge strength is 
greater than a minimum strength. Additional checks find the correct location of the 
edge. You can specify the minimum strength by using the Minimum Edge Strength or 
Threshold Level parameter in the software. 

Simple Edge Detection 

The software uses the pixel value at any point along the pixel profile to define the edge 
strength at that point. To locate an edge point, the software scans the pixel profile 
pixel by pixel from the beginning to the end. A rising edge is detected at the first point 
at which the pixel value is greater than a threshold value plus a hysteresis value. Set 
this threshold value to define the minimum edge strength required for qualifying 
edges. Use the hysteresis value to declare different edge strengths for the rising and 
falling edges. When a rising edge is detected, the software looks for a falling edge. A 
falling edge is detected when the pixel value falls below the specified threshold value. 
This process is repeated until the end of the pixel profile. The first edge along the 
profile can be either a rising or falling edge. 

The simple edge detection method works well when there is little noise in the image 
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and when there is a distinct demarcation between the object and the background. 

The following figure illustrates the simple edge model. 

1. Grayscale Profile 
2. Threshold Value 
3. Hysteresis 
4. Rising Edge Location 
5. Falling Edge Location 

Advanced Edge Detection 

The edge detection algorithm uses a kernel operator to compute the edge strength. 
The kernel operator is a local approximation of a Fourier transform of the first 
derivative. The kernel is applied to each point in the search region where edges are to 
be located. For example, for a kernel size of 5, the operator is a ramp function that has 
5 entries in the kernel. The entries are {–2, –1, 0, 1, 2}. The width of the kernel size is 
user-specified and should be based on the expected sharpness, or slope, of the edges 
to be located. The following figure shows the pixel data along a search line and the 
equivalent edge magnitudes computed using a kernel of size 5. Peaks in the edge 
magnitude profile above a user-specified threshold are the edge points detected by 
the algorithm. 
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To reduce the effect of noise in image, the edge detection algorithm can be configured 
to extract image data along a search region that is wider than the pixels in the image. 
The thickness of the search region is specified by the search width parameter. The data 
in the extracted region is averaged in a direction perpendicular to the search region 
before the edge magnitudes and edge locations are detected. A search width greater 
than 1 also can be used to find a “best” or “average” edge location or a poorly formed 
object. The following figure shows how the search width is defined. 

Subpixel Accuracy 

When the resolution of the image is high enough, most measurement applications 
make accurate measurements using pixel accuracy only. However, it is sometimes 
difficult to obtain the minimum image resolution needed by a machine vision 
application because of limits on the size of the sensors available or the price. In these 
cases, you need to find edge positions with subpixel accuracy. 
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Subpixel analysis is a software method that estimates the pixel values that a higher 
resolution imaging system would have provided. In the edge detection algorithm, the 
subpixel location of an edge is calculated using a parabolic fit to the edge-detected 
data points. At each edge position of interest, the peak or maximum value is found 
along with the value of one pixel on each side of the peak. The peak position 
represents the location of the edge to the nearest whole pixel. 

Using the three data points and the coefficients a, b, and c, a parabola is fitted to the 

data points using the expression ax2 + bx + c. 

The procedure for determining the coefficients a, b, and c in the expression is as 
follows: 

Let the three points which include the whole pixel peak location and one neighbor on 
each side be represented by (x0, y0), (x1, y1), and (x2, y2). We will let x0 = –1, x1 = 0, and 
x2 = 1 without loss of generality. We now substitute these points in the equation for a 
parabola and solve for a, b, andc. The result is: 

a =
(y0 + y2 − 2y1)

2  

b =
(y2 + y0)

2  

c = y1 
1, which is not needed and can be ignored. 

The maximum of the function is computed by taking the first derivative of the 
parabolic function and setting the result equal to 0. Solving for x yields: 

x = −b
2a  

This provides the subpixel offset from the whole pixel location where the estimate of 
the true edge location lies. 

The following illustrates how a parabolic function is fitted to the detected edge pixel 
location using the magnitude at the peak location and the neighboring pixels. The 
subpixel location of an edge point is estimated from the parabolic fit. 
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1. Interpolated Peak Location 
2. Neighboring Pixel 
3. Interpolating Function 

With the imaging system components and software tools currently available, you can 
reliably estimate 1/25 subpixel accuracy. However, results from an estimation depend 
heavily on the imaging setup, such as lighting conditions, and the camera lens. Before 
resorting to subpixel information, try to improve the image resolution. Refer to 
system setup and calibration for more information about improving images. 

Signal-to-Noise Ratio 

The edge detection algorithm computes the signal-to-noise ratio for each detected 
edge point. The signal-to-noise ratio can be used to differentiate between a true, 
reliable, edge and a noisy, unreliable, edge. A high signal-to-noise ratio signifies a 
reliable edge, while a low signal-to-noise ratio implies the detected edge point is 
unreliable. 

In the edge detection algorithm, the signal-to-noise ratio is computed differently 
depending on the type of edges you want to search for in the image. 

When looking for the first, first and last, or all edges along search lines, the noise level 
associated with a detected edge point is the strength of the edge that lies immediately 
before the detected edge and whose strength is less than the user-specified minimum 
edge threshold, as shown in the following figure. 
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1. Edge 1 Magnitude 
2. Edge 2 Magnitude 
3. Threshold Level 
4. Edge 2 Noise 
5. Edge 1 Noise 

When looking for the best edge, the noise level is the strength of the second strongest 
edge before or after the detected edge, as shown in the following figure. 

Calibration Support for Edge Detection 

The edge detection algorithm uses calibration information in the edge detection 
process if the original image is calibrated. For simple calibration, edge detection is 
performed directly on the image and the detected edge point locations are 
transformed into real-world coordinates. For perspective and non-linear distortion 
calibration, edge detection is performed on a corrected image. However, instead of 
correcting the entire image, only the area corresponding to the search region used for 
edge detection is corrected. Figure A and Figure B illustrate the edge detection process 
for calibrated images. Figure A shows an uncalibrated distorted image. Figure B shows 
the same image in a corrected image space. 
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1. Search Line 
2. Search Width 
3. Corrected Area 

Information about the detected edge points is returned in both pixels and real-world 
units. Refer to system setup and calibration for more information about 
calibrating images. 

Extending Edge Detection to 2D Search Regions The edge detection tool in NI Vision 
works on a 1D profile. The rake, spoke, and concentric rake tools extend the use of 
edge detection to two dimensions. In these edge detection variations, the 2D search 
area is covered by a number of search lines over which the edge detection is 
performed. You can control the number of the search lines used in the search region by 
defining the separation between the lines. 

Rake 

A Rake works on a rectangular search region, along search lines that are drawn parallel 
to the orientation of the rectangle. Control the number of lines in the area by 
specifying the search direction as left to right or right to left for a horizontally oriented 
rectangle. Specify the search direction as top to bottom or bottom to top for a 
vertically oriented rectangle. The following figure illustrates the basics of the rake 
function. 
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1. Search Area 
2. Search Line 
3. Search Direction4  Edge Points 

Spoke 

A Spoke works on an annular search region, along search lines that are drawn from the 
center of the region to the outer boundary and that fall within the search area. Control 
the number of lines in the region by specifying the angle between each line. Specify 
the search direction as either from the center outward or from the outer boundary to 
the center. The following figure illustrates the basics of the spoke function. 

1. Search Area 
2. Search Line 
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3. Search Direction 
4. Edge Points 

Concentric Rake 

A Concentric Rake works on an annular search region. It is an adaptation of the rake to 
an annular region. The following illustrates the basics of the concentric rake. Edge 
detection is performed along search lines that occur in the search region and that are 
concentric to the outer circular boundary. Control the number of concentric search 
lines that are used for the edge detection by specifying the radial distance between the 
concentric lines in pixels. Specify the direction of the search as either clockwise or 
anti-clockwise. 

1. Search Area 
2. Search Line 
3. Search Direction 
4. Edge Points 

Finding Straight Edges 

Finding straight edges is another extension of edge detection to 2D search regions. 
Finding straight edges involves finding straight edges, or lines, in an image within a 2D 
search region. Straight edges are located by first locating 1D edge points in the search 
region and then computing the straight lines that best fit the detected edge points. 
Straight edge methods can be broadly classified into two distinct groups based on how 
the 1D edge points are detected in the image. 
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Rake-Based Methods 

A Rake is used to detect edge points within a rectangular search region. Straight lines 
are then fit to the edge points. Three different options are available to determine the 
edge points through which the straight lines are fit. 

First Edges 

A straight line is fit through the first edge point detected along each search line in the 
Rake. The method used to fit the straight line is described in dimensional 
measurements. The following figure shows an example of the straight edge 
detected on an object using the first dark to bright edges in the Rake along with the 
computed edge magnitudes along one search line in the Rake. 

The following illustration shows the search direction: 

Best Edges 

A straight line is fit through the best edge point along each search line in the Rake. The 
method used to fit the straight line us described in dimensional measurements. 
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The following figure shows an example of the straight edge detected on an object 
using the best dark to bright edges in the Rake along with the computed edge 
magnitudes along one search line in the Rake. 

The following illustration shows the search direction: 

Hough-Based Methods 

In this method, a Hough transform is used to detect the straight edges, or lines, in an 
image. The Hough transform is a standard technique used in image analysis to find 
curves that can be parameterized, such as straight lines, polynomials, and circles. For 
detecting straight lines in an image, Vision uses the parameterized form of the line: 

ρ = xcosθ + ysinθ 

where, ρ is the perpendicular distance from the origin to the line and θ is the angle of 
the normal from the origin to the line. Using this parameterization, a point (x, y) in the 
image is transformed into a sinusoidal curve in the (ρ, θ), or Hough space. The 
following figure illustrates the sinusoidal curves formed by three image points in the 
Hough space. The curves associated with colinear points in the image, intersect at a 
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unique point in the Hough space. The coordinates (ρ, θ) of the intersection are used to 
define an equation for the corresponding line in the image. For example, the 
intersection point of the curves formed by points 1 and 2 represent the equation for 
Line1 in the image. 

The following figure illustrates how NI Vision uses the Hough transform to detect 
straight edges in an image. The location (x, y) of each detected edge point is mapped 
to a sinusoidal curve in the (ρ, θ) space. The Hough space is implemented as a two-
dimensional histogram where the axes represent the quantized values for ρ and θ. The 
range for ρ is determined by the size of the search region, while the range for θ is 
determined by the angle range for straight lines to be detected in the image. Each edge 
location in the image maps to multiple locations in the Hough histogram, and the 
count at each location in the histogram is incremented by one. Locations in the 
histogram with a count of two or more correspond to intersection points between 
curves in the (ρ, θ) space. Figure B shows a two-dimensional image of the Hough 
histogram. The intensity of each pixel corresponds to the value of the histogram at that 
location. Locations where multiple curves intersect appear darker than other locations 
in the histogram. Darker pixels indicate stronger evidence for the presence of a straight 
edge in the original image because more points lie on the line. The following figure 
also shows the line formed by four edge points detected in the image and the 
corresponding intersection point in the Hough histogram. 
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1. Edge Point 
2. Straight Edge 
3. Search Region 
4. Search Line 

Straight edges in the image are detected by identifying local maxima, or peaks in the 
Hough histogram. The local maxima are sorted in descending order based on the 
histogram count. To improve the computational speed of the straight edge detection 
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process, only a few of the strongest peaks are considered as candidates for detected 
straight edges. For each candidate, a score is computed in the original image for the 
line that corresponds to the candidate. The line with the best score is returned as the 
straight edge. The Hough-based method also can be used to detect multiple straight 
edges in the original image. In this case, the straight edges are returned based on their 
scores. 

Projection-Based Methods 

The projection-based method for detecting straight edges is an extension of the 1D 
edge detection process discussed in the advanced edge detection section. The 
following figure illustrates the projection-based straight edge detection process. The 
algorithm takes in a search region, search direction, and an angle range. The algorithm 
first either sums or finds the medians of the data in a direction perpendicular to the 
search direction. Vision then detects the edge position on the summed profile using 
the 1D edge detection function. The location of the edge peak is used to determine the 
location of the detected straight edge in the original image. 

To detect the best straight edge within an angle range, the same process is repeated by 
rotating the search ROI through a specified angle range and using the strongest edge 
found to determine the location and angle of the straight edge. 

Machine Vision

248 ni.com



1. Projection Axis 
2. Best Edge Peak and Corresponding Line in the Image 

The projection-based method is very effective for locating noisy and low-contrast 
straight edges. 

The projection-based method also can detect multiple straight edges in the search 
region. For multiple straight edge detection, the strongest edge peak is computed for 
each point along the projection axis. This is done by rotating the search region through 
a specified angle range and computing the edge magnitudes at every angle for each 
point along the projection axis. The resulting peaks along the projection axis 
correspond to straight edges in the original image. 

Straight Edge Score 

NI Vision returns an edge detection score for each straight edge detected in an image. 
The score ranges from 0 to 1000 and indicates the strength of the detected straight 
edge. 
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The edge detection score is defined as: 

s c
m + n  

where: 

• s is the edge detection score, 
• c is the sum of the gradients at the edge points that match the specified edge 

polarity, 
• m is the number of edge points on the straight line that match the specified edge 

polarity, 
• and n is the number of edge points on the straight line that do not match the 

specified edge polarity. 

Related concepts: 

• Spatial Calibration 
• Dimensional Measurements 

Pattern Matching Pattern Matching 
This section contains information about pattern matching. 

Introduction Introduction 

Pattern matching quickly locates regions of a grayscale image that match a known 
reference pattern, also referred to as a model or template. 

When using pattern matching, you create a template that represents the object for 
which you are searching. Your machine vision application then searches for instances 
of the template in each acquired image, calculating a score for each match. This score 
relates how closely the template resembles the located matches. 

Note A template is an idealized representation of a feature in the image. 
Refer to the pattern matching techniques section for the definition of an 
image feature. 
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Pattern matching finds template matches regardless of lighting variation, blur, noise, 
and geometric transformations such as shifting or rotation of the template. 

Related concepts: 

• Pattern Matching Techniques 

When to Use When to Use 

Pattern matching algorithms are some of the most important functions in machine 
vision because of their use in varying applications. You can use pattern matching in the 
following three general applications: 

• Alignment—Determines the position and orientation of a known object by locating 
fiducials. Use the fiducials as points of reference on the object. 

• Gauging—Measures lengths, diameters, angles, and other critical dimensions. If 
the measurements fall outside set tolerance levels, the component is rejected. Use 
pattern matching to locate the object you want to gauge. 

• Inspection—Detects simple flaws, such as missing parts or unreadable print. 

Pattern matching provides your application with the number of instances and the 
locations of template matches within an inspection image. For example, you can 
search an image containing a printed circuit board (PCB) for one or more fiducials. The 
machine vision application uses the fiducials to align the board for chip placement 
from a chip mounting device. Figure A shows part of a PCB. Figure B shows a common 
fiducial used in PCB inspections or chip pick-and-place applications. 
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Gauging applications first locate and then measure, or gauge, the dimensions of an 
object in an image. If the measurement falls within a tolerance range, the object 
passes inspection. If it falls outside the tolerance range, the object is rejected. 

Searching for and finding image features is the key processing task that determines the 
success of many gauging applications, such as inspecting the leads on a quad pack or 
inspecting an antilock-brake sensor. In real-time applications, search speed is critical. 

In general, pattern matching works well on images where the template is primarily 
characterized by grayscale information. Templates containing texture, or that have 
dense, intricate data with no discernible pattern, are the most successful. 

Limitations Limitations 

Pattern matching provides a fast, general purpose algorithm to locate an object in a 
image. However, pattern matching is not well suited to applications where the object 
to be detected is scaled (Figure A) or if more than 10% of the image is occluded (Figure 
B). Non-uniform lighting (Figure C) of search images can reduce the effectivity of 
pattern matching. Applications that are likely to encounter these conditions should 
use Geometric Matching instead. 
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A 

B 

C 

Related concepts: 

• Geometric Matching 

What to Expect from a Pattern Matching Tool What to Expect from a Pattern Matching Tool 

Because pattern matching is the first step in many machine vision applications, it must 
work reliably under various conditions. In automated machine vision applications, the 
visual appearance of materials or components under inspection can change because 
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of varying factors such as part orientation, scale changes, and lighting changes. The 
pattern matching tool must maintain its ability to locate the reference patterns despite 
these changes. The following sections describe common situations in which the 
pattern matching tool needs to return accurate results. 

Pattern Orientation and Multiple Instances 

A pattern matching algorithm needs to locate the reference pattern in an image even if 
the pattern in the image is rotated or scaled. When a pattern is rotated or scaled in the 
image, the pattern matching tool can detect the following items in the image: 

• The pattern in the image. 
• The position of the pattern in the image. 
• The orientation of the pattern. 
• Multiple instances of the pattern in the image, if applicable. 

• Figure A shows a template image. 
• Figure B shows a template match shifted in the image. 
• Figure C shows a template match rotated in the image. 
• Figure D shows a template match scaled in the image. 

Figures B, C, and D also illustrate multiple instances of the template. 

Ambient Lighting Conditions 

A pattern matching algorithm needs the ability to find the reference pattern in an 
image under conditions of uniform lighting changes in the lighting across the image. 
The following figure illustrates the typical conditions under which pattern matching 
works correctly. 

• Figure A shows the original template image. 
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• Figure B shows a template match under bright light. 
• Figure C shows a template match under poor lighting. 

Blur and Noise Conditions 

A pattern matching algorithm needs the ability to find patterns that have undergone 
some transformation because of blurring or noise. Blurring usually occurs because of 
incorrect focus or depth of field changes. Refer to system setup and calibration 
for more information about depth of field. 

The following figure illustrates typical blurring and noise conditions under which 
pattern matching works correctly. 

• Figure A shows the original template image. 
• Figure B shows the changes on the image caused by blurring. 
• Figure C shows the changes on the image caused by noise. 

Related concepts: 

• Spatial Calibration 

Pattern Matching Techniques Pattern Matching Techniques 

Vision implements two pattern matching methods - pyramidal matching and image 
understanding (low discrepancy sampling). Both methods use normalized cross-
correlation as a core technique. 

The pattern matching process consists of two stages: learning and matching. During 
the learning stage, the algorithm extracts gray value and/or edge gradient information 
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from the template image. The algorithm organizes and stores the information in a 
manner that facilitates faster searching in the inspection image. In Vision, the 
information learned during this stage is stored as part of the template image. 

During the matching stage, the pattern matching algorithm extracts gray value and/or 
edge gradient information from the inspection image (corresponding to the 
information learned from the template). Then, the algorithm finds matches by locating 
regions in the inspection image where the highest cross-correlation is observed. 

Normalized Cross-Correlation 

Normalized cross-correlation is the most common method for finding a template in an 
image. Because the underlying mechanism for correlation is based on a series of 
multiplication operations, the correlation process is time consuming. Technologies 
such as MMX allow for parallel multiplications and reduce overall computation time. To 
increase the speed of the matching process, reduce the size of the image and restrict 
the region of the image in which the matching occurs. Pyramidal matching and image 
understanding are two ways to increase the speed of the matching process. 

Challenges in Scale-Invariant and Rotation-Invariant Matching 

Normalized cross-correlation is a good technique for finding patterns in an image 
when the patterns in the image are not scaled or rotated. Typically, cross-correlation 
can detect patterns of the same size up to a rotation of 5° to 10°. Extending correlation 
to detect patterns that are invariant to scale changes and rotation is difficult. 

For scale-invariant matching, you must repeat the process of scaling or resizing the 
template and then perform the correlation operation. This adds a significant amount 
of computation to your matching process. Normalizing for rotation is even more 
difficult. If a clue regarding rotation can be extracted from the image, you can simply 
rotate the template and perform the correlation. However, if the nature of rotation is 
unknown, looking for the best match requires exhaustive rotations of the template. 

By employing a coarse-to-fine approach to matching, and by using pyramids or image 
understanding, we can eliminate a significant amount of computation and achieve 
usable search times for handling rotated patterns. However, scale-invariant matching 
is not supported even when using pyramids or image understanding. 
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Pyramidal Matching 

You can improve the computation time of pattern matching by reducing the size of the 
image and the template. In pyramidal matching, both the image and the template are 
sampled to smaller spatial resolutions using Gaussian pyramids. This method samples 
every other pixel and thus the image and the template can both be reduced to one-
fourth of their original sizes for every successive pyramid level. 

In the learning phase, the algorithm automatically computes the maximum pyramid 
level that can be used for the given template, and learns the data needed to represent 
the template and its rotated versions across all pyramid levels. The algorithm attempts 
to find an optimal pyramid level (based on an analysis of template data) which would 
give the fastest and most accurate match. Two kinds of data can be used - gray value 
(based on pixel intensities) and gradients (based on select edge information). 

Gray Value Method 

This method makes use of the normalized pixel gray values as features. Doing so 
ensures that no information is left out, which is helpful when the template does not 
contain structured information, but has intricate textures or dense edges. However, 
this method has the disadvantage of suffering when faced with occlusion and non-
uniform illumination changes. Despite these limitations, the method works over a 
wide variety of scenarios and is suitable for general use. 
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Gradient Method 

This method makes use of filtered edge pixels as features. An edge image is computed 
from the supplied grayscale image and a gradient intensity threshold is computed 
based on image analysis of the template. All edge vectors which are stronger than the 
threshold are retained as features. Matching is based on vector correlation rather than 
normalized cross-correlation. This method is more resistant to occlusion and lighting 
intensity changes as compared to the gray value based method, and is often faster, 
since less data must be computed. However, as the strength and reliability of edges 
reduces at very low resolutions, this method requires the user to work at higher 
resolutions compared to the Gray Value method. 

Coarse-to-Fine Matching 

The matching phase makes use of a coarse-to-fine approach, starting our search at the 
lowest resolution possible (the highest pyramid level). Since the sizes of the search 
image and template have been significantly reduced at this resolution, we can carry 
out an exhaustive correlation-based search. However, the sub-sampling process 
introduces some loss of details, and the match locations are not completely reliable. 
This problem is offset by maintaining a collection of promising candidate match 
locations with the best scores, rather than choosing the exact number of matches to 
look for. 

We then iterate through each of the lower levels of the pyramid, refining our choice at 
each stage by re-computing correlation scores. This approach limits all subsequent 
searches to small localized regions around the best match candidates, achieving a 
significant speed boost. 

When searching for rotated matches, performing an exhaustive match for all possible 
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rotations (from 0 to 360 degrees) is still prohibitively expensive, even at the lowest 
resolutions. Consequently, we first exhaustively find the best locations at a coarse 
angle step. The best locations among these coarse locations are then refined at a finer 
angle step size. After this, we follow the same method as above by refining the match 
location as well as angle over the subsequent lower pyramid levels. 

Tips and Tricks 

Follow these recommendations to obtain the best performance from pyramidal 
matching: 

• Use the highest possible pyramid level while choosing the Max Match Pyramid 
Level setting for the fastest execution times. In most cases, matching at level 0 or 
level 1 might be too expensive. 

• While searching for rotated patterns, use the Angle Ranges setting to limit the 
search to the smallest angle range for faster performance and lesser memory 
consumption. For example if the match is known to be only slightly rotated from 
the base position, an angle range of -10° to 10° might suffice. 

• The algorithm automatically handles the coarse-to-fine matching based on the 
Number of Matches Requested and Minimum Match Score. Configure them to 
obtain the best mix of speed and accuracy for your application. 

• The Minimum Contrast setting specifies a minimum contrast value a region must 
exhibit to be considered as a candidate. Use this for getting a speed boost in cases 
where there are significant areas of low or zero contrast (uniform regions) in the 
image background. 

• If you wish to find potential matches which may lie partially outside the image or 
the Region of Interest, switch the Process Border Pixels setting to on. For larger 
templates with a well-defined Region of Interest, you may get a slight speed boost 
by turning this setting off. 

• Use the Min Match Separation Distance, Min Match Separation Angle and Max 
Match Overlap settings to completely control the distance, angular resolution, and 
overlap between found matches. 

Image Understanding (Low Discrepancy Sampling) 

A pattern matching feature is a salient pattern of pixels that describe a template. 
Because most images contain redundant information, using all the information in the 
image to match patterns is time-insensitive and inaccurate. 
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Vision uses a non-uniform sampling technique that incorporates image understanding 
to thoroughly and efficiently describe the template. This intelligent sampling 
technique specifically includes a combination of edge pixels and region pixels as 
shown in figure B. NI Vision uses a similar technique when the user indicates that the 
pattern might be rotated in the image. This technique uses specially chosen template 
pixels whose values—or relative changes in values—reflect the rotation of the pattern. 

Intelligent sampling of the template both reduces the redundant information and 
emphasizes the feature to allow for an efficient, yet robust, cross-correlation 
implementation. NI Vision pattern matching is able to accurately locate objects that 
vary in size (±5%) and orientation (between 0° and 360°) and that have a degraded 
appearance. 

Pyramidal Matching 

Similar to pyramidal matching, sampling based matching also employs a coarse-to-
fine approach to eliminate excessive computation. First, coarse features are extracted 
based on region pixel samples. Then only a small number of probable candidate 
locations are chosen where finer features (primarily using edge pixels) are computed. 
The coarse match candidates are then refined using these fine features and a revised 
list of matches is obtained. 

Matching under rotation also follows a similar paradigm to pyramidal matching. 
Intelligent sampling allows us to compactly represent template samples 
corresponding to different angles. Initially, we find matches using coarse sampling and 
at a coarse angle step size. The best coarse angle match locations are then refined at a 
finer angle step size and using finer features. 

Limitations 

Low discrepancy sampling extracts the most significant information to represent an 
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image. While this leads to a very sparse and efficient representation in most cases, 
certain types of images are known to cause problems: 

• Templates containing large regions of similar grayscale information, with very little 
information, can sometimes exhibit inconsistent behavior due to a low number of 
sample points. 

• Templates with skewed or long aspect ratios (1:6) may suffer from inconsistent 
results when searching for rotated matches. 

• Very small templates are sometimes found to contain an insufficient number of 
samples for reliable training. 

If these limitations negatively impact the performance of your application, use a 
pyramidal matching method. 

Pyramid Pre-Processing 

Pyramid Pattern Matching provides three types of Pre-Processing options: 

• Sobel and Log, 
• Sobel, 
• Non-Linear Diffusion Filter. 

Sobel and Log 

This filter applies Sobel kernel convolution on template and match image pyramid. 
Use this option to enhance the low contrast region and to consider only the edge 
features from the template. 

The illustration shows the Original Image: 
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The illustration shows the After Sobel and Log image: 

Sobel 

This filter applies Sobel kernel convolution on template and match image pyramid. 
Use this filter to use only the edge feature from the template. 

The illustration shows the Original Image: 
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The illustration shows the After Sobel Image: 

Non-Linear Diffusion Filter 

This filter applies an anisotropic diffusion filter on the template and match image 
pyramid. Use this filter to reduce noise and to enhance the edge contrast. The 
following images illustrate that the Non-Linear Diffusion filter can reduce the noise 
without sacrificing edge contrast. 
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The illustration shows the Original Image: 

The illustration shows the Gaussian Pyramid at Level 2: 
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The illustration shows the Non-Linear Diffusion Pyramid at Level 2: 
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Visit the Anisotropic wiki page for more reference. 

Presets 

Presets provide an easy and descriptive method to set advanced parameters for 
different Pattern Matching algorithms. Pattern Matching algorithms have advanced 
parameter settings which fine tune the algorithm to perform improved matching with 
different match requirements. Presets are the set of advanced parameter values which 
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have been tested to work with a broad range of match requirements. 

A particular Preset (set of advanced parameter values) will be stored in a template 
image based on the chosen requirement. The values will be used automatically during 
matching. Hence, the matching results would be improved over the default results 
without having to understand the advanced parameters and their implications for 
matching. The Presets stored in the template is based on the selection of Use-Case 
and Priority. These inputs should be selected based on the match requirement. 

The following options are provided in Use-Case: 

Preset 
Option Description 

Overlapping Uses Advanced Options appropriate for match image that contain overlapping 
objects. 

Overlapping Uses Advanced Options appropriate for match image that contain overlapping 
objects. 

Low 
Contrast Uses Advanced Options appropriate for templates with large dimensions. 

Screenshot 

Uses advanced options appropriate for screenshots or screen captures that are pixel 
accurate in resolution (they are not captured via a camera) and usually have 
templates with small dimensions. The match algorithm used should be Grayscale 
Value Pyramid or Low Discrepancy Sampling when the Screenshot Preset is selected. 

The following options are provided in Priority: 

Preset 
Option Description 
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Accurate Uses Advanced Options that give a higher priority to Match Accuracy than Match 
Speed. 

Fast Uses Advanced Options that gives equal priority to Match Accuracy and Match 
Speed. 

Very Fast Uses Advanced Options that gives a higher priority to Match Speed than Match 
Accuracy. 

The illustration shows the Workflow for Low Discrepancy, Grayscale, and Gradient 
Pyramid Algorithms: 

The illustration shows the Workflow for Geometric Pattern Matching: 

Sub-pixel Refinement 

In both pyramidal as well as low-discrepancy sampling-based pattern matching, the 
user can choose to subject the refined match candidates to one last stage of 
refinement to find sub-pixel accurate locations and sub-degree accurate angles. This 
stage relies on specially-extracted edge and pixel information from the template and 
employs interpolation techniques to get a highly accurate match location and angle. 

Once the refined locations (with or without sub-pixel refinement) are obtained, both 
pattern matching methods do a final and accurate score computation using most of 
the significant information present in the template. 

Related information: 
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• Anisotropic 

In-Depth Discussion 20 In-Depth Discussion 20 

This section provides additional information you may need for building successful 
searching applications. 

Normalized Cross-Correlation 

The following is the basic concept of correlation: Consider a subimage w(x, y) of size 
K × L within an image f(x, y) of size M × N, where K ≤ M and L ≤ M. The correlation 
between w(x, y) and f(x, y) at a point (i, j) is given by . 

C(i, j) = ∑x = 0

L − 1 ∑y = 0

K − 1
w(x, y)f(x + i, y + j)

 

where, 

• i = 0, 1, . . . M – 1, i = 0, 1, . . . N – 1, 
• the summation is taken over the region in the image where w and f overlap. 

The following figure illustrates the correlation procedure. Assume that the origin of the 
image f is at the top left corner. Correlation is the process of moving the template or 
subimage w around the image area and computing the value C in that area. This 
involves multiplying each pixel in the template by the image pixel that it overlaps and 
then summing the results over all the pixels of the template. The maximum value of C 
indicates the position where w best matches f. Correlation values are not accurate at 
the borders of the image. 
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Basic correlation is very sensitive to amplitude changes in the image, such as intensity, 
and in the template. For example, if the intensity of the image f is doubled, so are the 
values of c. You can overcome sensitivity by computing the normalized correlation 
coefficient, which is defined as: 

R

(i, j) =
∑

x = 0

L − 1

∑
y = 0

K − 1

(w(x, y) − w̄)(f(x + i, y + j) − f̄ (i, j))

(∑
x = 0

L − 1

∑
y = 0

K − 1

(w(x, y) − w̄)
2)

1
2(∑

x = 0

L − 1

∑
y = 0

K − 1

(f(x + i, y + j) − f̄ (i, j))
2)

1
2

 

where w (calculated only once) is the average intensity value of the pixels in the 
template w. The variable f is the average value of f in the region coincident with the 
current location of w. The value of R lies in the range –1 to  1 and is independent of 
scale changes in the intensity values of f and w. 

Advanced Pattern Matching Concepts Advanced Pattern Matching Concepts 
Introduction 

Advanced pattern matching contains low-level learning and matching options that 
enable you to customize the pattern matching algorithm to your specific machine 
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vision application. In order to be useful to a broad audience, a pattern matching 
algorithm needs to process numerous diverse template images and search images. 
Determining a set of default advanced pattern matching options that is optimal for all 
possible applications is improbable. However, you can customize the IMAQ Vision 
pattern matching algorithm for your application by configuring several advanced 
options that affect the speed and accuracy of pattern matching. 

When To Use 

If the pattern matching portion of your application is not working as expected, make 
sure you have defined a template with the following qualities: 

• Good feature detail, 
• Adequate positional data, 
• Sufficient background information, 
• Appropriate level of asymmetry (for rotation-invariant matching). 

You can change the template slightly to remove excessive background information or 
include additional feature information. You may also consider restricting the angle 
ranges, if possible, or defining a search region. In addition, make sure your application 
is running in optimal lighting conditions and that you are acquiring quality images. 
Nonuniform lighting and poor image quality adversely affect other image processing 
algorithms as well as pattern matching. If you have suitable template images and 
search images but want to improve the speed and/or accuracy of the pattern matching 
process, you can configure the advanced pattern matching options. 

Pattern Matching Phases 

Pattern matching consists of two stages: a learning stage, which is usually performed 
offline, and a matching stage. For the purpose of discussing advanced pattern 
matching options and the consequences of changing the default values, this 
document divides the matching stage into the following four phases. 

• Initial phase—The first phase of shift- and rotation-invariant pattern matching. The 
algorithm makes steps larger than a pixel to locate potential matches. 

• Intermediate phase—The second phase of rotation-invariant pattern matching. 
The algorithm makes coarse refinements to the location of matches found during 
the initial phase. Normally, this phase is skipped during shift-invariant matching. 
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• Final phase—The third, and often final, phase of shift- and rotation-invariant 
pattern matching. The algorithm makes small refinements to the matches. 

• Subpixel refinement phase—The last phase of pattern matching if the Enable 
Subpixel Accuracy parameter is set to 1 (TRUE). The algorithm refines the matches 
to achieve subpixel and subangle accuracy. 

Most advanced options influence only one phase of the pattern matching process. In 
most cases, you control one phase of the pattern matching process using multiple 
advanced options. 

Guidelines for Using Advanced Options 

Since the process of learning the template is handled offline, the learning stage has 
more time to optimize default options for a given template. Therefore, National 
Instruments highly recommends that you configure the advanced match options first 
to alter the speed and/or accuracy of pattern matching in your application. 

If you still require better results after configuring the advanced match options, try 
changing the advanced learn options. The advanced learn options allow you to 
manage the amount of data used in different segments of the matching process. You 
have control of the number of data points and/or the angular accuracy of the data 
points while the algorithm selects the points. 

The results you get from changing the advanced learn options vary significantly from 
one template to the next. At times, changing the options might produce undesired 
results. For example, requesting more data points for a template could result in less 
accurate matches because too many data points cause the algorithm to sample image 
noise. This scenario is not unusual or unexpected. 

Note Because of the additional power and complexity of advanced pattern 
matching, suboptimal option values or sets of values can yield unpredictable 
results. 

Note Most advanced match options are available for both shift-invariant 
matching and rotation-invariant matching. However, the impact of an option 
on the matching process may differ considerably from shift-invariant 
matching to rotation-invariant matching. 
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Advanced Match Options 

The following list describes the advanced options you can configure for the match 
process. 

• Minimum Contrast—Specifies the minimum contrast value a potential match 
region must have to contain a match. When used with templates having high 
contrast, this option improves speed by excluding regions of an image. 

• Enable Subpixel Accuracy—Enables the subpixel refinement phase applied to 
matches at the end of the final phase. When the correct matches are found but 
their location is less accurate than expected, set this option to 1 (TRUE). 

• Subpixel Iterations—Defines the number of refinements performed by the match 
process using the subpixel information stored in the template. These refinement 
iterations are applied to the number of matches requested. 

• Subpixel Tolerance—Specifies the control tolerance used during subpixel 
refinement to stop processing when a match location has been improved to the 
given accuracy. This option can improve the speed of the algorithm when you have 
multiple matches because the amount of refinement for each match varies with 
the accuracy of its location. For shift-invariant matching, this option represents the 
tolerance, in pixels, for position. For rotation-invariant matching, this option 
represents the tolerance, in degrees, for angular accuracy and indirectly sets a 
lower tolerance using radian distances, in pixels, for position. 

• Initial Match List Length—Specifies the number of match regions cached from the 
initial phase of matching. The match algorithm focuses on these regions in later 
processing. If the template is very distinct in the search images, reducing this 
length improves speed significantly. If the application is missing matches, 
increasing this value may solve the problem but processing becomes slower. 

• Match List Reduction Factor—Controls how quickly the match list is shortened 
from one matching phase to the next. The value is a divisor of the list length. For 
example, a value of 2 cuts the list in half. If you increase the list length with Initial 
Match List Length, you can recover some speed by increasing the Match List 
Reduction Factor. In most instances, reduce the Match List Reduction Factor to 
keep more match regions for later processing, which increases accuracy but 
decreases speed. 

• Initial Step Size—pecifies the number of pixels to shift the template across the 
inspection image during the initial phase of matching. The optimal step size is 
computed during the learning phase, stored with the template, and used by 
default. You can reduce the step size to improve match accuracy, but doing so 
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greatly reduces speed. Do not increase this value to make larger steps. 
• Intermediate Angular Accuracy—Establishes the angular accuracy, in degrees, 

used when refining rotated matches from the initial phase. Decreasing this value 
causes higher accuracy in resulting matches but slows processing. If angular 
accuracy is not important to the application or the template is symmetrical, 
increase this value to get faster matching with less accurate angles. The angular 
accuracy value is rounded down to a value that evenly divides 360 and provides at 
least the accuracy requested. 

• Search Strategy—Specifies the matching strategy used to find the matches. The 
default search strategy is Balanced (2), which initially searches the image using a 
medium step size to improve speed and then uses the match refinement of the 
Conservative strategy (1) to maintain accuracy. The Conservative strategy initially 
searches the image with a small step size, which reduces speed but provides very 
accurate matches. In general, avoid the Aggressive strategy (3) unless the center of 
the template does not contain distinguishing characteristics or the template is 
highly rectangular (3:1 or more in dimensions). 

Advanced Learn Options 

The following list describes the advanced options you can configure for the learning 
process. 

• Initial Sample Size—Specifies the size of the sample, in pixels, used during the 
initial phase of matching. When distinguishing template characteristics are not 
defined by the edges in the template, increase this value to promote nonedge 
characteristics during matching. A larger sample size reduces the match speed. 
Increase the size by a multiple of 12 for the best possible match speed; a size of 60 
is optimal. If you have a large template (for example, a template whose dimensions 
exceed 200 pixels), try increasing the sample size to improve accuracy. Increasing 
the sample size has less of an impact on match speed with large templates than 
with small templates. 

• Initial Sample Size Factor—Determines the size of the sample, in percent of total 
pixels, used during the initial phase of matching. Defining a sample size as a 
percent of total pixels facilitates consistent sampling across templates of different 
dimensions. 

• Final Sample Size—Specifies the size of the sample, in pixels, used during the final 
phase of matching. When edges define the most unique template characteristics, 
increase this value to promote edge characteristics during matching. Increase the 
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size by a multiple of 12 for best match speed; a size of 60 is optimal. 

If you have a large template (for example, a template whose dimensions exceed 
200 pixels), increasing this sample size improves match accuracy with only small 
speed degradation. 

• Final Sample Size Factor—Determines the size of the sample, in percent of total 
pixels, used during the final phase of matching. Defining a sample size in percent 
of total pixels facilitates consistent sampling across templates of different 
dimensions. 

• Subpixel Sample Size—Specifies the size of the sample, in pixels, used during the 
subpixel refinement phase of matching. The default sample size that the algorithm 
determines during the learning process is conservative—slightly larger than the 
initial or final sample sizes. Increasing this size may deteriorate match accuracy. 
Although this sample is used primarily during subpixel refinement, it is used also 
during final match processing. Therefore, the Subpixel Sample Size affects 
matching even when Enable Subpixel Accuracy is set to 0 (FALSE). 

• Subpixel Sample Size Factor—Determines the size of the sample, in percent of 
total pixels, used during the subpixel refinement phase of matching. Defining a 
sample size in percent of total pixels facilitates consistent sampling across 
templates of different dimensions. 

• Initial Angular Accuracy—Establishes the angular accuracy supported during the 
initial phase of rotation-invariant matching. Use the advanced match option 
Intermediate Angular Accuracy to limit the angular accuracy unless you do not 
need the template to produce matches at this angular accuracy. Reducing the 
initial accuracy reduces the template size by less than a third. 

• Final Angular Accuracy—Establishes the angular accuracy supported during the 
intermediate and final phases of rotation-invariant matching. As with Initial 
Angular Accuracy, increasing this value reduces the final accuracy by restricting the 
template from generating more accurate match results regardless of the match 
options used. However, reducing the accuracy significantly shrinks the template 
size by as much as half. 

• Initial Step Size—Defines the initial jump size to support when searching for the 
template. Because this value depends entirely on the pixel content and other 
special characteristics of the template, avoid changing this value. If you set a lower 

Note A large Final Sample Size does not reduce match speed as much as 
a large Initial Sample Size. 
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Initial Step Size, the initial match phase rigorously searches more match regions 
located closer together. A better approach to achieving a rigorous initial search is 
to set Search Strategy Support to 1 (Conservative). This lowers the step size to an 
optimal value based on the template and automatically adjusts other options 
according to that value. 

• Search Strategy Support—Defines the set of search strategies supported by the 
template during matching. The Balanced and Conservative search strategies are 
supported by default. If you intend to use this template with the advanced match 
option Search Strategy set to 3 (Aggressive), set Search Strategy Support to 3 
(Aggressive, Balanced & Conservative). Set this option to 1 (Conservative) if you are 
performing matching only with the Conservative search strategy and want to 
minimize the template size. 

Options at a Glance 

This section illustrates how the advanced pattern matching options effect the 
accuracy, speed, and risk of pattern matching in your application. The following 
illustration shows the impact that each advanced match option has on the accuracy 
and speed of the matching process. 

Note The value of Initial Step Size is a recommendation for the learn 
process. The actual step size may be smaller based on the content of the 
template image. 
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The following figure shows the impact that each learn option has on the accuracy and 
speed of the matching process. 
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The following figure illustrates the risk of getting unexpected results when configuring 
the advanced match and learn options. The risk levels shown for each option 
correspond to setting more aggressive values for the option. 
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Optimizing for Accuracy 

Many advanced options impact the accuracy of match results. Accuracy may refer to 
the following: 

• Order in which multiple matches are returned, 
• Number of matches returned, 
• Match location(s) returned. 

Each of these conditions requires a different usage of the advanced options. In general, 
if you find a match with a lower score than expected or an inaccurate position, use 
subpixel refinement to improve the results. First, set Enable Subpixel Accuracy to 1 
(TRUE) to increase accuracy. Then, increase the number of subpixel iterations with 
Subpixel Iterations if you need additional improvement. 

If only one of several matches is inaccurate, you can set Subpixel Tolerance to the pixel 
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accuracy desired, which is normally between 0.1 and 0.5. By setting this value, the 
pattern matching algorithm spends time improving only those matches outside the 
specified tolerance instead of refining all matches for the given number of iterations. 
When providing a tolerance, set Subpixel Iterations to 0 (default) to allow the 
refinement process choose when to stop, or set Subpixel Iterations to a maximum 
iteration to cap the amount of refinement performed when the tolerance is 
unreachable. 

Altering subpixel refinement options is the last phase of the matching process you can 
manipulate to improve accuracy. If altering subpixel refinement options does not 
result in the expected match accuracy, you can adjust one or more of the following 
options. Determining which options to adjust varies among applications, but the 
following categorization of options provides a general order in which to proceed. 

• Basic match options—Shift/rotation invariance, Minimum Contrast, Rotation 
Angle Ranges: 
◦ Low risk relative to other advanced options. 
◦ Can significantly impact match results by impacting the entire match process. 

• Advanced match options used in the intermediate and final phases of the match 
process—Intermediate Angular Accuracy, Match List Reduction Factor: 
◦ Usually low risk because they occur during pixel-level refinement, 
◦ Impact on match speed is reduced because these options affect a later match 

phase. 
• Advanced match options used in the initial phase of the match process— Initial 

Match List Length, Initial Step Size: 
◦ Higher risk because these options alter match selection from the start, 
◦ Slower match speed when more conservative values are selected because of 

additional processing required. 

• Advanced match option defining the match process—Search Strategy: Aggressive, 
Balanced (default), and Conservative: 
◦ High risk because changing this option alters most advanced match options 

and sometimes alters the initial search approach. 

Note Changing Initial Step Size is not recommended because the 
template contains the optimal initial step size to use. If you want to 
perform an exhaustive search for the template, you can set this 
option to 1, but doing so significantly reduces matching speed. 
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◦ Conservative works like Balanced but is more rigorous during the initial phase, 
causing match speeds to double in many cases. 

◦ Aggressive uses a different initial searching technique, so resulting matches 
may differ significantly from the other strategies. Use the Aggressive option 
when searching on very rectangular templates or when many of the 
distinguishing characteristics are not in the center of the template. 

• Advanced learn options used during the subpixel refinement phase—Subpixel 
Sample Size, Subpixel Sample Size Factor: 
◦ High risk relative to other advanced match options; low risk relative to other 

advanced learn options. 
◦ By default, Subpixel Sample Size is based on the size of the template, in pixels. 

The following Tables show the relationship between template size and 
Subpixel Sample Size. The first table depicts the sizes for Shift-Invariant 
Matching while the second table depicts the sizes for Rotation-Invariant 
Matching. 

Template Size (in pixels) Subpixel Sample Size 

greater than or equal to 600 60 

greater than or equal to 2400 120 

greater than or equal to 9600 240 

greater than or equal to 42000 420 

greater than or equal to 160000 600 

Template Size (in pixels) Subpixel Sample Size 

greater than or equal to 200 60 

greater than or equal to 1200 120 

greater than or equal to 4800 240 

greater than or equal to 16800 420 

greater than or equal to 60000 600 

greater than or equal to 160000 840 
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• Advanced learn options used during the final phase of matching—Final Sample 
Size, Final Sample Size Factor, Final Angular Accuracy: 
◦ High risk relative to other advanced match options; medium risk relative to 

other advanced learn options. 
◦ Final sample is used in the final phase of the match process and contains data 

for refining match locations to within a pixel or degree of accuracy. This sample 
includes, but is not limited to, locations around edges in the template. 

◦ By default, the final sample produces an angular accuracy of 1°. If you do not 
require this level of accuracy, you can increase the Final Angular Accuracy 
value, which reduces accuracy, reduces the template size, and increases the 
match speed. The accuracy value is always rounded down to a value that 
divides 360 evenly. 

• Advanced learn options used during the initial phase of matching—Initial Sample 
Size, Initial Sample Size Factor, Initial Angular Accuracy : 
◦ Among the highest risk advanced options because they affect the entire match 

process from start to finish. 
◦ Initial sample contains representatives from regions having roughly the same 

pixel values. 
◦ By default, the initial sample produces an angular accuracy of 6°. This initial 

accuracy default is necessary to find matches in the final phase of matching 
with an accuracy of 1°. If you set the final accuracy to be less accurate, you can 
increase the Initial Angular Accuracy value to reduce accuracy, as well. The 
accuracy value is always rounded down to a value that divides 360 evenly. 

Object Tracking Object Tracking 
This section contains information about object tracking. 

Introduction Introduction 

Object tracking tracks the location of an object over a sequence of images. It is a 

Note The subpixel refinement phase is very sensitive to the sample size; 
therefore, do not change the default unless your application requires the 
change. For example, increase the sample size if you have large templates 
containing a lot of detailed information. 
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method of following the object through successive frames to determine how it is 
moving relative to other objects in the image. 

When using object tracking, the user must locate and specify the object to be tracked. 
The object tracking methods then track the object in each acquired frame the object is 
present in. 

When to Use When to Use 

Object tracking is an essential machine vision function, and has many uses in the 
following application areas: 

• Security and surveillance—In the surveillance industry, objects of interest such as 
people and vehicles can be tracked. Object tracking can be used for detecting 
trespassing or observing anomalies like unattended baggage. 

• Traffic management—The flow of traffic can be analyzed, and collisions detected. 
• Medicine—Cells can be tracked in medical images. 
• Industry—Defective items can be detected and tracked. 
• Robotics and navigation—Robots can follow the trajectory of an object. Robotic 

assistance can maneuver in a factory (de-palletizing objects). 
• Human-computer interaction (HCI)—Users can be tracked in a gaming 

environment. 
• Object modeling—An object tracked from multiple perspectives can be used to 

create a partial 3D model of the object. 
• Bio-mechanics—Tracking body parts to interpret gestures or movements. 

What to Expect from Object Tracking What to Expect from Object Tracking 

A well-configured object tracking application tracks objects regardless of blur, noise, 
or partial occlusion of the object. Object tracking in Vision is tolerant of gradual 
changes in the tracked object, including geometric transformations such as shifting, 
rotation, or scaling. Object tracking in Vision can be used in grayscale (U8, U16, and 
I16) and color (RGB32). 

Object Tracking Techniques Object Tracking Techniques 

NI Vision implements two object tracking algorithms: 
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• Mean shift—A simple algorithm that tracks the user-defined objects by iteratively 
updating the location of the object. 

• EM-based mean shift (shape adapted mean shift)—An extended version of the 
mean shift algorithm in which not only the location but also the shape (including 
scale) of the object is adapted frame after frame. 

To track an object, the target object must first be characterized over a feature space. 
The color histogram is a very robust representation of the object appearance, and is 
chosen as the feature space. Moving objects are characterized by their histograms. The 
feature-histogram-based target representations are regularized by spatial masking 
with an isotropic kernel. 

Understanding Mean Shift 

The mean shift algorithm is a is a simple method for finding the position of a local 
mode (local maximum) of a kernel-based estimate of a probability density function. 
Object tracking for an image frame is performed by a combination of histogram 
extraction, weight computation and derivation of new location. 

There are three stages to the mean shift algorithm: 

• Target model—Choose the target object in the given frame. Represent the target 
model in the given feature space (color histogram) with a kernel. 

• Mean shift convergence—In the next frame, search with the current histogram and 
spatial data for the best target match candidate by maximizing the similarity 
function. In the mean shift algorithm, the object center moves from current 
location to a new location as shown in the figure below. The kernel is moved until 
the convergence of the similarity function, then the location of the object is 
updated. 
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• Update location and model—Update the target model, and the location of the 
target, based on the blending parameter. 

Understanding EM-Based Mean Shift 

The mean shift algorithm is not scale or geometric-shift invariant. To track an object 
that may appear to change in size or shape, the EM-based mean shift algorithm is 
required. 

The EM-based mean shift, or shape adapted mean shift, algorithm is an extension of 
the standard algorithm already described. The EM-based mean shift algorithm 
simultaneously estimates the position of the local mode and the covariance matrix 
that describes the approximate shape of the local mode. The covariance matrix that 
defines the shape and scale of the region (that defines the object) is updated every 
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frame to adapt to the shape and scale of the object in that frame. 

There are three stages to the mean shift algorithm: 

• Target model—Choose the target object in the given frame. Represent the target 
model in the given feature space (color histogram) with a kernel. 

• Mean shift convergence—In the next frame, search with the current histogram and 
spatial data for the best target match candidate by maximizing the similarity 
function. In the mean shift algorithm, the object center moves from current 
location to a new location, essentially the center of mass, as shown in the figure 
below. The magnitude and direction of the move is represented by the mean shift 
vector. The kernel is moved until the convergence of the similarity function, then 
the location of the object is updated along with the covariance of the kernel. 

• Update location and model—Update the target model (including the scale and 
shape), and the location of the target, based on the blending parameter and 
maximum acceptable scale and shape changes. 

Kalman Prediction 

EM-based mean shift also features a Kalman Filter implementation. A Kalman filter 
uses the history of measurements of the target to build a model of the state of the 
system. The history of measurements is used to accurately predict the location of the 
target. 

Histogram Back Projection 

Back projection is one method used to improve the convergence of the target 
candidate's size and location with the actual size and location of an object. Back 
projection is a way of recording how well the pixels of a target candidate fit the 
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distribution of pixels that the target models. This allows the user to gauge how well the 
model of the object matches its appearance. 

A histogram of an image known to contain the object of interest is created, and is then 
back projected over the image. Proper thresholding of the resulting image should 
isolate the object from the background. 

Each pixel value in the resulting image represents the likelihood that the pixel is part of 
the object. The minimum pixel value of 0 indicates the pixel does not belong to the 
object, while the maximum value of 255 verifies that the pixel belongs to the object. 
This back projected image is a good indication of how well the tracking algorithm has 
been able to identify the pixels that belong to the object to be tracked. 

Background Subtraction 

A second method used to improve the convergence of the target model is background 
subtraction. This method is a process that extracts foreground objects in a particular 
scene. This helps reduce false positives and creates a better match between the target 
model and the target candidates. 

Choosing the Right Parameters 

The following parameters can be set by the user to create an object tracking 
applications suited to their needs: 

• Histogram bins—Defines the number of bins needed to represent the histogram 
that characterizes the object. As the number of bins decreases, the number of 
colors that fall into a given range expands, thus subtle color differentiation will not 
be possible. Increasing the number of bins allows greater differentiation between 
very similar colors. Generally, using more bins results in faster matching. By 
default, 16 bins are used for grayscale images, while RGB images use 8 bins. 

• Blending parameter—Defines the degree to which the target model is based on 
the previous frame. This parameter falls between 1 and 100. For very high values, 
the model relies heavily on the current frame. As a result, if the target object is 
occluded or out of frame, it will be unable to locate the object in the next frame. 
For very low values, the model relies heavily on the previous frame. As a result, the 
model will not adapt to new changes in the appearance of the object. This may be 
desired in surveillance applications where the target may be frequently occluded. 
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The default value is 10%. 
• Max iterations—Specifies the maximum number of iterations until a match is 

found. Matching iterates until the similarity of the target object and target model 
converges, or the maximum number of iterations is reached. The default value is 
15. 

The following additional parameters can be used to configure the EM-based mean shift 
algorithm. 

• Max scale change—The maximum percentage that the size of the region defining 
the object can change between frames. 

• Max rotation change—The maximum number of degrees that the region defining 
the object can rotate between frames. 

• Max shape change—The maximum percentage that the shape of the region 
defining the object can change between frames. 

In-Depth Discussion In-Depth Discussion 

This section provides additional information you may need for building successful 
object tracking applications. 

Target Model 

Let {xi
*}i=1...n be the pixel locations of the target model, centered at 0. We define a 

function b: R2→{1...m} which associates the pixel at location xi
* to the histogram bin 

that corresponds to the color of that pixel. The probability of the occurrence of the 
color u in the target model is derived by employing a convex and monotonically 
decreasing kernel profile k which assigns a smaller weight to the locations that are 
farther from the center of the target. 

^

qu = C∑
i = 1

n

k((xi * )2)δ(b(xi * ) − u)
 

where δ is the Kronecker delta function. 

The normalization constant C is derived by imposing the condition: 
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∑
u

m

= 1
^

qu = 1

 

on the equation: 

C = 1

∑
i = 1

n

k((xi * )2)
 

Target Candidate 

Let {xi}i=1...nh be the pixel locations of the target model, centered at y. Using the same 
kernel profile, the probability of the color u in the target candidate is given by, 

^

qu = C∑
i = 1

n

k((xi * )2)δ(b(xi * ) − u)
 

where Ch is the normalization constant. 

Mean-Shift Convergence 

The Bhattacharyya coefficient is a similarity function that is used to calculate the 
similarity between the target model and target candidate. 

wi = ∑
u = 1

M

√
^
qu

^
pu(Yo)

δ(b(xi − u))
 

The weights are recalculated every iteration using the above formula, followed by the 
update to the target model and candidates. 

Updating the Model 

• Mean-Shift—In the mean-shift tracking algorithm, the object center moves from 
the current location, y, to a new location, y1 according to the mean-shift iteration 
equation: 
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^

y1 =
∑i = 1

nh
xiwigi

∑i = 1

nh
wigi  

where, 

• gi=g(||y-xi||), 
• g(x) = k(x), 
• k(x) is the kernel function. 

• EM-Based Mean-Shift—In this method, the position is calculated as described 
above. Additionally, the covariance is calculated with the following equation: 

V1 =
∑

i = 1

nh

(xi −
^
y1)(xi −

^
y1)

T

wigi

∑i = 1

nh
wigi  

Geometric Matching Geometric Matching 
This section contains information about geometric matching. 

Introduction Introduction 

Geometric matching locates regions in a grayscale image that match a model, or 
template, of a reference pattern. Geometric matching is specialized to locate 
templates that are characterized by distinct geometric or shape information. 

When using geometric matching, you create a template that represents the object for 
which you are searching. Your machine vision application then searches for instances 
of the template in each inspection image and calculates a score for each match. The 
score relates how closely the template resembles the located matches. 

Geometric matching finds template matches regardless of lighting variation, blur, 
noise, occlusion, and geometric transformations such as shifting, rotation, or scaling of 
the template. 
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When to Use When to Use 

Geometric matching helps you quickly locate objects with good geometric information 
in an inspection image. The following figure shows examples of objects with good 
geometric or shape information. 

You can use geometric matching in the following application areas: 

• Gauging—Measures lengths, diameters, angles, and other critical dimensions. If 
the measurements fall outside set tolerance levels, the object is rejected. Use 
geometric matching to locate the object, or areas of the object, you want to gauge. 
Use information about the size of the object to preclude geometric matching from 
locating objects whose sizes are too big or small. 

• Inspection—Detects simple flaws, such as scratches on objects, missing objects, or 
unreadable print on objects. Use the occlusion score returned by geometric 
matching to determine if an area of the object under inspection is missing. Use the 
curve matching scores returned by geometric matching to compare the boundary 
(or edges) of a reference object to the object under inspection. 

• Alignment—Determines the position and orientation of a known object by locating 
points of reference on the object or characteristic features of the object. 

• Sorting—Sorts objects based on shape and/or size. Geometric matching returns 
the location, orientation, and size of each object. You can use the location of the 
object to pick up the object and place it into the correct bin. Use geometric 
matching to locate different types of objects, even when objects may partially 
occlude each other. 

The objects that geometric matching locates in the inspection image may be rotated, 
scaled, and occluded in the image. Geometric matching provides your application with 
the number of object matches and their locations within the inspection image. 
Geometric matching also provides information about the percentage change in size 
(scale) of each match and the amount by which each object in the match is occluded. 
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For example, you can search an image containing multiple automotive parts for a 
particular type of part in a sorting application. 

• Figure A shows an image of the part that you need to locate. 
• Figure B shows an inspection image containing multiple parts and the located part 

that corresponds to the template. 

The following figure shows the use of geometric matching in an alignment application. 
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When Not to Use Geometric Matching 

The geometric matching algorithm is designed to find objects that have distinct 
geometric information. The fundamental characteristics of some objects may make 
other searching algorithms more optimal than geometric matching. For example, the 
template image in some applications may be defined primarily by the texture of an 
object, or the template image may contain numerous edges and no distinct geometric 
information. In these applications, the template image does not have a good set of 
features for the geometric matching algorithm to model the template. Instead, the 
pattern matching algorithm described in pattern matching, would be a better 
choice. 

In some applications, the template image may contain sufficient geometric 
information, but the inspection image may contain too many edges. The presence of 
numerous edges in an inspection image can slow the performance of the geometric 
matching algorithm because the algorithm tries to extract features using all the edge 
information in the inspection image. In such cases, if you do not expect template 
matches to be scaled or occluded, use pattern matching to solve the application. 

Related concepts: 

• Pattern Matching 

What to Expect from a Geometric Matching Tool What to Expect from a Geometric Matching Tool 

Because geometric matching is an important tool for machine vision applications, it 
must work reliably under various, sometimes harsh, conditions. In automated 
machine vision applications—especially those incorporated into manufacturing 
processes—the visual appearance of materials or components under inspection can 
change because of factors such as varying part orientation, scale, and lighting. The 
geometric matching tool must maintain its ability to locate the template patterns 
despite these changes. The following sections describe common situations in which 
the geometric matching tool needs to return accurate results. 

Part Quantity, Orientation, and Size 

The geometric matching algorithm can detect the following items in an inspection 
image: 
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• One or more template matches, 
• Position of the template match, 
• Orientation of the template match, 
• Change in size of the template match compared to the template image. 

You can use the geometric matching algorithm to locate template matches that are 
rotated or scaled by certain amounts. Figure A shows a template image. Figure B 
shows the template match rotated and scaled in the image. 

Non-Linear or Non-Uniform Lighting Conditions 

The geometric matching algorithm can find a template match in an inspection image 
under conditions of non-linear and non-uniform lighting changes across the image. 
These lighting changes include light drifts, glares, and shadows. Figure A shows a 
template image. Figure B shows the typical conditions under which geometric 
matching correctly finds template matches. 
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Contrast Reversal 

The geometric matching algorithm can find a template match in an inspection image 
even if the contrast of the match is reversed from the original template image. The 
following figure illustrates a typical contrast reversal. Figure A shows the original 
template image. Figure B shows an inspection image with the contrast reversed. The 
geometric matching algorithm can locate the part in figure B with the same accuracy 
as the part in figure A. 

Partial Occlusion 

The geometric matching algorithm can find a template match in an inspection image 
even when the match is partially occluded because of overlapping parts or the part 
under inspection not fully being within the boundary of the image. In addition to 
locating occluded matches, the algorithm returns the percentage of occlusion for each 
match. 

In many machine vision applications, the part under inspection may be partially 
occluded by other parts that touch or overlap it. Also, the part may seem partially 
occluded because of degradations in the manufacturing process. The following figure 
illustrates different scenarios of occlusion under which geometric matching can find a 
template match. The figure below represents the template image for this example. 
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Different Image Backgrounds 

The geometric matching algorithm can find a template match even if the inspection 
image has a background that is different from the background in the template image. 
The following figure shows examples of geometric matching locating a template match 
in inspection images with different backgrounds. Figure A represents the template 
image for this example. 

Geometric Matching Technique Geometric Matching Technique 

Searching and matching algorithms, such as the pattern matching algorithm or 
geometric matching algorithm, find regions in the inspection image that contain 
information similar to the information in the template. This information, after being 
synthesized, becomes the set of features that describes the image. Pattern matching 
and geometric matching algorithms use these sets of features to find matches in 
inspection images. 

Pattern matching algorithms use the pixel intensity information present in the 
template image as the primary feature for matching. Geometric matching algorithms 
uses geometric information present in the template image as the primary features for 
matching. Geometric features can range from low-level features, such as edges or 
curves, to higher-level features, such as the geometric shapes made by the curves in 
the image. 

The geometric matching process consists of two stages: learning and matching. During 
the learning stage, the geometric matching algorithm extracts geometric information 
from the template image. The algorithm organizes and stores the information and the 
spatial relationships between these features in a manner that facilitates faster 
searching in the inspection image. In NI Vision, the information learned during this 
stage is stored as part of the template image. 
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During the matching stage, the geometric matching algorithm extracts geometric 
information from the inspection image that correspond to the information in the 
template image. Then, the algorithm finds matches by locating regions in the 
inspection image where features align themselves in spatial patterns similar to the 
spatial patterns of the features in the template. 

Vision includes two geometric matching methods. Both geometric matching 
techniques rely on curves extracted from image to perform the matching. The 
two geometric matching techniques differ in how the curve information is used to 
perform the matching. The edge-based geometric matching method computes the 
gradient value of the edge at each point along the curves found in the image and uses 
the gradient value and the position of the point from the center of the template to 
perform the matching. The feature-based geometric matching method extracts 
geometric features from the curves and uses these geometric features to perform the 
matching. 

The following figure shows the information from the template image that the 
geometric matching algorithm may use as matching features. Figure A shows the 
curves that correspond to edges in the template image. These curves form the 
underlying information that is used by the edge-based geometric matching technique. 
Figure B shows higher-level shape features that the feature-based geometric algorithm 
uses for matching. Refer to the Choosing The Right Geometric Matching Technique 
section to select the best geometric matching method for your application. 

1. Curves 
2. Circular Features 
3. Rectangular Features 
4. Linear Features 
5. Corners 
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Curve Extraction 

A curve is a set of edge points that are connected to form a continuous contour. Curves 
typically represent the boundary of the part in the image. In geometric matching, 
curves are the underlying information used to represent a template and to match the 
template in an inspection image. This section describes how curves are extracted from 
an image. 

The curve extraction process consists of three steps: finding curve seed points, tracing 
the curve, and refining the curves. 

Finding Curve Seed Points 

A seed point is a point on a curve from which tracing begins. To qualify as a seed point, 
a pixel cannot be part of an already existing curve. Also, the pixel must have an edge 
contrast greater than the user-defined Edge Threshold. The edge contrast at a pixel is 
computed as a function of the intensity value at that pixel and the intensities of its 
neighboring pixels. If P(i, j) represents the intensity of the pixel P with the coordinates 
(i, j), the edge contrast at (i, j) is defined as: 

√(P(i − 1, j) − P(i + 1, j))2
+ (P(i, j − 1) − P(i, j + 1))2

 

For an 8-bit image, the edge contrast may vary from 0 to 360. 

To increase the speed of the curve extraction process, the algorithm visits only a 
limited number of pixels in the image to determine if the pixel is a valid seed point. The 
number of pixels to visit is based on the values that the user provides for the Row Step 
and Column Step parameters. The higher these values are, the faster the algorithm 
searches for seed points. However, to make sure that the algorithm finds a seed point 
on all of the curves, Row Step must be smaller than the smallest curve in the y 
direction, and Column Step must be smaller than the smallest curve in the x direction. 

The algorithm starts by scanning the image rows from the top left corner. Starting at 
the first pixel, the edge contrast of the pixel is computed. If the edge contrast is greater 
than the given threshold, the curve is traced from this point. If the contrast is lower 
than the threshold, or if this pixel is already a member of an existing curve previously 
computed, the algorithm analyzes the next pixel in the row to determine if it qualifies 
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as a seed point. This process is repeated until the end of the current row is reached. 
The algorithm then skips Row Step rows and repeats the process. 

After scanning all of the rows, the algorithm scans the image columns to locate seed 
points. The algorithm starts at the top left corner and analyzes each column that is 
Column Step apart. 

Tracing the Curve 

When it finds a seed point, the curve extraction algorithm traces the rest of the curve. 
Tracing is the process by which a pixel that neighbors the last pixel on the curve is 
added to the curve if it has the strongest edge contrast in the neighborhood and the 
edge contrast is greater than acceptable edge threshold for a curve point. This process 
is repeated until no more pixels can be added to the curve in the current direction. The 
algorithm then returns to the seed point and tries to trace the curve in the opposite 
direction. The following figure illustrates this process. 

1. Scan Lines 
2. Row Step 
3. Column Step 
4. Curve Seeds 
5. Curves 
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Refining the Curve 

During the final stage of curve extraction, the algorithm performs the following tasks 
to refine the extracted curves: 

• Combines curves into one large curve if their end points are close together. 
• Closes a curve if the end points of the curve are within a user-defined distance of 

each other. 
• Removes curves that fall below a certain size threshold defined by the user. 

Edge-Based Geometric Matching 

This section describes the learning and matching stages of the edge-based geometric 
matching technique. The edge-based technique utilizes the generalized Hough 
transform method for matching. The generalized Hough transform is an extension of 
the Hough transform to detect arbitrary shapes.5 

Learning 

The learning stage consists of two steps: edge point extraction and R-table generation. 

Edge Point Extraction 

During the edge point extraction stage, the algorithm detects curves in the image and 
computes the gradient value (ø) at each edge point along the contours. The gradient 
value specifies the orientation of the tangential line at each point along the contour. 

R-Table Generation 

The generalized Hough transform uses a lookup table called an R-table to store the 
shape of the object. The R-table allows the generalized Hough transform to represent 
any arbitrary shape and does not require a parametric description of the object. 

Note To simplify the figure, Row Step and Column Step are not smaller than 
the smallest feature. 

5. For more information about the Hough transform, see Ballard, D.H. "Generalizing the Hough 
Transform to Detect Arbitrary Shapes," Pattern Recognition 13, no. 2 (1981) 111-122. 
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The algorithm uses the following steps to compute the R-Table of a given shape 
(specified by the curves that are detected along the boundary of the shape). 

1. The algorithm selects the center of the template image as the reference point 
(xc, yc). 

2. For each point (xi, yi) along the curves in the template image, the algorithm 
calculates the distance and orientation (ri, θi) from the reference point as shown in 
the figure below: 

3. The algorithm stores the (ri, θi) value for each point in a R-table as a function of ø, 
as shown in the following table: 

Gradient Value (ø) r, θ Values 

ø1 (r1, θ1), (r4, θ4) 

ø2 (r2, θ2), (r10, θ10) 

øn (rn, θn), (ri, θi) 

After the algorithm adds all points along the curves in the template image, the R-table 
represents the information that is learned from the template. The R-table can be used 
to regenerate the contour edge points and gradient angles at any point in the image 
during the matching phase. 

An R-table stores the shift-invariant representation of the template object. Because 
each combination of scale and rotation requires a unique R-table, a template that 
allows variance in scale and rotation can occupy a large amount of memory. To reduce 
the size of the template and improve the speed of the matching process, NI Vision may 
sample the template image before computing the R-tables. By default, the software 
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automatically determines the sampling factor. Use the advanced learn options to 
manually specify a sampling factor. 

Matching 

The matching stage consists of three steps. The first step is edge point extraction, 
which is similar to the edge point extraction that occurs during the learning stage. The 
final two steps are generalized Hough matching and match refinement. 

Edge Point Extraction 

The edge points in the image are detected using the curve extraction process 
described in the learning section. If the size of the template image was reduced by 
sampling, then the inspection image is reduced by the same sampling factor before 
the curves are detected. The gradient value is computed and stored at each edge point 
along the detected curves. 

Generalized Hough Matching 

The matching process begins after the algorithm finds edge points and their gradient 
values in the inspection image. The matching process consists of the following steps: 

1. The algorithm creates an accumulator, which stores candidate match locations in 
the inspection image. 

2. The algorithm performs the following actions for each edge point (x, y): 
a. The algorithm uses the gradient value ø to index into the R-table and retrieve 

all the (r, θ) values. 
b. The algorithm computes the candidate reference point for each (r, θ) value as 

follows: 

xc = x – r cos(θ) 

yc = y – r sin(θ) 

c. The algorithm increases the count in the accumulator for the location of the 
candidate reference point. 

3. The algorithm finds the local peaks in the accumulator. These peaks represent 
possible match locations. 
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4. If matching for variation in rotation or scale, the algorithm builds an accumulator 
for each possible combination of rotation and scale, and performs steps 1–3 for 
each accumulator. 

5. The algorithm processes the peaks in each accumulator to find the best matches. 

Match Refinement 

Match refinement is the final step in the matching stage. The algorithm uses curves 
extracted from both the template image and inspection image to ensure increased 
positional, scalar, and angular accuracy. Feature-Based Geometric Matching This 
section describes the learning and matching stages of the feature-based geometric 
matching technique. 

Learning 

Following curve extraction, the learning stage consists of two steps: feature extraction 
and representation of the spatial relationships between the features. 

Feature Extraction 

Feature extraction is the process of extracting high-level geometric features from the 
curves obtained from curve extraction. These features can be lines, rectangles, 
corners, or circles. 

First, the algorithm approximates each curve using polygons. Then, the algorithm uses 
the line segments forming these polygons to create linear and corner features. These 
linear features are used to compose higher-level rectangular features. The curves or 
segments of curves that cannot be approximated well with polygons or lines are used 
to create circular features. 

After the algorithm extracts high-level geometric features from the template image, the 
features are ordered based on the following criteria: 

• Type—Lines, rectangles, corners, or circles 
• Strength—How accurately the features portray a given geometric structure 
• Saliency—How well the features describe the template 

After the features have been ordered, the best are chosen to describe the template. 
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Representation of Spatial Relationships 

Given two features, the algorithm learns the spatial relationship between the features, 
which consists of the vector from the first feature to the second feature. These spatial 
relationships describe how the features are arranged spatially in the template in 
relationship to one another. The algorithm uses these relationships to create a model 
of features that describes the template. The algorithm uses this template model during 
the matching stage to create match candidates and to verify that matches are properly 
found. 

Matching 

The matching stage consists of five main steps. The first two steps performed on the 
inspection image are curve extraction and feature extraction, which are similar to the 
curve extraction and feature extraction that occur during the learning stage. The final 
three steps are feature correspondence matching, template model matching, and 
match refinement. 

Feature Correspondence Matching 

Feature correspondence matching is the process of matching a given template feature 
to a similar type of feature in the inspection image, called a target feature. The 
algorithm uses feature correspondence matching to do the following: 

• Create an initial set of potential matches in the inspection image. 
• Update potential matches with additional information or refined parameters, such 

as position, angle, and scale. 

Template Model Matching 

Template model matching is the process of superimposing the template model from 
the learning step onto a potential match in the inspection image to confirm that the 
potential match exists or to improve the match. After superimposing the template 
model onto a potential match, the presence of additional target features found in 
accordance with the template model and its spatial relationships to existing features 
confirms the existence of the potential match and yields additional information that 
the algorithm uses to update and improve the accuracy of the match. 
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Match Refinement 

Match refinement is the final step in the matching stage. Match refinement carefully 
refines known matches for increased positional, scalar, and angular accuracy. Match 
refinement uses curves extracted from both the template image and inspection image 
to ensure that the matches are accurately and precisely found. 

Choosing The Right Geometric Matching Technique 

The edge-based geometric matching technique works on any arbitrary shape and is 
guaranteed to find the object in the inspection image as long as a significant portion of 
the shape remains similar to the shape of the template object. There are no 
restrictions on the shape of the object in the template. As long as the curves detected 
around the object in the inspection image duplicate the curves that were extracted in 
the template image, the edge-based geometric matching technique will find the 
match. 

The feature-based geometric matching technique works on the assumption that the 
shape of the pattern in the template can be reliably represented by a set of geometric 
features. This technique should be employed only when the pattern in the template 
and in the inspection images can be consistently and reliably represented by 
geometric shapes such as circles, rectangles and lines. 

The memory and performance requirements of your application may influence which 
geometric matching technique you use. In general, an edge-based geometric template 
uses more memory than a feature-based geometric template. The size disparity 
between the template types increases with the permitted variance in scale. The more 
scale changes you want to match for, the larger the size of the edge-based template. 
The edge-based geometric matching technique is also slower than the feature-based 
geometric matching technique when matching at different scale ranges. 

Follow these recommendations to choose the best geometric matching technique for 
your application: 

• Always start with the edge-based geometric matching algorithm. The edge-based 
geometric matching algorithm provides the best recognition results. 

• If the performance or memory requirements of the edge-based geometric 
matching algorithm and template do not meet the requirements of your 
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application, carefully adjust the match ranges for variance in scale or rotation. For 
example, if the match object in the inspection image is always the same size and 
rotates ±10 degrees, then learn the template only for a scale range of 100% and a 
rotation range of –10 to 10 degrees. The performance of the edge-based method 
can also be improved by setting the factor by which the template and inspection 
are sampled at before the matching is done. Use the advanced learn options to 
specify a sampling factor. 

• If you still cannot reach the performance or memory requirements of your 
application, and the object you need to match contains geometric features that 
can be reliably extracted, use the feature-based geometric matching algorithm. 

Related concepts: 

• Pattern Matching 
• Geometric Matching Technique 

Geometric Matching Using Calibrated Images Geometric Matching Using Calibrated Images 

During matching, the geometric matching algorithm uses calibration information 
attached to the inspection image to return the position, angle, and bounding rectangle 
of a match in both pixel and real-world units. In addition, if the image is calibrated for 
perspective or nonlinear distortion errors, geometric matching uses the attached 
calibration information directly to find matches in the inspection image without using 
time-consuming image correction. 

Simple Calibration or Previously Corrected Images 

If an inspection image contains simple calibration information, or if the inspection 
image has been corrected prior to being used by geometric matching, the matching 
stage performs the same way that it does with uncalibrated images. However, each 
match result is returned in both pixel and real-world units. The pixel-unit results are 
identical to the results that would have been returned from matching the same, 
uncalibrated image. Geometric matching converts the pixel units to real-world units 
using the simple calibration information attached to the inspection image. 

Perspective or Nonlinear Distortion Calibration 

If an inspection image contains calibration information for perspective or nonlinear 
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distortions, the first step in the matching process is different than it would be with 
uncalibrated images. In the first step, curves extracted from the inspection image are 
corrected for distortion errors using calibration information. The remaining four steps 
in the matching process are performed on the corrected curves. Each match result is 
returned in pixel and real-world units. 

Match results in pixel units are returned to be consistent with the inspection image. As 
a result, the bounding rectangle of a match in pixel units may not be rectangular, as 
shown in the following figure. 

• Figure A shows the template image of a metallic part. 
• Figure B shows an image of a calibration grid. The image exhibits nonlinear 

distortion. 
• Figure C shows an image of metallic parts taken with the same camera setup used 

in Figure B. The gray lines depict the bounding rectangle of each match found by 
geometric matching. 

In-Depth Discussion In-Depth Discussion 

This section provides additional information you may need for building successful 
geometric matching applications. 

Geometric Matching Report 

The geometric matching algorithm returns a report about the matches found in the 
inspection image. This report contains the location, angle, scale, occlusion percentage, 
and accuracy scores of the matches. The following sections explain the accuracy 
scores in greater detail. 
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Score 

The general score ranks the match results on a scale of 0 to 1000, where 0 indicates no 
match and 1000 indicates a perfect match. The general score takes the following 
factors into consideration: 

• The number of geometric features in the template image that matched the target. 
• The individual scores obtained from matching template features to their 

corresponding features in the inspection image. 
• The score obtained by comparing the edge strengths of the curves in the template 

image to the edge strengths of the corresponding curves in the inspection image. 

When geometric matching is used to find objects, the score is computed using only the 
curves and features in the template that were matched in the inspection image. 
Therefore, a partially occluded match could have a very high score if the features in the 
non-occluded regions of the part matched perfectly with the template features. 

• Figure A shows the learned template curves of a part. 
• Figure B shows the template match curves of a non-occluded part. 
• Figure C shows the template match curves of an occluded part. 

Template Target Curve Score 

The template target curve score specifies how closely the curves in the template image 
match the curves in the match region of the inspection, or target, image. Score values 
can range from 0 to 1000, where a score of 1000 indicates that all template curves have 
a corresponding curve in the match region of the inspection image. 

Note The general score is the score that the algorithm uses during matching 
to remove matches that fall below a user-defined Minimum Match Score 
value. 
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The template target curve score is computed by combining the match scores obtained 
by comparing each curve in the template to its corresponding curve in the target 
match region. Unlike the general score, the template target curve score is computed 
using all of the template curves. A low score implies one or both of the following: 

• Some curves, or parts of curves, that are present in the template were not found in 
the inspection image, perhaps because of occlusion. 

• The curves found in the inspection image were deformed and did not perfectly 
match the template curves. 

You can use the template target curve score in inspection tasks to determine if the 
located part has flaws caused by anomalies such as process variations or printing 
errors. These flaws appear as deformed or missing curves in the inspection image. The 
following figure shows template target curve scores obtained for different scenarios. 

Target Template Curve Score 

The target template curve score specifies how closely the curves in the match region of 
the inspection, or target, image match the curves in the template. Score values can 
range from 0 to 1000, where a score of 1000 indicates that all curves in the match 
region of the inspection image have a corresponding curve in the template image. 

The target template curve score is computed by combining the match scores obtained 
by comparing each curve in the match region to the curves in the template image. 

A low score implies one or both of the following: 

• Some curves, or parts of curves, that are present in the match region of the 
inspection image were not found in the template image. 

• The curves found in the inspection image were deformed and did not perfectly 
match the template curves. 

You can use the target template curve score in inspection tasks to determine if there 
were additional curves in the inspection image because of flaws, such as scratches, or 
because of spurious objects in the match region that were not present in the template 
image. The following figure shows target template curve scores obtained for different 
scenarios. 
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Correlation Score 

The correlation score is obtained by computing the correlation value between the pixel 
intensities of the template image to the pixel intensities of the target match. The 
correlation score is similar to the score returned by the pattern matching algorithm 
described in pattern matching. 

The correlation score ranges from 0 to 1000. A score of 1000 indicates a perfect match. 
The value of the correlation score is always positive. The algorithm returns the same 
correlation score for a match whose contrast is similar to that of the template and for a 
match whose contrast is a reversed version of the template. 

You can specify regions in the template image that you do not want to use when 
computing the correlation score. Use the Vision Template Editor to specify regions in 
the template that you want to exclude from the computation of the correlation score. 

Related concepts: 

• Pattern Matching 

Dimensional Measurements Dimensional Measurements 
This section contains information about coordinate systems, analytic tools, and 
clamps. 

Note The Contrast Reversed or inverse outputs of geometric matching 
indicate whether the contrast in the match region is the inverse of the 
contrast in the template. 
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Introduction Introduction 

You can use dimensional measurements or gauging tools in Vision to obtain 
quantifiable, critical distance measurements such as distances, angles, areas, line fits, 
circular fits, and quantities. These measurements can help you to determine if a 
product was manufactured correctly. 

Components such as connectors, switches, and relays are small and manufactured in 
high quantity. Human inspection of these components is tedious, time consuming, 
and inconsistent. Vision can quickly and consistently measure certain features on 
these components and generate a report of the results. If the gauged distance or count 
does not fall within user-specified tolerance limits, the component or part fails to meet 
production specifications and should be rejected. 

When to Use When to Use 

Use gauging for applications in which inspection decisions are made on critical 
dimensional information obtained from image of the part. Gauging is often used in 
both inline and offline production. During inline processes, each component is 
inspected as it is manufactured. Inline gauging inspection is often used in mechanical 
assembly verification, electronic packaging inspection, container inspection, glass vile 
inspection, and electronic connector inspection. 

You also can use gauging to measure the quality of products off-line. First, a sample of 
products is extracted from the production line. Then, using measured distances 
between features on the object, Vision determines if the sample falls within a tolerance 
range. Gauging techniques also allow you to measure the distance between particles 
and edges in binary images and easily quantify image measurements. 

Concepts Concepts 

The gauging process consists of the following four steps: 

1. Locate the component or part in the image 
2. Locate features in different areas of the part 
3. Make measurements using these features 
4. Compare the measurements to specifications to determine if the part passes 
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inspection 

Locating the Part in the Image 

A typical gauging application extracts measurements from ROIs rather than from an 
entire image. To use this technique, the necessary parts of the object must always 
appear inside the ROIs you define. 

Usually, the object under inspection appears shifted or rotated within the images you 
want to process. When this occurs, the ROIs need to shift and rotate in the same way as 
the object. In order for the ROIs to move in relation to the object, you must locate the 
object in every image. Locating the object in the image involves determining the x, y 
position and the orientation of the object in the image using the reference coordinate 
system functions. You can build a coordinate reference using edge detection or pattern 
matching. 

Locating Features 

To gauge an object, you need to find landmarks or object features on which you can 
base your measurements. In most applications, you can make measurements based 
on points detected in the image or geometric fits to the detected points. Object 
features that are useful for measurements fall into two categories: 

• Edge points along the boundary of an object located by the edge detection 
method 

• Shapes or patterns within the object located by pattern matching 

Making Measurements 

You can make different types of measurements from the features found in the image. 
Typical measurements include the distance between points; the angle between two 
lines represented by three or four points; the best linear, circular, or elliptical fits; and 
the areas of geometric shapes, such as circles, ellipses, and polygons, that fit detected 
points. For more information about the types of measurements you can make, refer to 
your Vision user manual. 
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Qualifying Measurements 

The last step of a gauging application involves determining the quality of the part 
based on the measurements obtained from the image. You can determine the quality 
of the part using either relative comparisons or absolute comparisons. 

In many applications, the measurements obtained from the inspection image can be 
compared to the same measurements obtained from a standard specification or a 
reference image. Because all the measurements are made on images of the part, you 
can compare them directly. 

In other applications, the dimensional measurements obtained from the image must 
be compared with values that are specified in real units. In this case, convert the 
measurements from the image into real-world units using the calibration tools 
described in system setup and calibration. 

Related concepts: 

• Spatial Calibration 

Coordinate System Coordinate System 

In a typical machine vision application, measurements are extracted from an ROI 
rather than from the entire image. The object under inspection must always appear in 
the defined ROI in order to extract measurements from that ROI. 

When the location and orientation of the object under inspection is always the same in 
the inspection images, you can make measurements directly without locating the 
object in every inspection image. 

In most cases, the object under inspection is not positioned in the camera field of view 
consistently enough to use fixed search areas. If the object is shifted or rotated within 
an image, the search areas should shift and rotate with the object. The search areas are 
defined relative to a coordinate system. A coordinate system is defined by a 
reference point (origin) and a reference angle in the image or by the lines that make up 
its two axes. 

Machine Vision

© National Instruments 313



When to Use 

Use coordinate systems in a gauging application when the object does not appear in 
the same position in every inspection image. You also can use a coordinate system to 
define search areas on the object relative to the location of the object in the image. 

Concepts 

All measurements are defined with respect to a coordinate system. A coordinate 
system is based on a characteristic feature of the object under inspection, which is 
used as a reference for the measurements. When you inspect an object, first locate the 
reference feature in the inspection image. Choose a feature on the object that the 
software can reliably detect in every image. Do not choose a feature that may be 
affected by manufacturing errors that would make the feature impossible to locate in 
images of defective parts. 

You can restrict the region of the image in which the software searches for the feature 
by specifying an ROI that encloses the feature. Defining an ROI in which you expect to 
find the feature can prevent mismatches if the feature appears in multiple regions of 
the image. A small ROI may also improve the locating speed. 

Complete the following general steps to define a coordinate system and make 
measurements based on the new coordinate system. 

1. Define a reference coordinate system. 
a. Define a search area that encompasses the reference feature or features on 

which you base your coordinate system. Make sure that the search area 
encompasses the features in all your inspection images. 

b. Locate an easy-to-find reference feature of the object under inspection. That 
feature serves as the base for a reference coordinate system in a reference 
image. You can use two primary techniques to locate the feature: edge 
detection or pattern matching. 

The software builds a coordinate system to keep track of the location and 
orientation of the object in the image. 

2. Set up measurement areas within the reference image in which you want to make 
measurements. 
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3. Acquire an image of the object to inspect or measure. 
4. Update the coordinate system. During this step, Vision locates the features in the 

search area and builds a new coordinate system based on the new location of the 
features. 

5. Make measurements within the updated measurement area. 

Vision computes the difference between the reference coordinate system and the 
new coordinate system. Based on this difference, the software moves the new 
measurement areas with respect to the new coordinate system. 

Figure A illustrates a reference image with a defined reference coordinate system. 
Figure B illustrates an inspection image with an updated coordinate system. 

1. Search Area for the Coordinate System 
2. Object Edges 
3. Origin of the Coordinate System 
4. Measurement Area 

In-Depth Discussion 

You can use four different strategies to build a coordinate system. Two strategies are 
based on detecting the reference edges of the object under inspection. The other two 
strategies involve locating a specific pattern using a pattern matching algorithm. 

Edge-Based Coordinate System Functions 

These functions determine the axis of the coordinate system by locating edges of the 
part under inspection. Use an edge-based method if you can identify two straight, 
distinct, non-parallel edges on the object you want to locate. Because the software 
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uses these edges as references for creating the coordinate system, choose edges that 
are unambiguous and always present in the object under inspection. 

Single Search Area 

This method involves locating the two axes of the coordinate system—the main axis 
and secondary axis—in a single search area based on an edge detection algorithm. 
First, the function determines the main, vertical, axis of the coordinate system, as 
illustrated in figure A. NI Vision uses the straight edge detection algorithm to 
locate the main axis in the image. The straight edge detected by the algorithm defines 
the main axis. The function then searches for a secondary, horizontal, axis using the 
straight edge detection algorithm on a search area perpendicular to the main axis. The 
detected straight edge defines the secondary axis of the coordinate system. Figure B 
shows the location of the secondary axis in a sample image. The secondary axis must 
not be parallel to the main axis. The intersection between the main axis and secondary 
axis defines the origin of the reference coordinate system. 

Figure A illustrates a reference image with a defined reference coordinate system. 
Figure B illustrates an inspection image with an updated coordinate system. 

1. Search Area for the Coordinate System 
2. Search Lines 
3. Main Axis 
4. Secondary Axis 
5. Origin of the Reference Coordinate System 

Two Search Areas 

This method uses the same operating mode as the single search area method. 
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However, the two edges used to define the coordinate system axes are located in two 
distinct search areas. 

The function first determines the position of the main axis of the coordinate system. It 
locates the main axis using the straight edge detection algorithm in the primary 
search area. The detected straight edge defines the primary axis. The process is 
repeated perpendicularly in the secondary search area to locate the secondary axis. 
The intersection between the primary axis and secondary axis is the origin of the 
coordinate system. 

Figure A illustrates a reference image with a defined reference coordinate system. 
Figure B illustrates an inspection image with an updated coordinate system. 

1. Primary Search Area 
2. Secondary Search Area 
3. Origin of the Coordinate System 
4. Measurement Area 

Pattern Matching-Based Coordinate System Functions 

Using pattern matching techniques to locate a reference feature is a good 
alternative to edge detection when you cannot find straight, distinct edges in the 
image. The reference feature, or template, is the basis for the coordinate system. 

The software searches for a template image in a rectangular search area of the 
reference image. The location and orientation of the located template is used to create 
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the reference position of a coordinate system or to update the current location and 
orientation of an existing coordinate system. 

The same constraints on feature stability and robustness that apply to the edge-
detection techniques also apply to pattern matching. Pattern matching uses one of 
two strategies: shift-invariant pattern matching and rotation-invariant pattern 
matching. Shift-invariant pattern matching locates a template in an ROI or in the entire 
image with a maximum tolerance in rotation of ±5°. The rotation-invariant strategy 
locates a template in the image even when the template varies in orientation between 
0° and 360°. 

The following illustration shows how to locate a coordinate system using a shift-
invariant pattern matching strategy. Figure A shows a reference image with a defined 
reference coordinate system. Figure B shows an inspection image with an updated 
coordinate system. 

1. Located Feature 
2. Coordinate System 
3. Measurement Area 

The following illustration shows how to locate a coordinate system using a rotation-
invariant pattern matching strategy. Figure A shows a reference image with a defined 
reference coordinate system. Figure B shows an inspection image with an updated 
coordinate system. 
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1. Located Feature 
2. Coordinate System 
3. Origin of the Coordinate System 
4. Measurement Area 

Related concepts: 

• Concepts 
• Concepts 
• Pattern Matching 

Finding Features or Measurement Points Finding Features or Measurement Points 

Before making measurements, you must locate features that you can use to make the 
measurements. There are many ways to find these features on an image. The most 
common features used to make measurements are points along the boundary of the 
part you want to gauge. 

Edge-Based Features 

Use edge detection techniques to find edge points along a single search contour or 
along multiple search contours defined inside a 2D search area. 

Line and Circular Features 

Use the line detection functions in Vision to find vertically or horizontally oriented 
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lines. These functions use the rake and concentric rake functions to find a set of 
points along the edge of an object and then fit a line through the edge. The following 
figure illustrates how a rake finds a straight edge. 

1. Search Region 
2. Search Lines 
3. Detected Edge Points 
4. Line Fit to Edge Points 

Use the circle detection function to locate circular edges. This function uses a spoke to 
find points on a circular edge, and then fits a circle on the detected points. The 
following figure illustrates how a spoke finds circular edges. 
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1. Annular Search Region 
2. Search Lines 
3. Detected Edge Points 
4. Circle Line Fit to Edge Points 

Shape-Based Features 

Use pattern matching or color pattern matching to find features that are better 
described by the shape and grayscale or color content than the boundaries of the part. 

Related concepts: 

• Edge Detection 
• Concepts 
• Making Measurements on the Image 

Making Measurements on the Image Making Measurements on the Image 

After you have located points in the image, you can make distance or geometrical 
measurements based on those points. 

Distance Measurements 

Make distance measurements using one of the following methods: 

• Measure the distance between points found by one of the feature detection 
methods 
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• Measure the distance between two edges of an object using the clamp functions 
available in Vision 

Clamp functions measure the separation between two edges in a region of interest. 
Use the clamp functions to find the smallest or largest separation between two edges 
at the same orientation. 

Vision includes two clamp functions: one which uses rake-based edge detection, and 
one which uses contour detection. 

Clamp (Rake-Based) 

The rake-based clamp function supports both min and max distance calculations. The 
clamp function detects points along the two edges using the rake function, then 
computes the distance between the detected points and returns the largest or smallest 
distance. 

The following figure illustrates how a rake-based clamp function finds the minimum 
distance between the edges of an object. 

1. Rectangular Search Region 
2. Search Lines for Edge Detection 
3. Detected Edge Points 
4. Line Fit to Edge Points 
5. Measured Distance 
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Clamp (Contour Extraction Based) 

The contour extraction based clamp function supports only max distance calculations. 
The clamp searches for contours within a user-specified angle range relative to the 
search axis of a rectangular region of interest. You can also specify the desired edge 
polarity for the clamp boundaries. The edge polarity for the entire boundary is defined 
by the initial edge polarity of the boundary along the search direction. For more 
information about edge polarity, refer to Edge Detection Concepts. 

After extracting a contour, the clamp selects opposing points with parallel tangents 
and computes the distance between the points. 

The following figure illustrates how a contour extraction based clamp function finds 
the maximum distance between edges of an object. Refer to Contour Analysis 
Concepts for more information about contour extraction. 

1. Rotated rectangle search region 
2. Found clamp points 
3. Measured distance, within angle tolerance 

Note The clamp function treats each extracted contour as a single boundary. 
For example, if the object under inspection is a white disc, the function will 
identify a single rising polarity boundary. Create an ROI that does not include 
the entire object to force the function to identify multiple boundaries. 
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Analytic Geometry 

You can make the following geometrical measurements from the feature points 
detected in the image. 

• The area of a polygon specified by its vertex points 
• The line that fits to a set of points and the equation of that line 
• The circle that fits to a set of points and its area, perimeter, and radius 
• The ellipse that fits to a set of points and its area, perimeter, and the lengths of its 

major and minor axis 
• The intersection point of two lines specified by their start and end points 
• The line bisecting the angle formed by two lines 
• The line midway between a point and a line that is parallel to the line 
• The perpendicular line from a point to a line, which computes the perpendicular 

distance between the point and the line 

Line Fitting 

The line fitting function in Vision uses a robust algorithm to find a line that best fits a 
set of points. The line fitting function works specifically with the feature points 
obtained during gauging applications. 

In a typical gauging application, a rake or a concentric rake function finds a set of 
points that lie along a straight edge of the object. In an ideal case, all the detected 
points would make a straight line. However, points usually do not appear in a straight 
line for one of the following reasons: 

• The edge of the object does not occupy the entire search region used by the rake 
• The edge of the object is not a continuous straight line 
• Noise in the image causes points along the edge to shift from their true positions 

The following figure illustrates an example of a set of points located by the rake 
function. As shown in the figure, a typical line fitting algorithm that uses all of the 
points to fit a line returns inaccurate results. The line fitting function in NI Vision 
compensates for outlying points in the dataset and returns a more accurate result. 
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1. Edge Points 
2. Standard Line Fit 
3. Vision Fit Line 

Vision uses the following process to fit a line. Vision assumes that a point is part of a 
line if the point lies within a user-defined distance—or pixel radius—from the fitted 
line. Then the line fitting algorithm fits a line to a subset of points that fall along an 
almost straight line. Vision determines the quality of the line fit by measuring its mean 
square distance (MSD), which is the average of the squared distances between each 
point and the estimated line. 

The following figure illustrates how the MSD is calculated. Next, the line fitting function 
removes the subset of points from the original set. Vision repeats these steps until all 
points have been fit. Then, the line fitting algorithm finds the line with the lowest MSD, 
which corresponds to the line with the best quality. The function then improves the 
quality of the line by successively removing the furthest points from the line until a 
user-defined minimum score is obtained or a user-specified maximum number of 
iterations is exceeded. 
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1. Perpendicular Distance from an Edge Point to the Line 
2. Line Fit 
3. Points Used to Fit the Line 

The result of the line fitting function is a line that is fit to the strongest subset of the 
points after ignoring the outlying points, as shown in the following figure. 

The pixel radius, minimum score, and maximum iteration parameters control the 
behavior of the line fit function. 

The pixel radius defines the maximum distance allowed, in pixels, between a valid 
point and the estimated line. The algorithm estimates a line where at least half the 
points in the set are within the pixel radius. If a set of points does not have such a line, 
the function attempts to return the line that has the most number of valid points. 
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1. Strongest Line Returned by the Line Fit Function 
2. Alternate Line Discarded by the Line Fit Function 

Increasing the pixel radius increases the distance allowed between a point and the 
estimated line. Typically, you can use the imaging system resolution and the amount 
of noise in your system to gauge this parameter. If the resolution of the imaging system 
is very high, use a small pixel radius to minimize the use of outlying points in the line 
fit. Use a higher pixel radius if your image is noisy. 

The minimum score allows you to improve the quality of the estimated line. The line 
fitting function removes the point furthest from the fit line, and then refits a line to the 
remaining points and computes the MSD of the line. Next, the function computes a line 
fit score (LFS) for the new fit using the following equation: 

LFS = ( 1 − MSD

PR2 )x1000
 

where PR is the pixel radius. 

Vision repeats the entire process until the score is greater than or equal to the 
minimum score or until the number of iterations exceeds the user-defined maximum 
number of iterations. 

Use a high minimum score to obtain the most accurate line fit. For example, combining 
a large pixel radius and a high minimum score produces an accurate fit within a very 
noisy data set. A small pixel radius and a small minimum score produces a robust fit in 
a standard data set. 
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The maximum number of iterations defines a limit in the search for a line that satisfies 
the minimum score. If you reach the maximum number of iterations before the 
algorithm finds a line matching the desired minimum score, the algorithm stops and 
returns the current line. If you do not need to improve the quality of the line in order to 
obtain the desired results, set the maximum iterations value to 0 in the line fit function. 

Related concepts: 

• Concepts 
• Contour Analysis Concepts 

Contour Analysis Contour Analysis 
This section contains information about contour analysis. 

Introduction Introduction 

A contour represents a series of edge points that define the outline of an object in the 
image. Contour analysis locates and extracts contours in grayscale images. After 
extracting the contour the contour analysis algorithm can calculate the curvature 
along the contour, fit the contour with an equation of known type, or compare 
multiple contours. 

When to Use When to Use 

Contour analysis locates and extracts contours in grayscale images and allows you to 
compare extracted contours with a template contour or a fitted equation. The 
following figure shows examples of objects with good contour information. 

You can use contour analysis in the following application areas: 
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• Gauging—Measures lengths, diameters, angles, and other critical dimensions. If 
the measurements fall outside set tolerance levels, the object is rejected. Use 
geometric matching to locate the object, or areas of the object, you want to gauge. 
Use information about the size of the object to preclude contour analysis from 
analyzing objects that are too big or small. 

• Inspection—Detects flaws or missing elements. Compare an extracted contour to a 
fitted contour or template contour to detect flaws in edges or determine if a 
portion of the object under inspection is missing. 

Contour Analysis Concepts Contour Analysis Concepts 

Contour extraction involves the following steps: 

1. Curves are extracted from the ROI 
2. Optionally, multiple curves are connected according to settings stored in 

connection parameters 
3. A single connected curve is selected to represent the contour 

Curve Extraction 

A curve is a set of edge points that are connected to form a continuous contour. Curves 
typically represent the boundary of the part in the image. In curve extraction, curves 
are the underlying information used to represent a template and to match the 
template in an inspection image. This section describes how curves are extracted from 
an image. 

The curve extraction process consists of finding curve seed points and tracing the 
curve. 

Finding Curve Seed Points 

A seed point is a point on a curve from which tracing begins. To qualify as a seed point, 
a pixel cannot be part of an already existing curve and must have an edge contrast 
greater than the user-defined edge threshold. The edge contrast at a pixel is computed 
as a function of the intensity value at that pixel and the intensities of its neighboring 
pixels. If P(i, j) represents the intensity of the pixel P with the coordinates (i, j), the edge 
contrast at (i, j) is defined as 
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√(P(i − 1, j) − P(i + 1, j))2
+ (P(i, j − 1) − P(i, j + 1))2

 

For an 8-bit image, the edge contrast may vary from 0 to 360. 

To increase the speed of the curve extraction process, the algorithm visits only a 
limited number of pixels in the image to determine if the pixel is a valid seed point. The 
number of pixels to visit is based on the values that the user provides for the Search 
Step and ROI parameters. The larger the Search Step and the smaller the ROI, the 
faster the algorithm searches for seed points. However, to make sure that the 
algorithm finds a seed point on all of the curves, Search Step must be smaller than the 
smallest curve along the search direction. 

The algorithm scans from the selected side of the ROI. Starting at the first pixel, the 
edge contrast of the pixel is computed. If the edge contrast is greater than the given 
threshold, the curve is traced from this point. If the contrast is lower than the 
threshold, or if this pixel is already a member of an existing curve previously 
computed, the algorithm analyzes the next pixel in the row to determine if it qualifies 
as a seed point. This process is repeated until the opposite side of the ROI is reached. 
The algorithm then skips Search Step pixels along the side of the ROI and repeats the 
process. 

Tracing the Curve 

When it finds a seed point, the curve extraction algorithm traces the rest of the curve. 
Tracing is the process by which a pixel that neighbors the last pixel on the curve is 
added to the curve if it has the strongest edge contrast in the neighborhood and the 
edge contrast is greater than acceptable edge threshold for a curve point. This process 
is repeated until no more pixels can be added to the curve in the current direction. The 
algorithm then returns to the seed point and tries to trace the curve in the opposite 
direction. The following figure illustrates this process. 
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1. Scan Lines 
2. Search Step 
3. Curve Seeds 
4. Curves 

Curve connection parameters specify how the contour extraction algorithm connects 
individual curves to produce contours. There are two methods for building curves into 
a contour. For both methods, all possible connections are limited by the input ranges 
for the connection metrics below. If a range is not entered, the connection metric is not 
evaluated when considering connections. For example, if only a distance and angle 
metric are provided, gradient angle and connectivity are not evaluated and will not 
affect connection choices. For both methods, once the curve that is being built is 
connected to itself, it is considered a closed curve and no more connections are made. 

When selecting the closest contour, the extraction algorithm starts with the curve that 
is closest to the ROI side that curves were scanned from. The extraction algorithm 
builds onto each end of the closest curve by selecting the next curve that continues 
along the object boundary. This is defined as the candidate curve, whose end requires 
the smallest magnitude of rotation from the closest curve end, through the direction of 

Note To simplify the figure, Search Step is not smaller than the smallest 
curve. 
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the ROI side. 

When selecting for the longest or strongest contour, the extraction algorithm connects 
curves with the minimum cost for all of the considered metrics. The cost is defined as 
the sum of each metric normalized to the range of that metric. For example, if the 
angle range is 0 to 30 degrees, and a possible connection has as 15 degree change 
between curves, the angle metric will contribute 0.5 to the cost of that connection. The 
extraction algorithm calculates the cost of all connections that fall within the metric 
ranges, then makes the connections in order from the least to most costly. 

When selecting the closest contour, the closest contour is always built as described 
above. When selecting for the longest or strongest contour, and no connection 
parameters are entered, no connections that increase performance will be made. In 
any case where connections are made, the default metrics are distance with a range of 
0 to 10 pixels, and angle distance with a range of 0 to 180 degrees. Input metrics will 
override these defaults. 

Distance 

Distance is the euclidean distance, in pixels, between the endpoints. Modify the 
Distance range parameters to only connect curves with end points separated by a 
distance within the specified range. 

The following figure illustrates distance between end points: 

1. Distance 

Angle Distance 

Angle distance is the amount, in degrees, that one curve endpoint must rotate for two 
curves to be parallel at the endpoints. Modify the Angle Distance range parameters to 
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only connect curves when the difference between the angle of the curves, measured at 
the end points, is within the specified range. The following figures illustrate how the 
angle of a curve is calculated: 

A 

B 

In Figure A, the difference between angle A and angle B is close to 0. In Figure B, the 
difference between angle A and angle C is close to 90 degrees. 

Connectivity Distance 

Connectivity distance is determined by projecting the endpoint of one curve as a line 
and finding the minimum distance from the projected line to the other endpoint. If the 
distance to the projection from either endpoint is within the range, the endpoints are 
connected. Modify the Connectivity Distance range parameters to only connect curves 
when a line extended from the end point of one curve passes the end point of another 
curve within the specified distance. The following figure illustrates how connectivity is 
calculated: 
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1. Distance between end point A and aline extended from end point B 
2. Distance between end point A and endpoint C 

End point A is closer to end point C than to end point B. Specify a connectivity range to 
connect end point A to end point B instead of end point C. 

Gradient Difference 

Gradient difference is calculated by determining the gradient angle at each endpoint, 
then taking the absolute difference of the two angles in degrees. Modify the Gradient 
Difference range parameters to only connect curves when the difference between the 
gradient angle of each curve is within the specified range. The following figure 
illustrates two curves with opposite gradient angles: 

Contour Selection 

After the curves have been extracted from the image and optionally connected, a 
single contour is selected from this set of curves based on contour selection 
parameters. You can select the first contour detected along the search direction, the 
longest contour, or the contour with the highest edge strength averaged from each 
point on the curve. 
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In-Depth Discussion In-Depth Discussion 

Curvature 

The curvature of a contour is calculated from the edge points of the contour and by the 
input kernel size. For each point along the contour the algorithm selects two 
additional points at half the kernel width before and half the kernel width after the 
current point. The algorithm fits a cubic b-spline to the three points. Curvature 
represents the inverse radius of the circle inscribed by the cubic b-spline at the current 
point. Curvature can be negative. A negative curvature indicate a curve to the left 
along the search direction. If the current point is too close to either end of the array to 
choose the additional points, the curvature is calculated as 0. 

Distances 

When comparing two contours, the algorithm generates pairs of corresponding points 
between the contours. At each point along the template contour the algorithm 
examines the target contour for a matching point. Ideally, the matching point is 
normal to the curve of the template contour, as when the target contour is a fitted line, 
circle, or ellipse. However, when the target contour is defined by a discrete set of 
points, a point along the target contour may not be normal to the point on the 
template curve. 

To compare a template contour and a target contour defined by a discrete set of 
points, the algorithm applies a Gaussian averaging kernel to smooth the target contour 
points. Then, for each point along the template contour, the algorithm examines a line 
segment formed by consecutive points on the smoothed target contour points. If a line 
segment includes a point that is normal to the template point, the algorithm pairs the 
points. Otherwise, the algorithm approximates a normal point by pairing the template 
point with the closest point on the target contour. Finally, for unpaired sections of the 
target contour, the algorithm pairs each unmatched target contour point with a point 
on the template contour between the matched points on either side of the unmatched 
point. 

For calibrated contour images, the algorithm first performs the distance computation 
in the calibrated space of the target image, then transforms the points into pixel 
coordinates. 
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Color Inspection Color Inspection 
This section contains information about color spaces, the color spectrum, color 
matching, color location, and color pattern matching. 

Color Spaces Color Spaces 

Color spaces allow you to represent a color. A color space is a subspace within a 3D 
coordinate system where each color is represented by a point. You can use color 
spaces to facilitate the description of colors between persons, machines, or software 
programs. 

Various industries and applications use a number of different color spaces. Humans 
perceive color according to parameters such as brightness, hue, and intensity, while 
computers perceive color as a combination of red, green, and blue. The printing 
industry uses cyan, magenta, and yellow to specify color. The following is a list of 
common color spaces: 

• RGB—Based on red, green, and blue. Used by computers to display images. 
• HSL—Based on hue, saturation, and luminance. Used in image processing 

applications. 
• CIE—Based on brightness, hue, and colorfulness. Defined by the Commission 

Internationale de l'Eclairage (International Commission on Illumination) as the 
different sensations of color that the human brain perceives. 

• CMY—Based on cyan, magenta, and yellow. Used by the printing industry. 
• YIQ—Separates the luminance information (Y) from the color information (I and Q). 

Used for TV broadcasting. 

When to Use 

You must define a color space every time you process color images. With NI Vision, you 
specify the color space associated with an image when you create the image. NI Vision 
supports the RGB and HSL color spaces. 

If you expect the lighting conditions to vary considerably during your color machine 
vision application, use the HSL color space. The HSL color space provides more 
accurate color information than the RGB space when running color processing 
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functions, such as color matching, color location, and color pattern matching. 
NI Vision's advanced algorithms for color processing—which perform under various 
lighting and noise conditions—process images in the HSL color space. 

If you do not expect the lighting conditions to vary considerably during your 
application, and you can easily define the colors you are looking for using red, green, 
and blue, use the RGB space. Also, use the RGB space if you want only to display color 
images, but not process them, in your application. The RGB space reproduces an 
image as you would expect to see it. NI Vision always displays color images in the RGB 
space. If you create an image in the HSL space, NI Vision automatically converts the 
image to the RGB space before displaying it. 

Concepts 

Because color is the brain's reaction to a specific visual stimulus, color is best 
described by the different sensations of color that the human brain perceives. The 
color-sensitive cells in the retina sample color using three bands that correspond to 
red, green, and blue light. The signals from these cells travel to the brain where they 
combine to produce different sensations of colors. The Commission Internationale de 
l'Eclairage has defined the following sensations: 

• Brightness—The sensation of an area exhibiting more or less light. 
• Hue—The sensation of an area appearing similar to a combination of red, green, 

and blue. 
• Colorfulness—The sensation of an area appearing to exhibit more or less of its hue. 
• Lightness—The sensation of an area's brightness relative to a reference white in 

the scene. 
• Chroma—The colorfulness of an area with respect to a reference white in the 

scene. 
• Saturation—The colorfulness of an area relative to its brightness. 

The trichromatic theory describes how three separate lights—red, green, and 
blue—can be combined to match any visible color. This theory is based on the three 
color sensors that the eye uses. Printing and photography use the trichromatic theory 
as the basis for combining three different colored dyes to reproduce colors in a scene. 
Similarly, computer color spaces use three parameters to define a color. 

Most color spaces are geared toward displaying images with hardware, such as color 
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monitors and printers, or toward applications that manipulate color information, such 
as computer graphics and image processing. Color CRT monitors, the majority of color-
video cameras, and most computer graphics systems use the RGB color space. The HSL 
space, combined with RGB and YIQ, is frequently used in applications that manipulate 
color, such as image processing. The color picture publishing industry uses the CMY 
color space, also known as CMYK. The YIQ space is the standard for color TV broadcast. 

RGB Color Space 

The RGB color space is the most commonly used color space. The human eye receives 
color information in separate red, green, and blue components through cones—the 
color receptors present in the human eye. These three colors are known as additive 
primary colors. In an additive color system, the human brain processes the three 
primary light sources and combines them to compose a single color image. The three 
primary color components can combine to reproduce most possible colors. 

You can visualize the RGB space as a 3D cube with red, green, and blue at the corners 
of each axis, as shown in the following figure. Black is at the cube origin, while white is 
at the opposite corner of the cube. Each side of the cube has a value between 0 and 1. 
Along each axis of the RGB cube, the colors range from no contribution of that 
component to a fully saturated color. Any point, or color, within the cube is specified 
by three numbers: an R, G, B triple. The diagonal line of the cube from black (0, 0, 0) to 
white (1, 1, 1) represents all the grayscale values or where all of the red, green, and 
blue components are equal. Different computer hardware and software combinations 
use different color ranges. Common combinations are 0 –255 and 0 –65,535 for each 
component. To map color values within these ranges to values in the RGB cube, divide 
the color values by the maximum value that the range can take. 
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The RGB color space lies within the perceptual space of humans. In other words, the 
RGB cube represents fewer colors than we can see. 

The RGB space simplifies the design of computer monitors, but it is not ideal for all 
applications. In the RGB color space, the red, green, and blue color components are all 
necessary to describe a color. Therefore, RGB is not as intuitive as other color spaces. 
The HSL color space describes color using only the hue component, which makes HSL 
the best choice for many image processing applications, such as color matching. 

HSL Color Space 

The HSL color space was developed to put color in terms that are easy for humans to 
quantify. Hue, saturation, and brightness are characteristics that distinguish one color 
from another in the HSL space. Hue corresponds to the dominant wavelength of the 
color. The hue component is a color, such as orange, green, or violet. You can visualize 
the range of hues as a rainbow. Saturation refers to the amount of white added to the 
hue and represents the relative purity of a color. A color without any white is fully 
saturated. The degree of saturation is inversely proportional to the amount of white 
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light added. Colors such as pink, composed of red and white, and lavender composed 
of purple and white, are less saturated than red and purple. Brightness embodies the 
chromatic notion of luminance, or the amplitude or power of light. Chromaticity is the 
combination of hue and saturation. The relationship between chromaticity and 
brightness characterizes a color. Systems that manipulate hue use the HSL color space. 

The coordinate system for the HSL color space is cylindrical. Colors are defined inside 
a hexcone, as shown in the color space used to generate the spectrum section. 
The hue value runs from 0 to 360°. The saturation ranges from 0 to 1, where 1 
represents the purest color without any white. Luminance also ranges from 0 to 1, 
where 0 is black and 1 is white. 

Overall, two principal factors—the de-coupling of the intensity component from the 
color information and the close relationship between chromaticity and human 
perception of color—make the HSL space ideal for developing machine vision 
applications. 

CIE XYZ Color Space 

The CIE color space system classifies colors according to the human vision system. This 
system specifies colors in CIE coordinates and is a standard for comparing one color in 
the CIE coordinates with another. 

Visible light is electromagnetic energy that occupies approximately the 400 nm to 700 
nm wavelength part of the spectrum. Humans perceive these wavelengths as the 
colors violet through indigo, blue, green, yellow, orange, and red. The following figure 
shows the amounts of red, green, and blue light needed by an average observer to 
match a color of constant luminance for all values of dominant wavelengths in the 
visible spectrum. The dominant wavelength is the wavelength of the color humans see 
when viewing the light. The negative values between 438.1 nm and 546.1 nm indicate 
that all visible colors cannot be specified by adding together the three positive 
primaries R, G, and B in the RGB color space. 
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In 1931, the CIE developed a system of three primary colors (XYZ) in which all visible 
colors can be represented using a weighted sum of only positive values of X, Y, and Z. 
The following figure shows the functions used to define the weights of the X, Y, and Z 
components. 
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CIE L*a*b* Color Space 

CIE 1976 L*a*b*, one of the CIE-based color spaces, is a way to linearize the 
perceptibility of color differences. The nonlinear relations for L*, a*, and b* mimic the 
logarithmic response of the eye. 

CMY Color Space 

CMY is another set of familiar primary colors: cyan, magenta, and yellow. CMY is a 
subtractive color space in which these primary colors are subtracted from white light 
to produce the desired color. The CMY color space is the basis of most color printing 
and photography processes. CMY is the complement of the RGB color space because 
cyan, magenta, and yellow are the complements of red, green, and blue. 

YIQ Color Space 

The YIQ space is the primary color space adopted by the National Television System 
Committee (NTSC) for color TV broadcasting. It is a linear transformation of the RGB 
cube for transmission efficiency and for maintaining compatibility with monochrome 
television standards. The Y component of the YIQ system provides all the video 
information that a monochrome television set requires. The main advantage of the YIQ 
space for image processing is that the luminance information (Y) is de-coupled from 
the color information (I and Q). Because luminance is proportional to the amount of 
light perceived by the eye, modifications to the grayscale appearance of the image do 
not affect the color information. 

Related concepts: 

• Color Spectrum 

Color Spectrum Color Spectrum 

The color spectrum represents the 3D color information associated with an image or a 
region of an image in a concise 1D form that can be used by many of the Vision color 
processing functions. Use the color spectrum for color matching, color location, and 
color pattern matching applications with Vision. 

The color spectrum is a 1D representation of the 3D color information in an image. The 
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spectrum represents all the color information associated with that image or a region of 
the image in the HSL space. The information is packaged in a form that can be used by 
the color processing functions in Vision. 

Color Space Used to Generate the Spectrum 

The color spectrum represents the color distribution of an image in the HSL space, as 
shown in the following figure. If the input image is in RGB format, the image is first 
converted to HSL format and the color spectrum is computed from the HSL space. 
Using HSL images directly—those acquired with an image acquisition device with an 
onboard RGB to HSL conversion for color matching—improves the operation speed. 

Colors represented in the HSL model space are easy for humans to quantify. The 
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luminance—or intensity—component in the HSL space is separated from the color 
information. This feature leads to a more robust color representation independent of 
light intensity variation. However, the chromaticity—or hue and saturation—plane 
cannot be used to represent the black and white colors that often comprise the 
background colors in many machine vision applications. Refer to the color pattern 
matching section for more information about color spaces. 

Generating the Color Spectrum 

Each element in the color spectrum array corresponds to a bin of colors in the HSL 
space. The last two elements of the array represent black and white colors, 
respectively. The following figure illustrates how the HSL color space is divided into 
bins. The hue space is divided into a number of equal sectors, and each sector is 
further divided into two parts: one part representing high saturation values and 
another part representing low saturation values. Each of these parts corresponds to a 
color bin—an element in the color spectrum array. 

1. Sector 
2. Saturation Threshold 
3. Color Bins 

The color sensitivity parameter determines the number of sectors the hue space is 
divided into. Figure A shows the hue color space when luminance is equal to 128. 
Figure B shows the hue space divided into a number of sectors, depending on the 
desired color sensitivity. Figure C shows each sector divided further into a high 
saturation bin and a low saturation bin. The saturation threshold determines the 
radius of the inner circle that separates each sector into bins. 

The following figure illustrates the correspondence between the color spectrum 
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elements and the bins in the color space. The first element in the color spectrum array 
represents the high saturation part in the first sector; the second element represents 
the low saturation part; the third element represents the high saturation part of the 
second sector and so on. If there are n bins in the color space, the color spectrum array 
contains n  + 2 elements. The last two components in the color spectrum represent the 
black and white color, respectively. 

A color spectrum with a larger number of bins, or elements, represents the color 
information in an image with more detail, such as a higher color resolution, than a 
spectrum with fewer bins. In NI Vision, you can choose between three color sensitivity 
settings—low, medium, and high. Low divides the hue color space into seven sectors, 
giving a total of 2 × 7 + 2 = 16 bins. Medium divides the hue color space into 14 sectors, 
giving a total of 2 × 14 + 2 = 30 bins. High divides the hue color space into 28 sectors, 
giving a total of 2 × 28 + 2 = 58 bins. 

The value of each element in the color spectrum indicates the percentage of image 
pixels in each color bin. When the number of bins is set according to the color 
sensitivity parameter, the machine vision software scans the image, counts the 
number of pixels that fall into each bin, and stores the ratio of the count and total 
number of pixels in the image in the appropriate element within the color spectrum 
array. 

The software also applies a special adaptive learning algorithm to determine if pixels 
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are either black or white before assigning it to a color bin. Figure B represents the low 
sensitivity color spectrum of figure A The height of each bar corresponds to the 
percentage of pixels in the image that fall into the corresponding bin. 

The color spectrum contains useful information about the color distribution in the 
image. You can analyze the color spectrum to get information such as the most 
dominant color in the image, which is the element with the highest value in the color 
spectrum. You also can use the array of the color spectrum to directly analyze the color 
distribution and for color matching applications. 

A 

B 

Related concepts: 

• Color Pattern Matching 

Color Matching Color Matching 

Color matching quantifies which colors and how much of each color exist in a region of 
an image and uses this information to check if another image contains the same colors 
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in the same ratio. 

Use color matching to compare the color content of an image or regions within an 
image to a reference color information. With color matching, you create an image or 
select regions in an image that contain the color information you want to use as a 
reference. The color information in the image may consist of one or more colors. The 
machine vision software then learns the 3D color information in the image and 
represents this information as a 1D color spectrum. Your machine vision application 
compares the color information in the entire image or regions in the image to the 
learned color spectrum, calculating a score for each region. The score relates how 
closely the color information in the image region matches the information represented 
by the color spectrum. 

When to Use 

Color matching can be used for applications such as color identification, color 
inspection, color object location and other applications that require the comparison of 
color information to make decisions. 

Color Identification 

Color identification identifies an object by comparing the color information in the 
image of the object to a database of reference colors that correspond to pre-defined 
object types. The object is assigned a label corresponding to the object type with 
closest reference color in the database. Use color matching to first learn the color 
information of all the pre-defined object types. The color spectrums associated with 
each of the pre-defined object types become the reference colors. Your machine vision 
application then uses color matching to compare the color information in the image of 
the object to the reference color spectrums. The object receives the label of the color 
spectrum with the highest match score. 

The following figure shows an example of a tile identification application. Figure A 
shows the image of a tile that needs to be identified. Figure B shows the scores 
obtained using color matching with a set of the reference tiles. 
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1. Score = 592 
2.  Score = 6 
3. Score = 31 
4. Score = 338 
5. Score = 1000 
6. Score = 405 

Use color matching to verify the presence of correct components in automotive 
assemblies. An example of a color identification task is to ensure that the color of the 
fabric in the interior of a car adheres to specifications. 

Color Inspection 

Color inspection detects simple flaws such as missing or misplaced color components, 
defects on the surfaces of color objects, or printing errors on color labels. You can use 
color matching for these applications if known regions of interest predefine the object 
or areas to be inspected in the image. You can define these regions, or they can be the 
output of some other machine vision tool, such as pattern matching. 

The layout of the fuses in junction boxes in automotive assemblies is easily defined by 
regions of interest. Color matching determines if all of the fuses are present and in the 
correct locations. The following figure shows an example of a fuse box inspection 
application in which the exact location of the fuses in the image can be specified by 
regions of interest. Color matching compares the color of the fuse in each region to the 
color that is expected to be in that region. 
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1. Score = 51 
2.  Score = 382 
3. Score = 23 
4. Score = 649 
5. Score = 29 
6. Score = 70 
7. Score = 1000 
8. Score = 667 
9. Score = 990 

10. Score = 8 
11. Inspection Ranges 

Color matching can be used to inspect printed circuit boards containing a variety of 
components including diodes, resistors, integrated circuits, and capacitors. In a 
manufacturing environment, color matching can find flaws in a manufactured product 
when the flaws are accompanied by a color change. 

Concepts 

Color matching is performed in two steps. In the first step, the machine vision software 
learns a reference color distribution. In the second step, the software compares color 
information from other images to the reference image and returns a score as an 
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indicator of similarity. 

Learning Color Distribution 

The machine vision software learns a color distribution by generating a color 
spectrum. You provide the software with an image or regions in the image containing 
the color information that you want to use as a reference in your application. The 
machine vision software then generates a color spectrum based on the information 
you provide. The color spectrum becomes the basis of comparison during the 
matching phase. 

Comparing Color Distributions 

During the matching phase, the color spectrum obtained from the target image or 
region in the target image is compared to the reference color spectrum taken during 
the learning step. A match score is computed based on the similarity between these 
two color spectrums using the Manhattan distance between two vectors. A fuzzy 
membership weighting function is applied to both the color spectrums before 
computing the distance between them. The weighting function compensates for some 
errors that may occur during the binning process in the color space. The fuzzy color 
comparison approach provides a robust and accurate quantitative match score. The 
match score, ranging from 0 to 1000, defines the similarity between the color 
spectrums. A score of zero represents no similarity between the color spectrums, 
whereas a score of 1000 represents a perfect match. The following figure illustrates the 
comparison process. 
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Color Location Color Location 

Use color location to quickly locate known color regions in an image. With color 
location, you create a model or template that represents the colors that you are 
searching. Your machine vision application then searches for the model in each 
acquired image, and calculates a score for each match. The score indicates how closely 
the color information in the model matches the color information in the found regions. 

When to Use 

Color can simplify a monochrome visual inspection problem by improving contrast or 
separating the object from the background. Color location algorithms provide a quick 
way to locate regions in an image with specific colors. 

Use color location when your application has the following characteristics. 

• Requires the location and the number of regions in an image with their specific 
color information. 

• Relies on the cumulative color information in the region, instead of how the colors 
are arranged in the region. 

• Does not require the orientation of the region. 
• Does not require the location with subpixel accuracy. 

The color location tools in Vision measure the similarity between an idealized 
representation of a feature, called a model, and a feature that may be present in an 
image. A feature for color location is defined as a region in an image with specific 
colors. 

Color location is useful in many applications. Color location provides your application 
with information about the number of instances and locations of the template within 
an image. Use color location in the following general applications—inspection, 
identification, and sorting. 

Inspection 

Inspection detects flaws such as missing components, incorrect printing, and incorrect 
fibers on textiles. A common pharmaceutical inspection application is inspecting a 
blister pack for the correct pills. Blister pack inspection involves checking that all the 
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pills are of the correct type, which is easily performed by checking that all the pills 
have the same color information. Because your task is to determine if there are a fixed 
number of the correct pills in the pack, color location is a very effective tool. 

Figure A shows the template image of the part of the pill that contains the color 
information that you want to locate. Figure B shows the pills located in a good blister 
pack. Figure C shows the pills located when a blister pack contains the wrong type of 
pills or missing pills. Because the exact locations of the pills is not necessary for the 
inspection, the number of matches returned by color location indicates whether a 
blister pack passes inspection. 

Identification 

Identification assigns a label to an object based on its features. In many applications, 
the color-coded identification marks are placed on the objects. In these applications, 
color matching locates the color code and identifies the object. In a spring 
identification application, different types of springs are identified by a collection of 
color marks painted on the coil. If you know the different types of color patches that 
are used to mark the springs, color location can find which color marks appear in the 
image. You then can use this information to identify the type of spring. 

Sorting 

Sorting separates objects based on attributes such as color, size, and shape. In many 
applications, especially in the pharmaceutical and plastic industries, objects are 
sorted according to color, such as pills and plastic pellets. The following figure shows 
an example of how to sort different colored candies. Using color templates of the 
different candies in the image, color location quickly locates the positions of the 
different candies. 
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What to Expect from a Color Location Tool 

In automated machine vision applications, the visual appearance of inspected 
materials or components changes because of factors such as orientation of the part, 
scale changes, and lighting changes. The color location tool maintains its ability to 
locate the reference patterns despite these changes. The color location tool provides 
accurate results during the following common situations: pattern orientation and 
multiple instances, ambient lighting conditions, and blur and noise conditions. 

Pattern Orientation and Multiple Instances 

A color location tool locates the reference pattern in an image even if the pattern in the 
image is rotated or scaled. When a pattern is rotated or slightly scaled in the image, the 
color location tool can detect the following: 
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• The pattern in the image 
• The position of the pattern in the image 
• Multiple instances of the pattern in the image, if applicable 

Because color location only works on the color information of a region and does not 
use any kind of shape information from the template, it does not find the angle of the 
rotation of the match. It only locates the position of a region in the image whose size 
matches a template containing similar color information. 

Refer to the inspection section for an example illustrating pattern orientation and 
multiple instances. 

Ambient Lighting Conditions 

The color location tool finds the reference pattern in an image under conditions of 
uniform changes in the lighting across the image. Color location also finds patterns 
under conditions of non-uniform light changes, such as shadows. 

The following figure shows typical conditions under which the color location tool 
works correctly. Figure A shows the original template image. Figure B shows the same 
pattern under bright light. Figure C shows the pattern under poor lighting. 

Blur and Noise Conditions 

Color location finds patterns that have undergone some transformation because of 
blurring or noise. Blurring usually occurs because of incorrect focus or depth of field 
changes. 
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Concepts 

Color location is built upon the color matching functions to quickly locate regions 
with specific color information in an image. 

The color location functions extend the capabilities of color matching to applications 
in which the location of the objects in the image is unknown. Color location uses the 
color information in a template image to look for occurrences of the template in the 
search image. The basic operation moves the template across the image pixel by pixel 
and comparing the color information at the current location in the image to the color 
information in the template using the color matching algorithm. 

The color location process consists of two main steps—learning template information 
and searching for the template in an image. The following figure illustrates the general 
flow of the color location process. During the learning phase, the software extracts the 
color spectrum from the template image. This color spectrum is used to compare the 
color information of the template with the color information in the image. 

During the search step, a region the size of the template is moved across the image 
pixel by pixel from the top of the image to the bottom. At each pixel, the function 
computes the color spectrum of the region under consideration. This color spectrum is 
then compared with the template's color spectrum to compute a match score. 

The search step is divided into two phases. First, the software performs a coarse-to-
fine search phase that identifies all possible locations, even those with very low match 
scores. The objective of this phase is to quickly find possible locations in the image 
that may be potential matches to the template information. Because stepping through 
the image pixel by pixel and computing match scores is time consuming, the following 
techniques are used to speed up the search process. 

• Subsampling—When stepping through the image, the color information is taken 
from only a few sample points in the image to use for comparison with the 
template. This reduces the amount of data used to compute the color spectrum in 
the image, which speeds up the search process. 

• Step size—Instead of moving the template across the image pixel by pixel, the 
search process skips a few pixels between the each color comparison, thus 
speeding up the search process. The step size indicates the number of pixels to 
skip. For color location, the initial step size can be as large as half the size of the 
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template. 

The initial search phase generates a list of possible match locations in the image. In 
the second step, that list is searched for the location of the best match using a hill-
climbing algorithm. 

Related concepts: 

• Color Matching 

Color Pattern Matching Color Pattern Matching 

Use color pattern matching to quickly locate known reference patterns, or fiducials, in 
a color image. With color pattern matching, you create a model or template that 
represents the object you are searching for. Then your machine vision application 
searches for the model in each acquired image, calculating a score for each match. The 
score indicates how closely the model matches the color pattern found. Use color 
pattern matching to locate reference patterns that are fully described by the color and 
spatial information in the pattern. 
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When to Use 

Grayscale, or monochrome, pattern matching is a well-established tool for 
alignment, gauging, and inspection applications. In all of these application areas, color 
simplifies a monochrome problem by improving contrast or separation of the object 
from the background. Color pattern matching algorithms provide a quick way to locate 
objects when color is present. 

Use color pattern matching when the object under inspection has the following 
qualities: 

• The object contains color information that is very different from the background, 
and you want to find the location of the object in the image very precisely. For 
these applications, color pattern matching provides a more accurate solution than 
color location—because color location does not use shape information during the 
search phase, finding the locations of the matches with pixel accuracy is difficult. 

• The object has grayscale properties that are difficult to characterize or that are 
very similar to other objects in the search image. In such cases, grayscale pattern 
matching may not give accurate results. If the object has some color information 
that differentiates it from the other objects in the scene, color provides the 
machine vision software with the additional information to locate the object. 

The following figure illustrates the advantage of using color pattern matching over 
color location to locate the resistors in an image. Although color location finds the 
resistors in the image, the matches are not very accurate because they are limited to 
color information. Color pattern matching uses color matching first to locate the 
objects, and then pattern matching to refine the locations, providing more accurate 
results. 
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The following figure shows the advantage of using color information when locating 
color-coded fuses on a fuse box. Figure A shows a grayscale image of the fuse box. In 
the image of the fuse box in figure A, the grayscale pattern matching tool has difficulty 
clearly differentiating between fuse 20 and fuse 25 and will return close match scores 
because of similar grayscale intensities and the translucent nature of the fuses. In the 
color image, figure B, the addition of color helps to improve the accuracy and 
reliability of the pattern matching tool. 

The color pattern matching tools in Vision measure the similarity between an idealized 
representation of a feature, called a model, and the feature that may be present in an 
image. A feature is defined as a specific pattern of color pixels in an image. 

Color pattern matching is the key to many applications. Color pattern matching 
provides your application with information about the number of instances and 
location of the template within an image. Use color pattern matching in the following 
three general applications: gauging, inspection, and alignment. 

Gauging 

Many gauging applications locate and then measure or gauge the distance between 
objects. Searching and finding a feature is the key processing task that determines the 
success of many gauging applications. If the components you want to gauge are 
uniquely identified by their color, color pattern matching provides a fast way to locate 
the components. 

Inspection 

Inspection detects simple flaws, such as missing parts or unreadable printing. A 
common application is inspecting the labels on consumer product bottles for printing 

Machine Vision

358 ni.com



defects. Because most of the labels are in color, color pattern matching is used to 
locate the labels in the image before a detailed inspection of the label is performed. 
The score returned by the color pattern matching tool also can be used to decide 
whether a label is acceptable. 

Alignment 

Alignment determines the position and orientation of a known object by locating 
fiducials. Use the fiducials as points of reference on the object. Grayscale pattern 
matching is sufficient for most applications, but some alignment applications require 
color pattern matching for more reliable results. 

What to Expect from a Color Pattern Matching Tool 

In automated machine vision applications, the visual appearance of materials or 
components under inspection can change due to factors such as orientation of the 
part, scale changes, and lighting changes. The color pattern matching tool maintains 
its ability to locate the reference patterns and gives accurate results despite these 
changes. 

Pattern Orientation and Multiple Instances 

A color pattern matching tool locates the reference pattern in an image even when the 
pattern in the image is rotated and slightly scaled. When a pattern is rotated or scaled 
in the image, the color pattern matching tool detects the following features of an 
image: 

• The pattern in the image 
• The position of the pattern in the image 
• The orientation of the pattern 
• Multiple instances of the pattern in the image, if applicable 

Figure A shows a template image, or pattern. Figures B and C illustrate multiple 
occurrences of the template. Figure B shows the template shifted in the image. 
Figure C shows the template rotated in the image. 
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Ambient Lighting Conditions 

The color pattern matching tool finds the reference pattern in an image under 
conditions of uniform changes in the lighting across the image. Because color analysis 
is more robust when dealing with variations in lighting than grayscale processing, 
color pattern matching performs better under conditions of non-uniform light 
changes, such as in the presence of shadows, than grayscale pattern matching. 

Figure A shows the original template image. Figure B shows the same pattern under 
bright light. Figure C shows the pattern under poor lighting. 

Blur and Noise Conditions 

Color pattern matching finds patterns that have undergone some transformation 
because of blurring or noise. Blurring usually occurs because of incorrect focus or 
depth of field changes. 

Concepts 

Color pattern matching is a unique approach that combines color and spatial 
information to quickly find color patterns in an image. It uses the technologies behind 
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color matching and grayscale pattern matching in a synergistic way to locate color 
patterns in color images. 

Color Matching and Color Location 

Color matching compares the color content of an image or regions in an image to 
existing color information. The color information in the image may consist of one or 
more colors. To use color matching, define regions in an image that contain the color 
information you want to use as a reference. The machine vision functions then learn 
the 3D color information in the image and represents it as a 1D color spectrum. Your 
machine vision application compares the color information in the entire image or 
regions in the image to the learned color spectrum, calculating a score for each region. 
This score relates how closely the color information in the image region matches the 
information represented by the color spectrum. To use color matching, you need to 
know the location of the objects in the image before performing the match. 

Color location functions extend the capabilities of color matching to applications 
where you do not know the location of the objects in the image. Color location uses 
the color information from a template image to look for occurrences of the template in 
the search image. The basic operation moves the template across the image pixel by 
pixel and compares the color information at the current location in the image to the 
color information in the template, using the color matching algorithm. Because 
searching an entire image for color matches is time consuming, the color location 
software uses some techniques to speed up the location process. A coarse-to-fine 
search strategy finds the rough locations of the matches in the image. A more refined 
search, using a hill climbing algorithm, is then performed around each match to get 
the accurate location of the match. Color location is an efficient way to look for 
occurrences of regions in an image with specific color attributes. 

Grayscale Pattern Matching 

Vision grayscale pattern matching methods incorporate image understanding 
techniques to interpret the template information and use that information to find the 
template in the image. Image understanding refers to image processing techniques 
that generate information about the features of a template image. These methods 
include the following: 

• Geometric modeling of images 
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• Efficient non-uniform sampling of images 
• Extraction of rotation-independent template information 

Vision uses a combination of the edge information in the image and an intelligent 
image sampling technique to match patterns. The image edge content provides 
information about the structure of the image in a compact form. The intelligent 
sampling technique extracts points from the template that represent the overall 
content of the image. The edge information and intelligent sampling technique reduce 
the inherently redundant information in an image and improve the speed and 
accuracy of the pattern matching tool. In cases where the pattern can be rotated in the 
image, a similar technique is used, but with specially chosen template pixels whose 
values, or relative change in values, reflect the rotation of the pattern. The result is fast 
and accurate grayscale pattern matching. 

Vision pattern matching accurately locates objects in conditions where they vary in 
size (±5%) and orientation (between 0° and 360°) and when their appearance is 
degraded. 

Combining Color Location and Grayscale Pattern Matching 

Color pattern matching uses a combination of color location and grayscale pattern 
matching to search for the template. When you use color pattern matching to search 
for a template, the software uses the color information in the template to look for 
occurrences of the template in the image. The software then applies grayscale pattern 
matching in a region around each of these occurrences to find the exact position of the 
template in the image. The following figure illustrates the general flow of the color 
pattern matching algorithm. The size of the searchable region is determined by the 
software, based on the inputs you provide, such as search strategy and color 
sensitivity. 
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In-Depth Discussion 

There are standard ways to convert RGB to grayscale and to convert one color space to 
another. The transformation from RGB to grayscale is linear. However, some 
transformations from one color space to another are nonlinear because some color 
spaces represent colors that cannot be represented in other spaces. 

RGB to Grayscale 

The following equations convert an RGB image into a grayscale image on a pixel-by-
pixel basis: 

grayscale value = 0.299R + 0.587G + 0.114B 

This equation is part of the NTSC standard for luminance. An alternative conversion 
from RGB to grayscale is a simple average: 
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grayscale value = (R + G + B) / 3 

RGB and HSL 

There is no matrix operation that allows you to convert from the RGB color space to 
the HSL color space. The following equations describe the nonlinear transformation 
that maps the RGB color space to the HSL color space. 

V2 = √3(G − B) 
V1 = 2R − G − B 

L = 0.299R + 0.587G + 0.114B 

S = 255(1 – 3min(R, G, B) / (R + + B)) 

The following equations map the HSL color space to the RGB color space: 
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RGB and CIE XYZ 

The following 3 × 3 matrix converts RGB to CIE XYZ without applying gamma 
correction. 
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By projecting the tristimulus values on to the unit plane X + Y + Z = 1, color can be 
expressed in a 2D plane. The chromaticity coordinates are defined as follows: 

x = X / (X + Y + Z) 

y = Y / (X + Y + Z) 

z = Z / (X + Y + Z) 

You can obtain z from x and y by z = 1 – x + y. Hence, chromaticity coordinates are 
usually given as (x, y) only. The chromaticity values depend on the hue or dominant 
wavelength and the saturation. Chromaticity values are independent of luminance. 

The diagram from (x, y) is referred to as the CIE 1931 chromaticity diagram, or the CIE 
(x, y) chromaticity diagram, as illustrated in the bell curve of the following figure. 
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The three color components R, G, and B define a triangle inside the CIE diagram of the 
previous figure. Any color within the triangle can be formed by mixing R, G, and B. The 
triangle is called a gamut. Because the gamut is only a subset of the CIE color space, 
combinations of R, G, and B cannot generate all visible colors. 

To transform values back to the RGB space from the CIE XYZ space, use the following 
matrix operation: 

Notice that the transform matrix has negative coefficients. Therefore, some XYZ color 
may transform into R, G, B values that are negative or greater than one. This means 
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that not all visible colors can be produced using the RGB color space. 

RGB and CIE L*a*b* 

To transform RGB to CIE L*a*b*, you first must transform the RGB values into the CIE 
XYZ space. Use the following equations to convert the CIE XYZ values into the CIE 
L*a*b* values. 

L* = 116 × (Y/Yn)1/3 – 16 for Y/Yn > 0.008856 

L* = 903.3 × Y / Yn otherwise 

a* = 500(f(X / Xn) – f(Y / Yn)) 

b* = 200(f(Y / Yn) – f(Z / Zn)) 

where, 

f(t) = t1/3 for t > 0.008856 

f(t) = 7.787t + 16/116 otherwise 

Here Xn, Yn, and Zn are the tri-stimulus values of the reference white. 

L* represent the light intensity. Vision normalizes the result of the L* transformation to 
range from 0 to 255. The hue and chroma can be calculated as follows: 

Hue = tan−1(b * / a * ) 
∆ E * ab = √(a * )2 + (b * )2

 

Based on the fact that the color space is now approximately uniform, a color difference 
formula can be given as the Euclidean distance between the coordinates of two colors 
in the CIE L*a*b*. 

Chroma = √( ∆ L * )2 + ( ∆ a * )2 + ( ∆ b * )2
 

To transform CIE L*a*b* values to RGB, first convert the CIE L*a*b* values to CIE XYZ 
using the following equations: 
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X = Xn(P + a * / 500)3

 
Y = YnP3

 
Z = Zn(P − b * / 200)3

 

where 

P = (L * + 16) / 116 

Then, use the conversion matrix given in the RGB and CIE XYZ section to convert CIE 
XYZ to RGB. 

RGB and CMY 

The following matrix operation converts the RGB color space to the CMY color space. 

Normalize all color values to lie between 0 and 1 before using this conversion 
equation. To obtain RGB values from a set of CMY values, subtract the individual CMY 
values from 1. 

RGB and YIQ 

The following matrix operation converts the RGB color space to the YIQ color space. 

The following matrix operation converts the YIQ color space to the RGB color space. 
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Related concepts: 

• Pattern Matching 
• Color Location 
• Color Matching 

Color Segmentation Color Segmentation 

Color segmentation compares the color feature of each pixel with the color features of 
surrounding pixels or a trained color classifier to segment an image into color 
regions. Use color segmentation to separate color objects of interest from background 
clutter. 

You can use color segmentation in a wide variety of machine vision applications, such 
as the following: 

• Inspection—Partition an image into different regions based on the color of the part 
in each region. 

• Counting—Segment an image to quickly count the number of objects with a 
particular color composition. The following figures illustrate a color segmentation 
that can be used to count the number of bottles that contain each color of liquid. 

A 
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B 

Concepts 

Color segmentation involves three stages. 

1. Train a color classifier with color samples for your application. 
2. Segment an image into different color regions. Color segmentation consists of the 

following steps. 
a. Move an inspection window across the image to calculate the color feature of 

each pixel. 

1. Pivot Pixel 
2. Inspection Window 
3. Image 

b. Compare the color feature for each inspection window with the color feature of 
neighboring windows. 

c. If the closest distance between the inspection window and a neighboring 
window is less than maximum distance, apply the color label from the pivot 
pixel in the neighboring window to the pivot pixel in the inspection window. 
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i. Distance Between Neighboring Color Features Exceeds Maximum Distance 
ii. Distance Between Neighboring Color Features Does Not Exceed 

MaximumDistance 
d. If the closest distance between the inspection window and a neighboring 

window is greater than maximum distance, use the color classifier to label the 
pivot pixel in the inspection window. 

1. Distance Between Neighboring Color Features Exceeds Maximum Distance 

If the identification score for the inspection window is less than the minimum 
identification score, the color classification algorithm does not label the pivot 
pixel. 

3. Filter segmented regions to eliminate regions that do not meet the specified size 
requirements. 

In-Depth Discussion 

Maximum distance refers to the maximum distance allowed between the color 
features of pivot pixels with the same color label. Maximum distance is calculated from 
the trained color classifier as: 

MAximum Distance = Distance Between Two Closest Trained Classes × Step Size
Window Size  

An aggressive maximum distance defines the distance between the two closest trained 
classes as the median distance between samples in each class. A conservative 
maximum distance defines the distance between the two closest trained classes as the 
smallest distance between samples in each class. A high maximum distance typically 
allows more pixels to use the color label of neighboring pixels, which avoids using the 
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color classifier and decreases the time required to perform color segmentation. A high 
maximum distance reduces the accuracy of color segmentation. 

Color segmentation can be time-consuming if it operates on each pixel. To increase the 
speed of color segmentation increase the step size, which increases the offset between 
each inspection window, or train color samples at a lower color resolution to reduce 
the size of the color feature for each color class. 

Related concepts: 

• Color Classification 

Deep Learning Deep Learning 
Introduction 

Vision Development Module supports loading and executing third party Deep Learning 
framework models. The models from the following Deep Learning frameworks are 
supported. 

• TensorFlow Inference Engine 
• OpenVINO™ Inference Engine 

The Deep Learning Inference Engines enable user to: 

• Load pre-trained Deep Learning Models into Software and Hardware ecosystem 
• Run loaded models in Windows and Real Time targets 
• Supply Vision Image and LabVIEW data to learned models 

Supported Platforms 

The following platforms are supported: 

Development Environments 

• LabVIEW 64-bit 

TensorFlow Runtime and Real Time Targets Support: 
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• Windows 64-bit 
• NI Linux RT 64-bit 

OpenVINO™ Runtime and Real Time Targets Support: 

• Windows 64-bit (Windows 7 Embedded Standard is not supported) 
• NI Linux RT 64-bit 

When to Use 

The Deep Learning Inference Engines provide the ability to load and execute third 
party framework models. These functions can be used when there are pre-trained 
models present and there is a need to use them along with other Vision functions. 
They can also be deployed in Real Time targets. The prerequisites for using the Deep 
Learning Inference Engines are: 

• Pre-trained models from supported libraries 
• The model must be a Frozen Model or a Saved Model 

Deep Learning Inference Engines Deep Learning Inference Engines 

Vision Development Module supports TensorFlow and OpenVINO™ Inference Engines. 

User Workflow 

A new Deep Learning Model or topology is created by the developers. This model is 
then trained using the data acquired from the dataset. The trained model so obtained 
maybe further deployed on Targets using the LabVIEW APIs provided by the Vision 
Development Module. For more details about the inference engines workflow, see the 

Note Model Training is currently not supported with Vision Development 
Module. 
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Development Workflow section. 

Development Workflow 

The following workflow is applicable in LabVIEW using Vision functions. 

Supplying Input Data 

Deep Learning libraries usually accepts data as a Tensor (a representation of multi-
dimensional arrays). Once a model is loaded using Vision functions, it understands 
input and output tensor configurations for the loaded models. Supplied data to the 
Vision function is converted to input node tensors and fed to the model while running 
inference. The following table depicts input data compatibility: 

NI Data Type Tensor Data 
Type 

Default 
Expected 
Tensor 
Dimension 

Comment 

NI Vision Image 
(U8, U16, I16, 
SGL) 

Unsigned 
Integer 8 / 16 
/ Float 

4 [1*X*Y*1] 
Error displayed for dimension mismatch. Data is 
converted if tensor expects Float data type. If tensor 
is not Float, it must be same as Image Type. 

NI Vision Image 
(RGB32) 

Unsigned 
Integer 8 / 16 
/Float 

4 [1*X*Y*3] 
Error displayed for dimension mismatch. Data is 
converted if tensor expects Float data type. If tensor 
is not Float, it must be same as Image Type. 

Array (U8, I8, 
I16, U16, I32, 
I64, Float, 
Double) 

U8, I8, I16, 
U16, I32, I64, 
Float, 
Double 

Same as 
supplied 

Error is displayed if there is a mismatch in 
dimensions or datatype. 

Machine Vision

© National Instruments 375



NI Vision Image 
(RGB64, 
Complex, HSL) 

- - Unsupported 

Array 
(Complex, U32, 
U64) 

- - Unsupported 

Interpreting Output Data 

The output data from the model is converted into single dimensional Float Array in 
LabVIEW. The dimensional information of the original data from the graph is also given 
out. The user needs to construct back the data from this LabVIEW output. 

Tensor Data Type NI Data 
Type Comment 

Array (U8, I8, I16, U16, U32, I32, U64, 
I64, Float, Double) Float Data is converted. Data loss may result for 

Double to Float conversion. 

Frozen Model(*.pb) 

The supported model file format for Frozen Model is Protocol Buffer (.pb). This format 
is created and maintained by Google™. If Saved Models are supplied, a folder must be 
provided with Protocol Buffer files and other intermediate files. This is supported only 
for TensorFlow. 

Saved Models 

These are primarily folders which must be provided with Protocol Buffer files and 
other intermediate files. This is supported only for TensorFlow. 
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Intermediate Representation (*.xml) 

These are primarily xml files with graph information about the model. They are 
compulsorily accompanied with same named “.bin” file that contains weights and 
biases relevant for the defined model. This format is supported only for OpenVINO™ 
Deep Learning and Deployment toolkit and is maintained by Intel. 

Reference Link: https://en.wikipedia.org/wiki/Protocol_Buffers 

The supported LabVIEW datatypes are: 

1. NI Vision Image 
◦ U8, U16, RGB32, SGL 

2. LabVIEW Arrays 

Model Optimizer (OpenVINO™ only) 

Model Optimizer, as a part of OpenVINO™ toolkit is a cross-platform python based 
command line tool that facilitates the transition between the training and deployment 
environment, performs static model analysis, and adjusts deep learning models for 
optimal execution on end-point target devices. The following diagram summarizes the 
workflow. 

Note For more details about converting a model to OpenVINO model using 
Model Optimizer and accessing the Readme, use the command cd 
%NI_MO_INSTALL_PATH% or go to C:\Users\Public\Documents\
National Instruments\model_optimizer\ 
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A python script convert2ir.py is available as part of the installation which will help 
users convert models of different topologies easily without requiring to go into 
complex set of parameters that model optimizer requires to convert, for example, a 
tensorflow model to an IR model. The model optimizer can convert TensorFlow and 
Caffe Models. 

Related information: 

• TensorFlow 
• https://en.wikipedia.org/wiki/Protocol_Buffers 

In-Depth Discussion In-Depth Discussion 

This section provides additional information you may need. 

Case Study 

The following model is considered for the case study: 

The above model/graph accepts a single RGB image of size 100x100 as input and 
classifies it into 10 classes. For example, let us consider that the graph was saved as 
Example.pb file. 
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Using High level APIs/ Reference Design APIs 

Vision provides the following high-level API for the Deep Learning Interface: 

• Classification (IMAQ DL Model Classify Image) 

This high-level API provides fixed design for supplying and receiving data. This can be 
used as a reference API to create a custom high level API. 

Classification 

The API accepts Vision Image as an Input. In this case the loaded model's input node 
should accept tensors of similar dimensions. The output node data must be two-
dimensional Float array. The following diagram depicts input and output data 
dimension requirements. 

X— Image Width 

Y— Image Height 

C— Channels (3 for RGB and 1 for Grayscale) 

N— Number of Classes 

The API will display an error if the input image dimensions does not match with the 
input node tensor dimensions. It is recommended to develop a graph which accepts 
any image dimension and resize them in the graph itself. 
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Object Detection 

The API accepts Vision Image as an Input. In this case the loaded model's input should 
accept tensor of similar dimensions. There must be 4 output nodes and must follow 
the order below. 

• Number of Matches - Float (dimensional float array). 
• Confident Scores for Matches - Two Dimensional Float Array. 
• Label Index of Matches - Two Dimensional Float Array. 
• Locations for Matches - Three Dimensional Foat Array. 

◦ Each leaf row contains locations as [Top, Left, Bottom, Right]. 
◦ Coordinates ranges between 0 to 1 (unit bounding boxes). 

X— Image Width 

Y— Image Height 

C—Channels (3 RGB and 1 for Grayscale) 

O—Number of detected objects 

The object detection API converts output node data to LabVIEW data, while doing so it 
also converts unit bounding boxes to supplied image dimensions. This API will display 
an error if input image dimensions does not match with the input node tensor 
dimensions. It is recommended to develop a graph which accepts any image 
dimension and resize them in the graph itself. 

Error and exception handling 

Model Importer functions propagate errors from third party libraries to LabVIEW. The 
error description shows the actual error code and explanation received from the third 
party library. 

Related information: 
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• Pretrained Models and Algorithms 

Classification Classification 
This section contains information about classification. 

Introduction 36 Introduction 36 

Classification identifies an unknown sample by comparing a set of its significant 
features to a set of features that conceptually represent classes of known samples. A 
particle classifier uses feature vectors to identify samples based on their shape. A color 
classifier uses color features to identify samples based on their color. 

Classification involves two phases: training and classifying. Training is a phase during 
which you teach the machine vision software the types of samples you want to classify 
during the classifying phase. You can train any number of samples to create a set of 
classes, which you later compare to unknown samples during the classifying phase. 
You store the classes in a classifier file. Training might be a one-time process, or it 
might be an incremental process you repeat to add new samples to existing classes or 
to create several classes, thus broadening the scope of samples you want to classify. 

Classifying is a phase during which your custom machine vision application classifies 
an unknown sample in an inspection image into one of the classes you trained. The 
classifying phase classifies a sample according to how similar the sample features are 
to the same features of the trained samples. 

When to Use 

The need to classify is common in many machine vision applications. Typical 
applications involving classification include the following: 

• Sorting—Sorts samples of varied shapes or colors. For example, a classifier can 
sort different items on a conveyor belt into different bins. A particle classifier can 
sort mechanical parts of different shapes, and a color classifier can sort items of 
different colors. Example outputs of a sorting or identification application could be 
user-defined labels of certain classes. 

• Inspection—Inspects samples by assigning each sample an identification score 
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and then rejecting samples that do not closely match members of the training set. 
Example outputs of a sample inspection application could be Pass or Fail. 

Training the Classifier Training the Classifier 

The following figure illustrates the process of training and testing a classifier. 

Based on your specific application, predefine and label a set of training samples that 
represent the properties of the entire population of samples you want to classify. 
Configure the classifier by selecting the proper classification method and 
distance metric for your application. For example, you can configure the Particle 
Classifier to distinguish the following: 

• Small differences between sample shapes independent of scale, rotation, and 
mirror symmetry, 

• Shapes that differ only by scale, 
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• Shapes that differ only by mirror symmetry, 
• Any combination of the above points. 

If testing indicates that the classifier is not performing as expected, you can restart the 
training process by collecting better representative samples or trying different training 
settings. In some machine vision applications, new parts or colors need to be added to 
an existing classification system. This can be done by incrementally adding samples of 
the new parts or colors to the existing classifier. 

Related concepts: 

• Nearest Neighbor 

Binary Particle Classification Binary Particle Classification 

Use binary particle classification to identify samples based on their shape. 

Ideal Images for Classification 

Images of samples acquired in a backlit environment are ideal for particle 
classification. The following figures show examples images of backlit samples. 
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The following figures show samples that are not ideal for particle classification 
because they contain several unconnected parts or are grayscale and have an internal 
pattern. 

General Classification Procedure 

Consider an example application whose purpose is to sort nuts and bolts. The classes 

Machine Vision

384 ni.com



in this example are Nut and Bolt. 

Before you can train a classification application, you must determine a set of features, 
known as a feature vector, on which to base the comparison of the unknown sample to 
the classes of known samples. Features in the feature vector must uniquely describe 
the classes of known samples. An appropriate feature vector for the example 
application would be {Heywood Circularity, Elongation Factor}. 

The following table shows good feature values for the nuts and bolts shown in the 
subsequent figure. The closer the shape of a sample is to a circle, the closer its 
Heywood circularity factor is to 1. The more elongated the shape of a sample, the 
higher its elongation factor. 

Class Average HeywoodCircularity Average ElongationFactor 

Nut 1.109 1.505 

Bolt 1.914 3.380 

The class Nut is characterized by a strong circularity feature and a weak elongation 
feature. The class Bolt is characterized by a weak circularity feature and a strong 
elongation feature. 

After you determine a feature vector, gather examples of the samples you want to 
classify. A robust classification system contains many example samples for each class. 
All the samples belonging to a class should have similar feature vector values to 
prevent mismatches. 

After you have gathered the samples, train the classifier by computing the feature 
vector values for all of the samples. Then you can begin to classify samples by 
calculating the same feature vector for the unknown sample and comparing those 
values to the feature vector values of the known samples. The classifier assigns the 
unknown sample a class name based on how similar its feature values are to the 
values of a known sample. 

Illustration A shows a binary image of nuts and bolts. Illustration B shows these 
samples classified by circularity and elongation. 
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1.  Circularity 
2. Elongation 
3. Bolts 
4. Nuts 

Preprocessing 

Preprocessing operations prepare images for better feature extraction. Preprocessing 
includes noise filtering; thresholding; rejecting particles that touch the image border; 
and removing small, insignificant particles. 

For best results, acquire the inspection images under the same lighting conditions in 
which you acquired the training images. Also, apply the same preprocessing options to 
the inspection images that you used to preprocess the training images. 

Feature Extraction 

Feature extraction computes the feature vector in the feature space from an input 
image. Feature extraction reduces the input image data by measuring certain features 
or properties that distinguish images of different classes. Which features to use 
depends on the goal of the classification system. The features could be raw pixel 
values or some abstract representation of the image data. For identification 
applications, select features that most efficiently preserve class separability—feature 
values for one class should be significantly different from the values for another class. 
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For inspection applications, select features that distinguish the acceptable from the 
defective. 

The Particle Classifier classifies samples using different types of shape descriptors. A 
shape descriptor is a feature vector based on particle analysis measurements. Each 
type of shape descriptor contains one or more shape measurements made from a 
sample. 

The default Particle Classifier shape descriptor is based on shape characteristics that 
are invariant to scale changes, rotation, and mirror symmetry. Another type of shape 
descriptor is based on the size of the sample and is used along with the default shape 
descriptor to distinguish samples with the same shape but different scale, such as 
different sized coins. The Particle Classifier also uses a reflection-dependent shape 
descriptor to distinguish samples that are the same shape but exhibit mirror 
symmetry, such as a lowercase letter p and a lowercase letter q. The Particle Classifier 
uses these different types of shape descriptors in a multi-classifier system to achieve 
scale-dependent classification, reflection-dependent classification, or scale and 
reflection-dependent classification. 

Invariant Features 

The Particle Classifier uses the following features for scale-invariant, rotation-
invariant, and reflection-invariant shape descriptors: 

• Feature 1 describes the circularity of the sample. 
• Feature 2 describes the degree of elongation of the sample. 
• Feature 3 represents the convexity of the sample shape. 
• Feature 4 is a more detailed description of the convexity of a sample shape. 
• Feature 5 is used for the discrimination of samples with holes. 
• Feature 6 is used for more detailed discrimination of samples with holes. 
• Feature 7 represents the spread of the sample. 
• Feature 8 represents the slenderness of the sample. 

Classification 

The Particle Classifier can apply the following classification algorithms: Minimum 
Mean Distance, Nearest Neighbor, and K-Nearest Neighbor. Each of these methods may 
employ different distance metrics: Maximum distance (L∞), Sum distance (L1), and 
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Euclidean distance (L2). 

Cascaded Classification System 

In a cascaded classification system, cascaded multiple classifiers make classification 
decisions based on multiple classification stages. Classifier 1 outputs several 
candidates for Classifier 2 in the second stage. Classification is based on different 
features. 

Parallel Classification Systems 

Combining results from multiple classifiers may generate more accurate classification 
results than any of the constituent classifiers alone. Combining results is often based 
on fixed combination rules, such as the product and/or average of the classifier 
outputs. 

The Particle Classifier uses a parallel classification system with three classifiers, as 
illustrated in the following figure. Two classifiers are used for scale-dependent 
classification. One of these classifiers uses scale-invariant features, and the other uses 
a scale-dependant feature. Additionally, the Particle Classifier uses a third classifier to 
distinguish samples with mirror symmetry. The outputs of the classifiers are combined 
using user-specified weights to get the result. 

Related concepts: 

• Nearest Neighbor 

Color Classification Color Classification 

Use color classification to identify samples based on their color. 
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Concepts 

A color classifier has a training phase and a classifying phase. In the training phase, 
you provide the classifier with known samples. A know sample consists of a region in 
the image containing the color you want the classifier to learn and a label for the color. 
For every sample that is added during the training phase, the color classifier calculates 
a color feature and assigns the associated class label to the feature. Eventually, all the 
trained samples (color feature with the label) added to the classifier are saved into a 
file which represents a trained color classifier. 

After you train the classifier, you can classify regions in an image into their 
corresponding classes for color identification and color inspection type machine vision 
applications. In the classifying phase, the classification engine calculates the color 
feature of the sample that you want to identify and classifies them among trained 
sample using one of the existing classification algorithms. Vision color classification 
uses the same classification algorithms as the particle classifier including the 
Minimum Mean Distance, Nearest Neighbor, and K-Nearest Neighbor classifiers. 

Sample Images 

The following figure shows samples that are not ideal for color classification because 
they include a large amount of background color. 

Samples with only one hue (samples of a pure color) are also not ideal. Samples 
should include enough variation to capture any close change in hue. 

The following figure shows a set of images that are ideal for color classification. Each 
image has a textured color pattern that illustrates the range of colors for each class. 
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Preprocessing 

There are no preprocessing algorithms associated with the NI Color Classifier. For 
example, if you supply a color sample that includes background regions, then the 
background color is included in the calculated color feature. You must use separate 
preprocessing algorithms to separate the background region from the color sample 
before you add the color sample to the NI Color Classifier. 

Feature Extraction 

The Color Classifier uses the HSL color space to calculate a color feature for every 
sample to be trained or classified. The color feature represents the three dimensional 
color information of the sample in a one dimensional format. The Color Classifier 
calculates the color feature according to the following steps: 

1. Convert the color sample to the HSL color space. 
2. Calculate the hue, saturation, and luminance histograms of the color sample. The 

hue and saturation histograms each contain 256 values. 
3. Reduce the luminance histogram to 8 values which are suppressed by 12.5%. By 

Note Because the Color Classifier supports all closed ROI types, you can use 
any closed shape of a color region as a sample. 
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suppressing the luminance histogram, the Color Classifier accentuates the color 
information for the sample. 

4. Combine the 520 hue, saturation, and luminance values to produce a high 
resolution color feature. 

5. Obtain medium and low resolution color features by applying a dynamic mask to 
the high resolution color feature. The medium and low resolution color features 
are subsets of the high resolution color feature. The medium resolution color 
feature contains 128 hue and saturation values and 8 luminance values for a total 
of 136 values. The medium resolution color feature contains 64 hue and saturation 
values and 8 luminance values for a total of 72 values. 

You can select a high resolution, medium resolution, or low resolution color feature. 
Select the medium or low resolution color features to speed up color classification. 

The dynamic mask that is applied to the high resolution color feature to produce the 
medium and low color features selects the hue and saturation values that most 
distinctly differentiate the color class from other color classes. The dynamic mask 
varies based on the trained color samples. The Color Classifier calculates the dynamic 
mask according to the following steps: 

1. Calculate the mean hue and saturation histograms For each class label based on 
trained samples. 

2. Calculate the standard deviation on the mean histogram values across all the class 
labels. 

3. Identify the 128 locations in the mean histograms with the highest standard 
deviation values to produce the medium resolution color feature. 

4. Identify the 64 locations in the mean histograms with the highest standard 
deviation values to produce the low resolution color feature. 

5. Ensure that the dynamic mask contains at least one significant hue value and one 
significant saturation value for the class. 

The following figure illustrates example values of medium resolution and low 
resolution masks for an example class. 

Note Because it suppresses the luminance histogram, the NI Color 
Classifier cannot identify more than eight pure gray colors. 
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Hue Saturation Luminance 

High 

512 of 512 locations enabled 512 of 512 locations enabled 8 locations 

Medium 

128 of 512 locations enabled 128 of 512 locations enabled 8 locations 

Low 

64 of 512 locations enabled 64 of 512 locations enabled 8 locations 

The Color Classifier stores the high resolution color features for each sample in the 
classifier file. If you select a medium or low resolution color feature, the Color 
Classifier stores the dynamic mask for the medium or low resolution feature with the 
classifier file. 

Classification 

During classification, the Color Classifier calculates the high resolution color feature 
for each class, then applies any medium or low resolution mask stored in the classifier 
file to produce the final color feature. The mask is applied to trained samples and the 
color sample to be classified. 

The general concepts of the general classification procedure for binary particle 
classification also apply to color classification. 

Related concepts: 

• Binary Particle Classification 
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Nearest Neighbor Nearest Neighbor 

Nearest neighbor classification includes Nearest Neighbor, K-Nearest Neighbor, and 
Minimum Mean Distance algorithms. The most intuitive way of determining the class 
of a feature vector is to find its proximity to a class or features of a class using a 
distance function. Based on the definition of the proximity, there are several different 
algorithms, as follows. 

Distance Metrics 

The Particle Classifier and the Color Classifier provide three distance metrics: 
Euclidean distance, Sum distance, and Maximum distance. 

Let X = [x1, x2, . . . xn] and Y = [y1, y2, . . . yn] be the feature vectors. 

Euclidean distance (L2) d(X, Y) = √∑
i = 1

n

(Xi − Yi)2

 

Sum distance, also known as the City-Block metric or Manhattan metric 
(L1) 

d(X, Y) = ∑i = 1

n
(Xi − Yi)

 

Maximum distance (L∞) d(X, Y) = max
i

(Xi − Y1)
 

Nearest Neighbor Classifier 

In Nearest Neighbor classification, the distance of an input feature vector X of 
unknown class to a class Cj is defined as the distance to the closest sample that is used 
to represent the class. 

d(X, Cj) =
min

i
d(X, Xi

j)
 

where d(X,Xi 
j) is the distance between X and Xi 

j. 

The classification rule assigns a pattern X of unknown classification to the class of its 
nearest neighbor. 
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X ∈ Class Cj, if d(X, Cj) =
min

i
d(X, Ci)

 

Nearest neighbor classification is the most intuitive approach for classification. If 
representative feature vectors for each class are available, Nearest Neighbor 
classification works well in most classification applications. 

In some classification applications, a class may be represented by multiple samples 
that are not in the same cluster, as shown in the following figure. In such applications, 
the Nearest Neighbor classifier is more effective than the Minimum Mean Distance 
classifier. 

o = Class 1 

x = Class 2 

K-Nearest Neighbor Classifier 

In K-Nearest Neighbor classification, an input feature vector X is classified into class Cj 
based on a voting mechanism. The classifier finds the K nearest samples from all of the 
classes. The input feature vector of the unknown class is assigned to the class with the 
majority of the votes in the K nearest samples. 

The outlier feature patterns caused by noise in real-world applications can cause 
erroneous classifications when Nearest Neighbor classification is used. As the 
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following figure illustrates, K-Nearest Neighbor classification is more robust to noise 
compared with Nearest Neighbor classification. With X as an input, K = 1 outputs Label 
1, and K = 3 outputs Label 2. 

Minimum Mean Distance Classifier 

Let {X j
1,X j

2, . . . ,X j
nj} be nj feature vectors that represent class Cj. Each feature vector 

has the label of class j that you have selected to represent the class. The center of the 
class j is defined as 

Mj = 1
nj ∑i = 1

nj
Xj

i
 

The classification phase classifies an input feature vector X of unknown class based on 
its distance to each class center. 

X ∈ Class Cj, if d(X, Mj) =
min

i
d(X, Mi)

 

where d(X,Mj) is defined as the distance function based on the distance metric selected 
during the training phase. 
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In applications that have little to no feature pattern variability or a lot of noise, the 
feature patterns of each class tend to cluster tightly around the class center. Under 
these conditions, Minimum Mean Distance classifiers perform effectively—only the 
input vector distances to the centers of the classes need to be calculated instead of all 
the representative samples in real-time classification. 

Support Vector Machines Support Vector Machines 

A Support Vector Machine (SVM) is a supervised learning method that generalizes a 
large set of trained samples into a smaller number of support vectors to predict the 
class of unknown samples. 

A SVM classifier is mathematically more complex than a distance-based classifier. 
However a SVM classifier has better generalization capabilities than a distance-based 
classifier, and is faster when the sample set is large because the SVM classifier operates 
only on the support vectors. 

When to use 

Use a SVM classifier in the following types of applications: 

• The application has one class of good samples but an unknown number of classes 
for bad samples. An example of this type of application is defect detection. For this 
type of application, use a one-class SVM classifier to train samples of the known 
good class. Samples, such as defects, that cannot be classified as the known class 
are classified as unknown. 

• The application requires a large number of training samples. During training, the 
SVM classifier identifies support vectors for the training samples. During 
classification the SVM classifier operates only on the support vectors, which 
reduces the time required for classification. 

In-Depth Discussion 

The SVM algorithm builds a model to classify samples. The model represents the 
samples in a multi-dimensional space where the samples are separated by the 
maximum possible distance. For example, the following figure illustrates an 
application that involves linearly-separable two classes represented in a two-
dimensional space. 
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1. Samples of Class A 
2. Samples of Class B 
3. Support Vectors 
4. Hyperplane 
5. Margin 

The SVM algorithm uses a quadratic function to identify the support vectors for each 
class. A support vector is a sample in one class that is closest to another class. The SVM 
algorithm then identifies a hyperplane that separates the support vectors of each 
class. The distance between the support vector and the hyperplane is called the 
margin. The SVM algorithm selects a support surface that produces the largest 
possible margin for each support vector. 

Training 

When you train the SVM classifier, the SVM algorithm uses an iterative process to 
optimize the support vector function. You can control the optimization by using the 
tolerance parameter in the software. Training is terminated when the gradient of the 
optimized function is less than or equal to tolerance. A tolerance value that is too high 
may cause the SVM algorithm to terminate training before the support vector function 
is adequately optimized. A tolerance value that is too low will cause the SVM algorithm 
to try to achieve a very high level of optimization, which may be too time-consuming 
and computationally expensive. 

Classification 

When you use the SVM classifier, the SVM algorithm determines the class of an 
unknown sample by comparing it with the support vectors of the trained samples. The 
SVM algorithm uses the following formula to classify an unknown sample x: 
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sgn(∑ yiaiKi(xi, x) + b) 
where: 

• yi is the class association (–1 or +1), 
• ɑi is the weight coefficient, 
• K is the kernel function xi is the number of support vectors, 
• b is the distance of the hyperplane from origin. 

Classification speed depends on the number of support vectors and the selected 
kernel function. The weight coefficient ɑi, which is an output of the optimized support 
vector function, determines the number of support vectors. If the weight coefficient of 
a sample is not equal to 0, the sample is a support vector. 

Multi-Class SVM 

SVM classification typically involves two classes. For applications that involve more 
than two classes, the SVM algorithm uses a one-versus-one approach. In a one-versus-
one approach, the algorithm creates a binary classification model for every possible 
combination of classes, so that n number of classes produces n × (n – 1)/2 
classification models. During classification, the algorithm uses a voting mechanism to 
identify the best class. If the voting mechanism identifies multiple classes, the 
algorithm selects the class that is closest to the sample. 

Models 

The following sections describe the models that the SVM algorithm uses to classify 
samples. Select a model based on the classes involved in your application. For 
applications that involve a single class, such as texture defect detection, select the 
one-class model. For applications that involve multiple classes, select the C-SVC or nu-
SVC models. For applications that involve multiple classes, always start with the nu-
SVC model. 

C-SVC 

The C-SVC model allows the SVM algorithm to clearly separate samples that are 
separated by a very narrow margin. Training involves minimizing the error function: 
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min

w, b, ξ
1
2 WTW + C∑

y = 1

I

ξi

 

Subject to Yi(WTK(Xi) + b) ≥ 1 – ξi; ξi ≥ 0, i = 1 . . . l 

where: 

• W is the normal vector of the hyperplane to origin, 
• C is the cost parameter, 
• ξ is the slack variable. 

If the SVM algorithm cannot define a clear margin, then it uses the cost parameter to 
allow some training errors and produce a soft margin. If the cost value is too high it 
prohibits training errors, producing a narrow margin and rigid classification. 

Nu-SVC 

In the Nu-SVC model, the nu parameter controls training errors and the number of 
support vectors. Training involves minimizing the error function: 

min

w, b, ξ
1
2 WTW − vp + i

l ∑
i = 1

I

ξi

 

Subject to Yi(WTK(Xi) + b) ≥ ρ – ξi; ξi ≥ 0, i = 1 . . . l;ρ ≥ 0 

where: 

• W is the normal vector of the hyperplane to origin, 
• v is the nu parameter, 
• ξ is the slack variable. 

The nu value specifies both the maximum ratio of training errors and the minimum 
number of support vectors relative to the number of samples. Nu must be greater than 
0 and cannot exceed 1. A higher nu value increases tolerance for variation in the 
texture, but may also increase tolerance for texture defects. If nu is too high, training 
produces too many training errors to be useful. 
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One-Class SVM 

In the one-class model, the SVM algorithm considers the spatial distribution 
information for each sample to determine whether the sample belongs to the known 
class. Training involves minimizing the error function: 

min

w, b, ξ
1
2 WTW − p + 1

vl ∑
i = 1

I

ξi

 

Subject to WTK(Xi) ≥ ρ – ξi; ξi ≥ 0, i = 1 . . . l;ρ ≥ 0 

where: 

• W is the normal vector of the hyperplane to origin, 
• v is the nu parameter, 
• ξ is the slack variable. 

Kernels 

A SVM classifier is a linear classifier. Typically, a SVM classifier uses a linear kernel, 
which is the product of the sample feature vector multiplied by the sample support 
vector. A SVM classifier can also use the following nonlinear kernels. 

Polynomial (Gamma × Kernel(xi, x) + Coefficient)Degree

 

Radial BasisFunction (RBF) e−Gamma(xi + x)2

 

Gaussian 
e

−
(xi − x)2

2 × Sigma2
 

Use a nonlinear kernel to transform samples with nonlinear feature information to a 
dimension where the feature information is linearly separable, as illustrated in the 
following figures. 
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A 

B 

C 

Figure A illustrates how a polynomial kernel separates nonlinear feature information. 
Figure B illustrates how a RBF kernel separates nonlinear feature information . Figure C 
illustrates the clearly devisable nonlinear feature information obtained after using a 
nonlinear kernel to transform the sample to a dimension where the feature 
information is linearly separable. 

Choosing the Right Parameters 

The following list provides information for selecting the right SVM parameters for your 
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application. 

• Model—If your application involves only one class, use the one-class model. If your 
application involves more than one class, always start with the nu-SVC model. 

• Tolerance—Specifies the maximum gradient of the quadratic function used to 
compute support vectors. Training is terminated when the gradient of the 
optimized function is less than or equal to the tolerance value. The default value is 
0.001. You typically do not need to change this value. 

• nu—Specifies both the maximum ratio of training errors and the minimum number 
of support vectors relative to the number of samples. Values must be greater than 
0 and cannot exceed 1. The default value is 0.1 A higher nu value increases 
tolerance for variation in the texture, but may also increase tolerance for texture 
defects. If the texture classifier does not perform as expected because the trained 
texture samples do not represent every possible variation of the texture, try 
increasing the value of nu. 

• Cost—Specifies the penalty for training errors. If the cost value is too high it 
prohibits training errors, producing a narrow margin and rigid classification. 
Decrease the cost value to allow more training errors and produce a softer margin 
between classes. 

• Kernel—Specifies the kernel that the classifier uses. RBF is the default value. In 
general, you do not need to modify this setting. If the number of sample features is 
high, try the linear kernel. 

• Degree—Specifies the degree of the polynomial kernel. In general, select a value 
less than 10. 

• Gamma—Specifies the gamma value for the polynomial and RBF kernels. A high 
value requires more support vectors to classify the sample. Use a high value for 
samples with regularly distributed feature information, and a low value for 
samples with irregularly distributed feature information. You may need to change 
this value to support the values selected for Cost or nu. For example, if you specify 
a high nu value, which raises the minimum number of support vectors, you may 
also need to increase the value of Gamma. 

If you use a custom classifier, specify a feature vector value for the custom classifier 
that is greater than 0 but less than 1. Scaling the feature vector reduces overflow issues 
and improves the classification rate. 
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Custom Classification Custom Classification 

You can define a custom feature extraction process for specific machine vision 
applications using Vision. 

When to Use 

Typical applications include sorting and inspection applications for which you can 
define a feature descriptor to represent the different classes in a specific application. 
Examples of such feature descriptors include statistics about the grayscale pixel 
distribution in an image, measurements from a Vision gauging tool, or color spectra 
from Vision color learning algorithms. 

Concepts 

With custom classification, you create a classifier by training it with prelabeled training 
feature vectors. NI Vision custom classification uses the same classification algorithms 
as the Particle Classifier, including the Minimum Mean Distance, Nearest Neighbor, and 
K-Nearest Neighbor classifications. 

In-Depth Discussion In-Depth Discussion 

This section provides additional information you may need for making a successful 
classification application. 

Training Feature Data Evaluation 

A good training data set should have both small intraclass variation and large 
interclass variation. The NI Particle Classifier outputs an intraclass deviation array to 
represent the deviation in each class, and a class distance table to represent the 
deviation between the classes. 

Intraclass Deviation Array 

[Qj, Nj], j=1,2, . . . L, where Nj is the number of samples in class j and L is the number of 
classes. The number of samples Nj represents the statistical significance of Qj that is 
defined as follows: 
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Let {X1
j, X2

j, . . . XNj
j} be Nj n-dimensional feature vectors that represent class Cj with Xi

j 

= [xi1
j, xi2 t

j, . . . xin
j]T. Each feature vector has the label of class j that you have selected 

to represent the class. Let Mj = [m1
j, m2

j, . . . mn
j]T be the mean vector of the class j. 

Then 

Mj = 1
nj ∑i = 1

nj
XI

j

 

where each element of the mean vector: 

Mk
j = 1

nj ∑i = 1

nj
Xik

j

 

The standard deviation of feature element k of class j is defined as: 

σk
j = 1

nj ∑i = 1

nj

(Xik
j − mk

j )2

 

The quality of feature data in class j is defined as: 

Qj =
maxσk

j

k  

A small Qj indicates that the training data in class j is tightly clustered about the class 
center. A large Qj indicates that the training data is spread out from the class center, 
which may increase chances for misclassification. 

Class Distance Table 

Let Mj = [m1
j, m2

j, . . . mn
j]T be the mean vector of the class j as defined before. The 

distance between two classes i and j is defined as follows: 

dij = D(Mi, Mj) 

where D is the distance metric selected from the training option. 
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You can use the class distance table to examine statistical information, such as the two 
closest class distances and the two most widely separated classes. Additionally, you 
can use the class distance table with the intraclass deviation array to evaluate the 
quality of different training data sets. 

Determining the Quality of a Trained Classifier 

The Particle Classifier outputs a classification distribution table that you can use to 
determine the quality of a trained classifier. the Example Classification Distribution 
Table table shows an example classification distribution table. 

Example Classification Distribution Table 

  C1 C2 C3 Total Accuracy 

Samples of Class C1 10 0 0 10 10 / 10 = 100% 

Samples of Class C2 0 8 2 10 8 / 10 = 80% 

Samples of Class C3 4 0 6 10 6 / 10 = 60% 

Total 14 8 8 30 24 / 30 = 80% 

Predictive Value 10 / 14 = 71% 8 / 8 = 100% 6 / 8 = 75%  -  - 

In this example, assume that the classifier was given 30 samples to classify: 10 samples 
known to be in class C1, 10 samples known to be in class C2, and 10 samples known to 
be in class C3. 

Classifier Predictability 

The classification predictive value indicates the probability that a sample classified 
into a given class belongs to that class. Use the columns of the table to determine the 
predictive value, per class, of the classifier. Each column represents a class into which 
the classifier classifies samples. The values in the columns indicate how many samples 
of each class have been classified into the class represented by the column. For 
example, 10 samples known to be in class C1 were correctly classified into class C1. 
However, 4 samples known to be in class C3 were also classified into C1. 

Note The number of samples classified correctly into a class is located at the 
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Looking down a column, notice the number of samples that were classified correctly 
into the class. Count the total number of samples classified into the class. The 
predictive value of the class is the ratio of: 

Number of Samples Classified Correctly
Total Number of Samples Classified into the Class  

For example, the predictive value of class C1 is 71%. 

10
10 + 4 = 0.71 = 71 %  

Classifier Accuracy 

The classification accuracy indicates the probability that a sample is classified into the 
class to which it belongs. Use the rows of the table to determine the accuracy, per 
class, of the trained classifier. The accuracy indicates the probability that the classifier 
classifies a sample into the correct class. Each row shows how the classifier classified 
all of the samples known to be in a certain class. In the example classification 
distribution table, 8 of the samples known to be in class C2 were correctly classified 
into class C2, but 2 of the samples known to be in class C2 were erroneously classified 
into class C3. 

Looking across a row, the accuracy of a class is the ratio of: 

Number of Samples Classified Correctly
Total Number of Samples Known to Be the Class  

For example, the accuracy of class C1 is 100%. 

10
10 = 1 = 100 %  

Identification and Classification Score 

The Particle Classifier outputs both identification confidence and classification 
confidence for the evaluation of classification results. The classification confidence 
outputs a meaningful score for both sorting and inspection applications. Use the 
identification confidence only when you cannot reach a decision about the class of a 

intersection of row Samples of Class x and column Cx. 

Machine Vision

406 ni.com



sample by using the classification confidence score alone. 

Classification Confidence 

The classification confidence indicates the degree to which the assigned class 
represents the input better than the other classes represent the input. It is defined as 
follows: 

Classification Confidence = (1 – d1 d2) × 1000 

where d1 is the distance to the closest class, and d2 is the distance to the second 
closest class. 

The distance is dependent on the classification algorithm used. Because 0 ≤ d1 ≤ 1 and 
0 ≤ d2 ≤ 1, the classification confidence is a score between 0 and 1000. 

Identification Confidence 

The identification confidence indicates the similarity between the input and the 
assigned class. It is defined as follows: 

Identification Confidence = (1 – d) × 1000 

where d is the normalized distance between the input vector and the assigned class. 

Distance d is dependent on the classification algorithm used. 

d = Distance Between Input Sample and its Assigned Class
Normalization Factor  

The normalization factor is defined as the maximum interclass distance. 

Calculating Example Classification and Identification Confidences 

Assume a normalized scalar feature with a distribution in [0,1] from two classes of 
patterns, as shown in the following figure. The centers of the two classes are 0.33 and 
0.67, respectively. If the Minimum Mean Distance is used for classification with input 
feature x = 0.6, the classification output is class 2, and the classification confidence is 
calculated as: 
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Classification confidence = (1 – |0.60 – 0.67 |
|0.60 – 0.33| ) × 1000 = 740

 

and the identification confidence is calculated as: 

Identification confidence = (1 – |0.60 – 0.67 |
|0.67 – 0.33| ) × 1000 = 794

 

For a feature value x = 0.5, the sample can be classified into class 1 or class 2 with the 
classification confidence value equal to 0. For 0.4 < x < 0.5, the sample is classified into 
class 1 with low classification confidence, while 0.5 < x < 0.6 is classified into class 2 
with low classification confidence in a Minimum Mean Distance classification system. 

Evaluating Classifier Performance 

For a systematic approach to evaluating a classifier in the design phase, define a 
testing data set in addition to a training data set. After you train the classifier using the 
training data set, run the classifier using the testing data set. The output of the 
classification confidence distribution is a good indicator of the classifier performance. 
The classification confidence distribution is a histogram of the classification score. The 
amplitude is the number of testing samples in a specific classification score. 

the following figure shows the classification confidence distribution from a testing 
database of mechanical parts. You can set a minimum classification score of 800 and 
get a high classification rate for this testing database. 
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the following figure shows the classification confidence distribution from a testing 
database of animal crackers. If you use the same minimum classification score for 
cracker image classification that you used for mechanical parts classification, you get a 
high rate of false negatives because a large portion of the cracker classification scores 
are less than 800. 

A classification confidence distribution from a representative testing database is a 
good indicator for selecting a good score threshold for a specific inspection or sorting 
application. 

Cross-Validation 

Use cross-validation to check the accuracy of the classifier. For cross-validation, 
trained samples are randomly divided into K groups, with the sample to class ratio 
roughly equal for each group. The classifier trains K – 1 groups, reserving a group to 
classify among the trained groups for validation. The cross-validation process is 

Note A score threshold that can be used to reject classification results is 
application dependent. Experiment with your classifier to determine an 
effective threshold for your application. 
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repeated to validate each group. The accuracy of the classifier is calculated with the 
following formula. 

Number of Correctly Classified Samples
Total Number of Samples × 1000  

Because the samples are randomly assigned to groups, the accuracy of the classifier 
may change each time you perform cross-validation even if you do not add samples or 
change settings. You can use this behavior to test the stability of the classifier. Minor 
variations indicate a stable texture classifier and large variations indicate an unstable 
texture classifier. 

Defect Inspection Defect Inspection 
This section contains information about defect inspection. 

When to Use Defect Maps When to Use Defect Maps 

Defect maps aid in detecting defects in images and patterns when a template of the 
same is known. The Pattern Matching algorithm provides an overall score for a match 
(or matches). A more localized scoring mechanism has been developed which provides 
more information about how each pixel of the match differs from the template and 
hence is a great tool in detecting defects. 

Defect Map Concepts Defect Map Concepts 

A defect map is a float-point image that has a score for every pixel. The higher the 
score, the higher the probability of the pixel being a defect. The score ranges from 0 to 
the square of the bit depth of the image. For example, an 8-bit image will have a score 
range from 0 to 65535. 

Pattern Matching/Geometric Matching provides an overall score for a match (or 
matches). Pattern Matching/Geometric Matching stores the intermediate results of 
every match found in the match image. These values are used to calculate the defect 
map for every match. 
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Pattern Matching workflow: 

Geometric Matching workflow: 

Weight Map 

A weight map is the image used to specify weights to suppress noise and false defects 
in the defect map. Pixels with lower weights are enhanced and pixels with higher 
weights are suppressed in the defect map. The known patterns and noise in the 
template can be learned and captured as a weight map. The weight map will then be 
applied on the defect map to suppress this noise and enhance the real defect regions. 

Template Image 

Inspection Image 
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Defect Map 

Defect Overlayed 

Related concepts: 

• Introduction 
• Introduction 

Golden Template Comparison Golden Template Comparison 

This section contains information about inspection based on golden template 
comparison. 

Introduction Introduction 

Golden template comparison compares the pixel intensities of an image under 
inspection to a golden template. A golden template is an image containing an ideal 
representation of an object under inspection. A pixel in an inspection image is 
returned as a defect if it does not match the corresponding pixel in the golden 
template within a specified tolerance. 
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When to Use When to Use 

Inspection based on golden template comparison is a common vision application. Use 
golden template comparison when you want to inspect for defects, and other methods 
of defect detection are not feasible. To use golden template comparison, you must be 
able to acquire an image that represents the ideal inspection image for your 
application. 

Example applications in which golden template comparison would be effective include 
validating a printed label or a logo stamped on a part. 

Concepts Concepts 

Conceptually, inspection based on golden template comparison is simple: Subtract an 
image of an ideal part and another image of a part under inspection. Any visible 
defects on the inspected part show up as differences in intensity in the resulting defect 
image. The following figure illustrates this concept. 

• Figure A shows the golden template in a label inspection application. 
• Figure B shows the inspection image. 
• Figure C shows the defect image. 

Defect areas in which the inspection image was brighter than the template are overlaid 
in green in the defect image. Defect areas in which the inspection image was darker 
than the template are overlaid in red. 

Using simple subtraction to detect flaws does not take into account several factors 
about the application that may affect the comparison result. The following sections 
discuss these factors and explain how Vision compensates for them during golden 
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template comparison. 

Alignment 

In most applications, the location of the part in the golden template and the location 
of the part in the inspection image differ. The following figure illustrates this concept 
and shows how differing part locations affect inspection. 

• Figure A shows the golden template. 
• Figure B shows the inspection image. 
• Figure C shows the defect image. 

The label in the inspection image is identical to the label in the golden template. 
However, the part in the inspection image is located slightly higher and to the right 
compared to the part in the golden template. Due to this the top and right areas of the 
label are detected as dark defects compared to their corresponding pixels in the 
template, which are white background pixels. Similarly, the left and bottom appear as 
bright defects. The text and logo inside the label also appear as defects because of the 
part misalignment. 

Aligning the part in the template with the part in the inspection image is necessary for 
an effective golden template comparison. To align the parts, you must specify a 
location, angle, and scale at which to superimpose the golden template on the 
inspection image. You can use the position, angle, and scale defined by other Vision 
functions, such as pattern matching, or geometric matching, or edge detection. 

Perspective Correction 

The part under inspection may appear at a different perspective in the inspection 
image than the perspective of the part in the golden template. The following figure 
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illustrates this concept and shows how differing image perspectives affect inspection. 

• Figure A shows the golden template. 
• Figure B shows the inspection image. 
• Figure C shows the defect image. 

The label in the inspection image is identical to the label in the golden template. 
However, the left side of the part in the inspection image is closer to the camera than 
the right side of the part, giving the part a warped perspective appearance. Although 
the angles and scales of the labels are the same, the template is still misaligned 
because of the perspective difference. 

Golden template comparison corrects for perspective differences by correlating the 
template and inspection image at several points. Not only does this correlation 
compute a more accurate alignment, but it also can correct for errors of up to two 
pixels in the input alignment. 

Histogram Matching 

The inspection images may be acquired under different lighting conditions than the 
golden template. As a result the intensities between a pixel in the golden template and 
its corresponding pixel in an inspection image may vary significantly. The following 
figure illustrates this concept and shows how differing pixel intensities affect 
inspection. 
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• Figure A shows the golden template. 
• Figure B shows the inspection image. 
• Figure C shows the defect image. 

The label in the inspection image is identical to the label in the golden template. 
However, the inspection image was acquired under dimmer lighting. Although the 
images are aligned and corrected for perspective differences, the defect image 
displays a single, large, dark defect because of the shift in lighting intensity. 

Golden template comparison normalizes the pixel intensities in the inspection image 
using histogram matching. Figure A shows the histogram of the golden template, 
which peaks in intensity near 110 and then stays low until it saturates at 255. Figure B 
shows the histogram of the inspection image, which peaks in intensity near 50 and 
peaks again near 200. 

Using a histogram matching algorithm, golden template comparison computes a 
lookup table to apply to the inspection image. After the lookup table is applied, the 
histogram of the resulting defect image, shown in figure C, exhibits the same general 
characteristics as the template histogram. Notice the peak near 110 and the saturation 
at 255. 
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Ignoring Edges 

Even after alignment, perspective correction, and histogram matching, the defect 
image may return small defects even when the part under inspection seems identical 
to the golden template. These small defects are usually confined to edges, or sharp 
transitions in pixel intensities. 

Figure A shows the golden template. Figure B shows the inspection image. The label in 
the inspection image is almost identical to the label in the golden template. Figure C 
shows insignificant defects resulting from of a small, residual misalignment or 
quantization errors from the image acquisition. Although these minor variations do 
not affect the quality of the inspected product, a similarly sized scratch or smudge not 
on an edge would be a significant defect. 
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To distinguish minor edge defects from significant defects, you can define edge areas 
for golden template comparison to ignore using the Vision Template Editor. Differences 
in areas you want to ignore are not returned as defects. You can preview different edge 
thicknesses in the training interface, and optionally change edge thickness during 
runtime. 

Using Defect Information for Inspection 

Golden template comparison isolates areas in the inspection image that differ from the 
golden template. To use the defect information in a machine vision application, you 
need to analyze and process the information using other NI Vision functions. Examples 
of functions you can use to analyze and process the defect information include particle 
filters, binary morphology, particle analysis, and binary particle classification. 

Optical Character Recognition Optical Character Recognition 
This section contains information about optical character recognition (OCR). 

Introduction Introduction 

OCR provides machine vision functions you can use in an application to perform OCR. 
OCR is the process by which the machine vision software reads text and/or characters 
in an image. OCR consists of a training phase and either a reading or a verifying phase. 

Training characters is the process by which you teach the machine vision software the 
types of characters or patterns you want to read in the image during the reading 
procedure. You can use OCR to train any number of characters, creating a character 
set. The set of characters is later compared with objects during the reading and 
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verifying procedures. You store the character set in a character set file. Training might 
be a one-time process, or it might be a process you repeat several times, creating 
several character sets to broaden the scope of characters you want to detect in an 
image. 

Reading characters is the process by which the machine vision application you create 
analyzes an image to determine if the objects match the characters you trained. The 
machine vision application reads characters in an image using the character set that 
you created when you trained characters. 

Verifying characters is a process by which the machine vision application you create 
inspects an image to verify the quality of the characters it read. The application verifies 
characters in an image using the reference characters of the character set you created 
during the training process. 

When to Use When to Use 

Typically, machine vision OCR is used in automated inspection applications to identify 
or classify components. For example, you can use OCR to detect and analyze the serial 
number on an automobile engine that is moving along a production line. Using OCR in 
this instance helps you identify the part quickly, which in turn helps you quickly select 
the appropriate inspection process for the part. 

You can use OCR in a wide variety of other machine vision applications, such as the 
following: 

• Inspecting pill bottle labels and lot codes in pharmaceutical applications 
• Verifying wafers and IC package codes in semiconductor applications 
• Controlling the quality of stamped machine parts. 
• Sorting and tracking mail packages and parcels 
• Reading alphanumeric characters on automotive parts 

Training Characters Training Characters 

Training involves teaching OCR the characters and/or patterns you want to detect 
during the reading procedure. 
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All the characters that have been trained with the same character value form a 
character class. You can designate the trained character that best represents the 
character value as the reference character for the character class. 

The following figure illustrates the steps involved in the training procedure. 

The process of locating characters in an image is often referred to as character 
segmentation. Before you can train characters, you must set up OCR to determine the 
criteria that segment the characters you want to train. When you finish segmenting the 
characters, use OCR to train the characters, storing information that enables OCR to 
recognize the same characters in other images. You train the OCR software by 
providing a character value for each of the segmented characters, creating a unique 

Note The diagram item enclosed in dashed lines is an optional step. 
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representation of each segmented character. You then save the character set to a 
character set file to use later in an OCR reading procedure. 

Refer to the NI OCR Training Interface Help that ships with the OCR Training Interface 
for information about setting up and training characters using OCR. 

Reading Characters Reading Characters 

When you perform the reading procedure, the machine vision application you create 
with OCR functions segments each object in the image and compares it to characters 
in the character set you created during the training procedure. OCR extracts unique 
features from each segmented object in the image and compares each object to each 
character stored in the character set. OCR returns the character value of the character 
in the character set that best matches the object and returns a nonzero classification 
score. If no character in the character set matches the object, OCR returns the 
substitution character as the character value and returns a classification score of zero. 
After reading, you can perform an optional verifying procedure to verify the quality of 
printed characters. 

Refer to Chapter 5, Performing Machine Vision Tasks, of the Vision user manual for your 
ADE for information about using OCR to read and analyze images for trained 
characters. 

The following figure illustrates the steps involved in the reading procedure. 
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OCR Session OCR Session 

An OCR session applies to both the training and reading procedures. An OCR session 
prepares the software to identify a set of characters during either the training 
procedure or the reading procedure. A session consists of the properties you set and 
the character set that you train or read from a file. OCR uses session information to 
compare objects with trained characters to determine if they match. If you want to 
process an image containing characters that you stored in multiple character sets, use 
multiple OCR sessions simultaneously to read all the characters simultaneously. 

Note The diagram item enclosed in dashed lines is an optional step. 
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You also can merge several character sets in one session. If you choose to merge 
multiple character sets, train each of the character sets with the same segmentation 
parameters. 

Concepts and Terminology Concepts and Terminology 

The following sections describe OCR concepts and terminology. 

Region of Interest (ROI) 

The ROI applies to both the training and reading procedures. During training, the ROI is 
the region that contains the objects you want to train. During reading, the ROI is the 
region that contains the objects you want to read by comparing the objects to the 
character set. You can use the ROI to effectively increase the accuracy and efficiency of 
OCR. During training, you can use the ROI to carefully specify the region in the image 
that contains the objects you want to train while excluding artifacts. During reading, 
you can use the ROI to enclose only the objects you want to read, which reduces 
processing time by limiting the area OCR must analyze. 

Particles, Elements, Objects, and Characters 

Particles, elements, objects, and characters apply to both the training and reading 
procedures. Particles are groups of connected pixels. Elements are particles that are 
part of an object. For example, the dots in a dot-matrix object are elements. A group of 
one or more elements forms an object based on the element spacing criteria. A 
character is a trained object. 

Patterns 

Patterns are characters for which the character value is a string of more than one 
character. For example, a logo is a pattern because it requires a string of more than one 
character to describe it. Non-ASCII characters are also patterns. 

Character Segmentation 

Character segmentation applies to both the training and reading procedures. 
Character segmentation refers to the process of locating and separating each character 
in the image from the background. 
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The following illustration shows the concepts included in the character segmentation 
process. 

1. Acquired Image 
2. ROI 
3. Character Bounding Rectangle 
4. Character 
5. Artifact 
6. Element 
7. Vertical Element Spacing 
8. Horizontal Element Spacing 
9. Character Spacing 

Thresholding 

Thresholding is one of the most important concepts in the segmentation process. 
Thresholding is separating image pixels into foreground and background pixels. The 
standard thresholding method is referred to as global grayscale thresholding. Global 
grayscale thresholding separates pixels based on their intensity values. Foreground 
pixels are those whose intensity values are within the lower and upper threshold 
values of the threshold range. Background pixels are pixels whose intensity values lie 
outside the lower and upper threshold values of the threshold range. 

OCR includes one manual method and three automatic methods of calculating the 
thresholding range: 

• Fixed Range is a method by which you manually set the threshold value. This 
method processes grayscale images quickly, but requires that lighting remain 
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uniform across the ROI and constant from image to image. 

The following three automatic thresholding methods are affected by the pixel 
intensity of the objects in the ROI. If the objects are dark on a light background, the 
automatic methods calculate the high threshold value and set the low threshold 
value to the lower value of the threshold limits. If the objects are light on a dark 
background, the automatic methods calculate the low threshold value and set the 
high threshold value to the upper value of the threshold limits. 

• Uniform is a method by which OCR calculates a single threshold value and uses 
that value to extract pixels from items across the entire ROI. This method is fast 
and is the best option when lighting remains uniform across the ROI. 

• Linear is a method that divides the ROI into blocks, calculates different threshold 
values for the blocks on the left and right side of an ROI, and linearly interpolates 
values for the blocks in between. This method is useful when one side of the ROI is 
brighter than the other and the light intensity changes uniformly across the ROI. 

• Non linear is a method that divides the ROI into blocks, calculates a threshold 
value for each block, and uses the resulting value to extract pixel data. 

OCR includes a method by which you can improve performance during automatic 
thresholding, which includes the Uniform, Linear, and Non linear methods: 

• Optimize for Speed allows you to determine if accuracy or speed takes precedence 
in the threshold calculation algorithm. If speed takes precedence, enable Optimize 
for Speed to perform the thresholding calculation more quickly, but less 
accurately. If accuracy takes precedence, disable Optimize for Speed to perform 
the thresholding calculation more slowly, but more accurately. 

If you enable Optimize for Speed, you also can enable Bi modal calculation to 
configure OCR to calculate both the lower and upper threshold levels for images 
that are dominated by two pixel intensity levels. 

Local Thresholding 

Local thresholding, also known as "locally adaptive thresholding" is similar to global 
grayscale thresholding. However instead of using a thresholding value based on the 
entirety of the image to determine wether a pixel is part of the foreground or part of 
the background, local thresholding categorizes a pixel based on the intensity statistics 
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of neighboring pixels. 

Color Thresholding 

Thresholding a color image is similar to global grayscale thresholding, however an 
individual threshold interval must be established for each of the color components. 

Threshold Limits 

Threshold limits are bounds on the value of the threshold calculated by the automatic 
threshold calculation algorithms. For example, if the threshold limits are 10 and 240, 
OCR uses only intensities between 10 and 240 as the threshold value. Use the 
threshold limits to prevent the OCR automatic threshold algorithms from returning too 
low or too high values for the threshold in a noisy image or an image that contains a 
low population of dark or light pixels. The default range is 0 to 255. 

Character Spacing 

Character spacing is the horizontal distance, in pixels, between the right edge of one 
character bounding rectangle and the left edge of the next character bounding 
rectangle. 

If an image consists of segmented or dot-matrix characters and the spacing between 
two characters is less than the spacing between the elements of a character, you must 
use individual ROIs around each character. 

Element Spacing 

Element spacing consists of horizontal element spacing and vertical element spacing. 
Horizontal element spacing is the space between two horizontally adjacent elements. 
Set this value to 1 or 2 for stroke characters and 4 or 5 for dot-matrix or segmented 
characters. Dot-matrix or segmented characters are characters comprised of a series of 
small elements. Stroke characters are continuous characters in which breaks are due 
only to imperfections in the image. If you set the horizontal element spacing too low, 
you might accidentally eliminate elements of an object. If you set the horizontal 
element spacing too high, you might include extraneous elements in the object, 
resulting in a trained object that does not represent a matchable character. 
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Vertical element spacing is the space between two vertically adjacent elements. Use 
the default value, 0, to consider all elements within the vertical direction of the ROI to 
be part of an object. If you set vertical element spacing too high, you might include 
artifacts as part of an object. If you set vertical element spacing too low, you might 
eliminate elements that are part of a valid object. 

The following illustrations shows how character spacing and element spacing affect 
OCR. 

1. Correct Image 
2. Incorrect Element Spacing 
3. Incorrect Character Spacing 

Item 2 represents an image for which the horizontal element spacing was set 
incorrectly. The letters O and R are divided vertically because horizontal element 
spacing was set too low and the OCR segmentation process did not detect that the 
elements represent a single character. The letter C is trained correctly because the 
horizontal element spacing value falls within the range that applies to this character. 
Item 3 represents an image for which the character spacing value was set too high, and 
thus OCR segments all three letters into one character. 
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Character Bounding Rectangle 

The character bounding rectangle is the smallest rectangle that completely encloses a 
character. 

AutoSplit 

AutoSplit applies to both the training and reading procedures. Use AutoSplit when an 
image contains characters that are slanted. AutoSplit, which works in conjunction with 
the maximum character bounding rectangle width, uses an algorithm to analyze the 
right side of a character bounding rectangle and determine the rightmost vertical line 
in the object that contains the fewest number of pixels. AutoSplit moves the rightmost 
edge of the character bounding rectangle to that location. The default value is False. 

Character Size 

Character size is the total number of pixels in a character. Generally, character size 
should be between 25 and 40 pixels. If characters are too small, training becomes 
difficult because of the limited data. The additional data included with large 
characters is not helpful in the OCR process, and the large characters can cause the 
reading process to become very slow. 

Shortest Segment 

Segmentation by the shortest segment algorithm ensures valid segmentation even 
when the characters are merged. The algorithm observes the max character with 
configured by the user, or will automatically calculate a value if none has been set. 

The algorithm uses the grayscale value of a character as a cost, and executes a shortest 
path traversal from the top to the bottom of the character. 

The algorithm works in three steps: 

• Attempt to divide the characters by applying multiple shortest path cuts. 

• Choose the cuts that are closest to the max character width. 

Tip You can adjust the character size to filter small particles. 
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• Intelligently choose the cuts which segment a character correctly based on 
classification during reading. 

Multiple shortest path cuts applied 

Selected shortest path cuts based on max character width 

Text Location 

Text Location allows a user to set an ROI enclosing multiple lines of text. Multiline 
detection will identify and return the number of lines bound within the specified ROI. 
Text Location can detect lines irrespective of small rotations (±20°) and differing 
character heights. 

Text location uses particle analysis and clustering based on vertical overlap to detect 
the lines in a specified ROI. Setting Number of Lines Expected to Auto Detect will 
automatically detect the number of lines and apply character segmentation to all 
lines. 

If the number of lines expected is less than the number of lines identified, will return 
the number of expected lines, choosing the lines with the highest ranked classification 
score. 

Tip For the best performance with the Shortest Segment algorithm, ensure 
the bounding rectangle width parameters accurately match the character 
width during Training. During Reading, if a character set file is loaded, the 
user should only adjust the bounding box width if the default values are 
unexpected. 
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Auto Detect 

Number of Lines Expected = 2 

Users should avoid using Text Location if the characters are printed using a dot matrix 
printer and elements in the characters are widely spaced. 

Substitution Character 

Substitution character applies to the reading procedure only. OCR uses the 
substitution character for unrecognized characters. The substitution character is a 
question mark (?) by default. 

Acceptance Level 

Acceptance level applies to the reading procedure. Acceptance level is a value that 
indicates how closely a read character must match a trained character to be 
recognized. Refer to the classification score section of this chapter for more 
information about how the acceptance level affects character recognition. The valid 
range for this value is 0 to 1000. The default value is 700. Experiment with different 
values to determine which value works best for your application. 

Read Strategy 

Read strategy applies only to the reading procedure. Read strategy refers to the criteria 
OCR uses to determine if a character matches a trained character in the character set. 
The possible modes are Aggressive and Conservative. In Aggressive mode, the reading 
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procedure uses fewer criteria than Conservative mode to determine if an object 
matches a trained character. Aggressive mode works well for most applications. In 
Conservative mode, the reading procedure uses extensive criteria to determine if an 
object matches a trained character. 

Read Resolution 

Read resolution applies to the reading procedure. When you save a character set, OCR 
saves a variety of information about each character in the character set. Read 
resolution is the level of character detail OCR uses to determine if an object matches a 
trained character. By default, OCR uses a low read resolution, using few details to 
determine if there is a match between an object and a trained character. The low read 
resolution enables OCR to perform the reading procedure more quickly. You can 
configure OCR to use a medium or high read resolution, and therefore use more details 
to determine if an object matches a trained character. Using a high read resolution 
reduces the speed at which OCR processes. 

The low resolution works well with most applications, but some applications might 
require the higher level of detail available in medium or high resolutions. 

Valid Characters 

Valid characters applies only to the reading procedure. Valid characters refers to the 
practice of limiting the characters that the reading procedure uses when analyzing an 
image. For example, if you know that the first character in an ROI should be a number, 
you can limit the reading procedure to comparing the first character in the ROI only to 
numbers in the character set. Limiting the characters that the reading procedure uses 
when analyzing an image increases the speed and accuracy of OCR. 

Note Conservative mode might result in OCR not recognizing characters. 
Test your application with Conservative mode before deciding to use it. 

Note Using medium or high resolution might result in OCR not recognizing 
characters. If you choose to use medium or high resolution, test your 
application thoroughly. 
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Aspect Ratio Independence 

Aspect ratio independence applies only to the reading procedure. Aspect ratio 
independence is the ability to read characters at a different size and height/width ratio 
than the training size and height/width ratio. To maintain performance in the OCR 
process, National Instruments recommends you limit the difference to ±50%. Avoid 
creating character sets whose characters differ only in height and width. Consider 
separating the characters into different character sets, using valid characters to restrict 
trained characters, and enforcing the aspect ratio. 

OCR Scores 

The following sections describe the scores returned by the reading procedure. 

Classification Score 

The classification score indicates the degree to which the assigned character class 
represents the input object better than other character classes in the character set. It is 
defined as follows: 

Classification Score = (1 – d1 / d2) × 1000 

where d1 is the distance of the object to the best match in the closest class, and d2 is 
the distance of the object to the best match in the second closest class. Distance is 
defined as a measure of the differences between the object and a trained character. 
The smaller the distance, the closer the object is to the trained character. Because d1 ≤ 
d2, the classification score is between 0 and 1000. A trained character is considered a 
match only if the distance between the object and the trained character is smaller than 
a value controlled by the acceptance level. The larger the acceptance level, the smaller 
the distance between the object and the trained character has to be for OCR to match 
the object. 

Verification Score 

If an input object belongs to a character class for which a reference character has been 
designated, OCR compares the object to the reference character and outputs a score 
the indicates how closely the input object matches the reference character. The score 
ranges from 0 to 1000, where 0 represents no similarity and 1000 represents a perfect 
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match. You can use this score to verify the quality of printed characters. 

Removing Small Particles 

Removing small particles applies to both the training and reading procedures. The 
process of removing small particles involves applying a user-specified number of × 3 
erosions to the thresholded image. OCR fully restores any objects that remain after 
applying the erosions. For example, in the following figure, if any portion of the letters 
X and G remains after removing small particles, OCR fully restores the X and G. 

1. Particle 

Removing Particles That Touch the ROI 

Removing particles that touch the ROI applies to both the training and reading 
procedures. You can configure OCR to remove small particles that touch an ROI you 
specified. Refer to the following figure for examples of particles that touch the ROI. 

1. Particle to Remove 
2. Incorrect Artifact to Remove 
3. ROI 
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Instrument Readers Instrument Readers 
This section contains information about instrument readers that read meters, liquid 
crystal displays (LCDs), barcodes, and 2D codes. 

Introduction Introduction 

Instrument readers are functions you can use to accelerate the development of 
applications that require reading meters, seven segment displays, barcodes, and 2D 
codes. 

When to Use 

Use instrument readers when you need to obtain information from images of simple 
meters, LCD displays, barcodes, and 2D codes. 

Meter Functions Meter Functions 

Meter functions simplify and accelerate the development of applications that require 
reading values from meters or gauges. These functions provide high-level vision 
processes to extract the position of a meter or gauge needle. 

You can use this information to build different applications such as the calibration of a 
gauge. Use the functions to compute the base of the needle and its extremities from an 
area of interest indicating the initial and the full-scale position of the needle. You then 
can use these VIs to read the position of the needle using parameters computed 
earlier. 

The recognition process consists of the following two phases: 

• A learning phase during which the user must specify the extremities of the needle. 
• An analysis phase during which the current position of the needle is determined. 

The meter functions are designed to work with meters or gauges that have either a 
dark needle on a light background or a light needle on a dark background. 
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Meter Algorithm Limits 

This section explains the limit conditions of the algorithm used for the meter 
functions. The algorithm is fairly insensitive to light variations. 

The position of the base of the needle is very important in the detection process. 
Carefully draw the lines that indicate the initial and the full-scale position of the 
needle. The coordinates of the base and of the points of the arc curved by the tip of the 
needle are computed during the setup phase. These coordinates are used to read the 
meter during inspection. 

LCD Functions LCD Functions 

LCD functions simplify and accelerate the development of applications that require 
reading values from seven-segment displays. 

Use these functions to extract seven-segment digit information from an image. 

The reading process consists of two phases: 

• A learning phase during which the user specifies an area of interest in the image to 
locate the seven-segment display. 

• A reading phase during which the area specified by the user is analyzed to read the 
seven-segment digit. 

The NI Vision LCD functions provide the high-level vision processes required for 
recognizing and reading seven-segment digit indicators. The LCD functions are 
designed for seven-segment displays that use either LCDs or LEDs composed of 
electroluminescent indicators or light-emitting diodes, respectively. 

The LCD functions can perform the following tasks: 

• Detect the area around each seven-segment digit from a rectangular area that 
contains multiple digits 

• Read the value of a single digit 
• Read the value, sign, and decimal separator of the displayed number 
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LCD Algorithm Limits 

The following factors can cause a bad detection: 

• Very high horizontal or vertical light drift 
• Very low contrast between the background and the segments 
• Very high level of noise 
• Very low resolution of the image 

Each of these factors is quantified to indicate when the algorithm might not give 
accurate results. 

Light drift is quantified by the difference between the average pixel values at the top 
left and the bottom right of the background of the LCD screen. Detection results might 
be inaccurate when light drift is greater than 90 in 8-bit images. 

Contrast is measured as the difference between the average pixel values in a 
rectangular region in the background and a rectangular region in a segment. This 
difference must be greater than 30 in 8-bit images, which have 256 gray levels, to 
obtain accurate results. 

Noise is defined as the standard deviation of the pixel values contained in a 
rectangular region in the background. This value must be less than 15 for 8-bit images, 
which have 256 gray levels, to obtain accurate results. 

Each digit must be larger than 18 × 12 pixels to obtain accurate results. 

Barcode Functions Barcode Functions 

Vision currently supports the following barcode formats: Code 25, Code 39, Code 93, 
Code 128, EAN 8, EAN 13, Codabar, MSI, UPC A, Pharmacode, and GS1 DataBar Limited 
(previously referred to as RSS-14 Limited). 

The process used to recognize barcodes consists of two phases: 

• A learning phase in which the user specifies an area of interest in the image which 
helps to localize the region occupied by the barcod. 

• The recognition phase during which the region specified by the user is analyzed to 
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decode the barcode. 

Barcode Algorithm Limits 

The following factors can cause errors in the decoding process: 

• Very low resolution of the image 
• Very high horizontal or vertical light drift 
• Contrast along the bars of the image 
• High level of noise 

The limit conditions are different for barcodes that have two different widths of bars 
and spaces—such as Code 39, Codabar, Code 25, MSI, and Pharmacode—and for 
barcodes that have more than two widths of bars and spaces—such as Code 93, Code 
128, EAN 13, EAN 8, and UPC A, and GS1 DataBar Limited (previously referred to as 
RSS-14 Limited). 

The resolution of an image is determined by the width of the smallest bar and space. 
These widths must be at least 3 pixels for all barcodes. 

Light drift is quantified by the difference between the average of the gray level of the 
left, or upper, line and the right, or bottom, line of the background of the barcode. 
Decoding inaccuracies can occur if the light drift is greater than 120 for barcodes with 
two different widths of bars and spaces and greater than 100 for barcodes with four 
different widths of bars and spaces. 

In overexposed images, the gray levels of the wide and narrow bars in the barcode 
tend to differ. Decoding results may not be accurate when the difference in gray levels 
is less than 80 for barcodes with two different widths of bars and spaces, and less than 
100 for barcodes with four different widths of bars and spaces. 

Consider the difference in gray levels between the narrow bars and the wide bars. The 
narrow bars are scarcely visible. If this difference of gray level exceeds 115 on 8-bit 
images (256 gray levels) for barcodes with two different widths of bars and spaces and 
100 for barcodes with four different widths of bars and spaces, the results may be 
inaccurate. 

Noise is defined as the standard deviation of a rectangular region of interest drawn in 
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the background. It must be less than 57 for barcodes with two different widths of bars 
and spaces and less than 27 for barcodes with four different widths of bars and spaces. 

Reflections on the barcode can introduce errors in the value read from the barcode. 
Similarly, bars and spaces that are masked by the reflection produce errors. 

2D Code Recognition 2D Code Recognition 

The term 2D code refers to both matrix codes and multi-row barcodes. Matrix codes 
encode data based on the position of square, hexagonal, or round cells within a 
matrix. Multi-row barcodes are codes that consist of multiple stacked rows of barcode 
data. NI Vision currently supports the PDF417, Data Matrix, QR Code, and Micro QR 
Code formats. The process used to recognize 2D codes consists of two phases: 

• A coarse locating phase during which the user specifies an ROI in the image, which 
helps localize the region occupied by the 2D code. This phase is optional, but it can 
increase the performance of the second phase by reducing the size of the search 
region. 

• A locating and decoding phase during which the software searches the ROI for one 
or more 2D codes and decodes each located 2D code. 

What to Expect from 2D Code Recognition What to Expect from 2D Code Recognition 

The following factors can cause errors in the search and decoding phases or 2D code 
recognition: 

• Very low resolution of the image. 
• Very high horizontal or vertical light drift. 
• Contrast along the bars of the image. 
• High level of noise or blurring. 
• Inconsistent printing or stamping techniques, such as misaligned code elements, 

inconsistent element size, or elements with inconsistent borders. 
• In PDF417 codes, a quiet zone that is too small or contains too much noise. 

Related concepts: 

• 2D Code Recognition 

Machine Vision

438 ni.com



Data Matrix Concepts Data Matrix Concepts 

A Data Matrix code is a matrix built on a square or rectangular grid with a finder pattern 
around the perimeter of the matrix. Each cell of the matrix contains a single data cell. 
The cells can be either square or circular. 

Locating and decoding Data Matrix codes requires a minimum cell size of 2.5 pixels. 
Locating and decoding Data Matrix codes also requires a quiet zone of at least one cell 
width around the perimeter of the code. However, a larger quiet zone increases the 
likelihood of successful location. Each symbol character value is encoded in a series of 
data cells called a code word. 

Data Matrix codes use one of two error checking and correction (ECC) schemes. Data 
Matrix codes that use the ECC schemes 000 to 140 are based on the original 
specification. These codes use a convolution error correction scheme and use a less 
efficient data packing mechanism that often requires only encoding characters from a 
particular portion of the ASCII character set. Data Matrix codes that use the ECC 200 
scheme use a Reed-Solomon error correction algorithm and a more efficient data 
packing mechanism. The ECC 200 scheme also allows for the generation of multiple 
connected matrices, which enables the encoding of larger data sets. The following 
figure shows an example of a Data Matrix code: 

1. Quiet Zone 
2. Finder Pattern 
3. Clock Pattern 
4. Data Cell 

Related concepts: 

• 2D Code Recognition 
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Quality Grading Quality Grading 

Vision can assess the quality of a Data Matrix code based on how well the code meets 
certain parameters. For each parameter, Vision returns one of the following letter 
grades: A, B, C, D, or F. An A indicates that the code meets the highest standard for a 
particular parameter. An F indicates that the code is of the lowest quality for that 
parameter. NI Vision support the following grading standards: 

• ISO 16022 
• ISO 15415 
• AIM DPM 

Related concepts: 

• Data Matrix Concepts 

Decode Decode 
The decoding process tests whether the Data Matrix features are correct enough to be 
readable when the code is optimally imaged. The code is assigned an A or F, based on 
whether the decoding is successful or not. The decoding process also locates and 
defines the area covered by the code in the image, adaptively creates a grid mapping 
of the data cell centers, and performs error correction. 

Related concepts: 

• Quality Grading 

Symbol Contrast Symbol Contrast 
The symbol contrast test determines whether the light and dark pixels in the image are 
sufficiently and consistently distinct throughout the code. All pixels are sorted by their 
reflectance values to determine the darkest 10% and lightest 10%. The mean 
reflectance of the darkest 10% and the mean reflectance of the lightest 10% are 
calculated. The difference of the two means is the symbol contrast. The following list 
shows how the symbol contrast is graded. 
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• A (4.0) if symbol contrast ≥ 70% 
• B (3.0) if symbol contrast ≥ 55% 
• C (2.0) if symbol contrast ≥ 40% 
• D (1.0) if symbol contrast ≥ 20% 
• F (0.0) if symbol contrast < 20% 

The following figure shows a Data Matrix code with a symbol contrast value of 8.87%, 
which returns a grade of F. 

Related concepts: 

• Quality Grading 

Print Growth Print Growth 
The print growth test determines the extent to which dark or light markings 
appropriately fill their cell boundaries. This parameter is an important indication of 
process quality, which affects the reading performance of the function. The print 
growth grade is based on the dimension with the largest print growth (D'). The 
dimensions (D) of the markings are determined by counting pixels in the image. 
Horizontal and vertical dimensions are checked separately. For each dimension, the 
following values are specified: 

• nominal value (Dnom) = 0.50 
• maximum value (Dmax) = 0.65 
• minimum value (Dmin) = 0.35 

Normalize each measured D to its corresponding nominal and limit values: 

if D > Dnom, then D' = (D - Dnom)/ (Dmax - Dnom) otherwise D' = (D - Dnom)/ (Dnom - Dmin) 
The following list shows how print growth is graded: 
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• A (4.0) if -0.50 ≤ D' ≤ 0.50 
• B (3.0) if -0.70 ≤ D' ≤ 0.70 
• C (2.0) if -0.85 ≤ D' ≤ 0.85 
• D (1.0) if -1.00 ≤ D' ≤ 1.00 
• F (0.0) if D' < -1.00 or D' > 1.00 

The following figure shows a Data Matrix code with a print growth value of 0.79, which 
returns a grade of C. 

Related concepts: 

• Quality Grading 

Axial Nonuniformity Axial Nonuniformity 
Axial nonuniformity is a measure of how much the sampling point spacing differs from 
one axis to another. 

Axial nonuniformity measures and grades the spacing of the cell centers. Axial 
nonuniformity tests for uneven scaling of the code, which would inhibit readability at 
some atypical viewing angles. The spacings between adjacent sampling points are 
independently sorted for each polygonal axis. Then the average spacing (Xavg) along 
each axis is computed. 

Axial Nonuniformity = abs(Xavg - Yavg)/((Xavg + Yavg)/2) 

where abs() yields the absolute value. The following list shows how axial 
nonuniformity is graded. 
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• A (4.0) if axial nonuniformity ≤ 0.06 
• B (3.0) if axial nonuniformity ≤ 0.08 
• C (2.0) if axial nonuniformity ≤ 0.10 
• D (1.0) if axial nonuniformity ≤ 0.12 
• F (0.0) if axial nonuniformity > 0.12 

The following figure shows a Data Matrix code with an axial nonuniformity value of 
0.2714, which returns a grade of F. 

Related concepts: 

• Quality Grading 

Unused Error Correction Unused Error Correction 
Unused error correction tests the extent to which regional or spot damage in the 
symbol has eroded the reading safety margin that the error correction provides. The 
convolutional error encoding for Data Matrix codes ECC 000-ECC 140 can correct for the 
following maximum percentages of bit errors (Emax): 

• ECC 000: Emax = 0.0% 
• ECC 050: Emax = 2.8% 
• ECC 080: Emax = 5.5% 
• ECC 100: Emax = 12.6% 
• ECC 140: Emax = 25.0% 
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The actual percentage of bit errors (Eact) is the number of bits that were corrected 
divided by the total number of bits in the symbol data fields. The unused error 
correction for Data Matrix codes ECC 000-ECC 140 is expressed as: 

Unused Error Correction = 1.0 - (Eact / Emax) 

For ECC 200 codes, the correction capacity of the Reed-Solomon decoding is expressed 
as: 

e + 2t ≤ d - p 

where 

e is the number of erasures 

t is the number of errors 

d is the number of error correction code words 

p is the number of code words reserved for error detection 

Values for d and p are defined by the specification for the given symbol. Values e and t 
are determined during a successful decode process. The amount of unused error 
correction is computed as: 

Unused Error Correction = 1.0 - (e + 2t) / (d - p) 

In codes with more than one Reed-Solomon block, the unused error correction is 
calculated for each block independently, and the lowest value is used to calculate the 
unused error correction grade. The following list shows how unused error correction is 
graded. 

• A (4.0) if unused error correction ≥ 0.62 
• B (3.0) if unused error correction ≥ 0.50 
• C (2.0) if unused error correction ≥ 0.37 
• D (1.0) if unused error correction ≥ 0.25 
• F (0.0) if unused error correction < 0.25 

The following figure shows a Data Matrix code with an unused error correction value of 
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0.00, which returns a grade of F. 

Related concepts: 

• Quality Grading 

Overall Symbol Grade Overall Symbol Grade 
The overall symbol grade is the lowest of the grades from the other symbol 
parameters. 

Related concepts: 

• Quality Grading 

ISO 15415 Grading Standard Concepts ISO 15415 Grading Standard Concepts 
ISO 15415 is an extension of the ISO 16022 grading system. ISO 15415 uses the grading 
parameters of the ISO 16022 grading scheme, as well as the following additional 
parameters: 

• Modulation 
• Grid Nonuniformity 
• Fixed Pattern Damage 

Related concepts: 

• Quality Grading 
• Decode 
• Symbol Contrast 
• Print Growth 
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• Axial Nonuniformity 
• Unused Error Correction 
• Overall Symbol Grade 

Modulation Modulation 
Modulation is a measure of the uniformity of reflectance of the dark and light modules 
in a 2D barcode. Lower modulation may increase the probability of a module being 
incorrectly identified as dark or light. 

Modulation is affected by print growth or loss, defects, reflectance, and variation of the 
ink coverage. For example, the following figure illustrates a Data Matrix with variations 
in reflectance: 

Modulation is expressed as: 

Modulation = 2 · (abs(R - GT))/SC 

where, 

R is the reflectance of the module closest to the global threshold in the codeword, 

GT is the global threshold. 

The mean reflectance of the darkest 10% and the mean reflectance of the lightest 10% 
is determined. The average of the two means is taken as the global threshold. 

The modulation grade for a codeword is computed as the minimum grade of all the 
data cells in a particular codeword. The final modulation grade is determined by 
comparing the number of codewords with a particular grade or higher and the error 
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correction capacity of the given data matrix barcode. The following list shows how 
codeword grading for modulation is calculated. 

• A (4.0) if modulation ≥ 0.50 
• B (3.0) if modulation ≥ 0.40 
• C (2.0) if modulation ≥ 0.30 
• D (1.0) if modulation ≥ 0.20 
• F (0.0) if modulation < 0.20 

The following figure shows a Data Matrix code with a modulation grade of F. 

Related concepts: 

• ISO 15415 Grading Standard Concepts 

Fixed Pattern Damage Fixed Pattern Damage 
Fixed pattern damage measures the damage in the finder pattern, quite zone, clock 
pattern and solid area segment regions. Pattern damage can be caused by an improper 
printer nozzle, a faulty thermal element, or physical damage to the barcode. 

The following figure illustrates damage to the fixed pattern and the clock pattern: 
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The overall fixed pattern grade is the average of all grades. The final grade is the 
minimum of the finder pattern grade, quiet zone grade, clock pattern grade, solid area 
grade, or overall fixed pattern grade. The following list shows how overall fixed pattern 
damage is calculated. 

• A (4.0) if overall FPD grade = 4.0 
• B (3.0) if overall FPD grade ≥ 3.5 
• C (2.0) if overall FPD grade ≥ 3.0 
• D (1.0) if overall FPD grade ≥ 2.5 
• F (0.0) if overall FPD grade < 2.5 

The following figure shows a Data Matrix code with a fixed pattern damage score of 2.4, 
which returns a grade of F and modulation grade of C. 

Related concepts: 

• ISO 15415 Grading Standard Concepts 

Grid Nonuniformity Grid Nonuniformity 
Grid nonuniformity measures the largest deviation of the grid centers from their ideal 
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theoretical position, as determined by the reference decode algorithm. The 
measurements are expressed as a fraction of the width of the symbol under test. The 
following image illustrates grid nonuniformity by comparing an actual symbol under 
test with the border of the ideal grid position. 

1. Symbol under test 
2. Ideal grid position outline 

The following list shows how grid non-uniformity is graded. 

• A (4.0) if grid non uniformity ≤ 0.38 
• B (3.0) if grid non uniformity ≤ 0.50 
• C (2.0) if grid non uniformity ≤ 0.63 
• D (1.0) if grid non uniformity ≤ 0.75 
• F (0.0) if grid non uniformity > 0.75 

The following figure shows a Data Matrix code with a grid nonuniformity score of 1.88, 
which returns a grade of F. 

Related concepts: 

• ISO 15415 Grading Standard Concepts 
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Scan Grade Scan Grade 
The overall symbol grade is the lowest of the grades from the other symbol 
parameters. The scan grade applies to the current image and contributes to the overall 
symbol grade. 

Related concepts: 

• ISO 15415 Grading Standard Concepts 

Overall Symbol Grade Overall Symbol Grade 
The overall symbol grade evaluates apparent variation in symbol characteristics when 
the Data Matrix code is viewed from different orientations relative to optical axis of 
camera. 

The overall symbol grade requires five images of the Data Matrix code, acquired using 
the same aperture and light source, in which the Data Matrix code is rotated by 72° 
(±5°) for each image. The overall symbol grade is the mean of the scan grades for each 
of the five images. If any two acquired images provide different decoded data, the 
overall symbol grade is 0. 

Related concepts: 

• ISO 15415 Grading Standard Concepts 

AIM DPM Grading Standard Concepts AIM DPM Grading Standard Concepts 
AIM DPM is an extension of the ISO 15415 grading system that requires an initial system 
adjustment for gain and exposure parameters prior to grading. 

To perform the adjustment, calculate the mean of the light lobes of a given data matrix 
barcode. If the mean of the light lobes is not within the range of 70-86%, adjust the 
gain and exposure parameters and repeat the calculation. AIM DPM uses the decode, 
print growth, axial nonuniformity, unused error correction, grid nonuniformity, fixed 
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pattern damage, scan grade, and overall symbol grade parameters of the ISO 15415 
grading scheme, as well as the following additional parameters: 

• Cell Contrast 
• Cell Modulation 
• Minimum Reflectance 

Cell Contrast Cell Contrast 
Cell contrast tests whether the light and dark pixels in the image are sufficiently and 
consistently distinct throughout the code. The angle of illumination, reflectance, and 
variation of ink coverage can all affect cell contrast. The cell contrast parameter is 
similar to the symbol contrast parameter used in the ISO 15415 grading scheme; 
however, the process for computing cell contrast is different from the process used to 
compute symbol contrast. 

To compute cell contrast, a histogram is constructed using the grid centers of the data 
matrix code. Mean light and mean dark values are computed for the light and dark 
elements of the grid center, and are used to calculate the cell contrast as shown in the 
following equation: 

Cell Contrast = (Mean Light - Mean Dark) / Mean Light 

The following list shows how cell contrast is graded. 

1. A (4.0) if cell contrast ≥ 0.3 
2. B (3.0) if cell contrast ≥ 0.25 
3. C (2.0) if cell contrast ≥ 0.20 
4. D (1.0) if cell contrast ≥ 0.15 
5. F (0.0) if cell contrast < 0.15 

The following figure shows a Data Matrix code with a cell contrast of 0.7045, which 
produces a grade of A. 
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Related concepts: 

• AIM DPM Grading Standard Concepts 

Cell Modulation Cell Modulation 
The cell modulation parameter is similar to the modulation parameter used in the ISO 
15415 grading scheme; however, the process for computing cell modulation is 
different from the process used to compute modulation. Cell modulation is computed 
according to the following formula: 

If (R < T2) then CM = (T2 - R)/(T2 - MD) otherwise CM = (R - T2)/(Mean Light Target - T2) 

where R is the reflectance of the cell T2 is the threshold created using the historgram of 
the grid center MD is the mean of the dark lobe from the final grid-point histogram 
Mean Light Target is the mean of the light lobe from the final grid-point histogram The 
following list shows how codeword grading for modulation is calculated. 

• A (4.0) if modulation ≥ 0.50 
• B (3.0) if modulation ≥ 0.40 
• C (2.0) if modulation ≥ 0.30 
• D (1.0) if modulation ≥ 0.20 
• F (0.0) if modulation < 0.20 

The following figure shows a Data Matrix code with a cell modulation grade of D. 
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Related concepts: 

• AIM DPM Grading Standard Concepts 

Minimum Reflectance Minimum Reflectance 
Minimum reflectance is the minimum reflectance required by the symbol under test 
compared to a standard calibration card. 

To produce the calibration values required to calculate minimum reflectance, use a 
calibration card and perform the initial system adjustment required for AIM PDF. The 
gain and exposure settings used during the initial system adjustment define the 
calibrated system parameter for the minimum reflectance calculation. The mean light 
value produced by the adjustment defines the calibrated mean light parameter for the 
minimum reflectance calculation. 

Following calibration, repeat the process with the data matrix symbol under test. If the 
mean light value does not fall within the desired range of 70-86%, adjust the system 
parameter. The gain and exposure settings used under test define the target system 
parameter for the minimum reflectance calculation. The mean light value produced 
under test defines the target mean light parameter for the minimum reflectance 
calculation. The reflectance for the symbol to grade is defined by the following 
equation: 

Minimum Reflectance · Calibrated System Parameter
Target System Parameter · Target Mean Light

Calibrated Mean Light  

The following list shows how minimum reflectance contrast is graded. 

• A (4.0) if Minimum Reflectance ≥ 5% 
• F (0.0) if Minimum Reflectance < 5% 
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Related concepts: 

• AIM DPM Grading Standard Concepts 

PDF417 Concepts PDF417 Concepts 

A PDF417 code is a multi-row barcode in which each data element is encoded in a code 
word. Each row consists of a start pattern, a left row indicator code word, one to 30 
data code words, a right row indicator code word, and a stop pattern. Each code word 
consists of 17 cells and encodes four bars and four spaces. Each bar and each space 
has a maximum width of six cells. 

Locating and decoding PDF417 codes requires a minimum cell size of 1.5 pixels and a 
minimum row height of 4.5 pixels. Locating and decoding PDF417 codes also requires 
a quiet zone of at least one cell width around the perimeter of the code. However, a 
larger quiet zone increases the likelihood of successful location. The following figure 
shows an example of a PDF417 code: 

1. Quiet Zone 
2. Start Pattern 
3. Left Row Indicator 
4. Data Code Words 
5. Right Row Indicator 
6. Stop Pattern 

Related concepts: 

• 2D Code Recognition 
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QR Code Concepts QR Code Concepts 

A QR Code is a matrix built on a square grid with a set of finder patterns located at 
three corners of the matrix. Finder patterns consist of alternating black and white 
square rings. The size of the matrix can range from a minimum size of 21 × 21 up to a 
maximum size of 177 × 177. Each cell of the matrix contains a single data cell. Matrix 
cells are square and represent a single binary 0 or 1. 

Locating and decoding QR Codes requires a minimum cell size of 2.5 pixels. Locating 
and decoding PDF417 codes also requires a quiet zone of at least one cell width 
around the perimeter of the code. However, a larger quiet zone increases the 
likelihood of successful location. Each symbol character value is encoded in a unit 
called a code word consisting of 8 cells or one byte of data. 

QR Codes have built in error checking and correction (ECC) using the standard Reed-
Solomon scheme for error correction. The amount of error correction capability of 
each code is selectable during the printing process. In general, the QR Code can 
correct for anywhere from 7% to 30% of error depending upon the selection made at 
print time. 

The following figure shows a example of a QR Code: 

1. Quiet Zone 
2. Finder Pattern 
3. Data Cell 

Related concepts: 

• 2D Code Recognition 

Micro QR Code Concepts Micro QR Code Concepts 

A Micro QR Code is a smaller version of the standard QR Code. Micro QR Codes have 
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only one finder pattern located at one corner of the matrix. The size of a Micro QR Code 
can range from a minimum size of 11 × 11 up to a maximum size of 17 × 17. 

The following figure shows an example of a Micro QR Code: 

1. Quiet Zone 
2. Finder Pattern 
3. Data Cell 

Related concepts: 

• QR Code Concepts 

Stereo Vision Stereo Vision 
A stereo vision system uses multiple cameras to acquire multiple overlapping images 
of a single region of interest within a scene. Use a stereo vision system to compute 
relative depth information or precise 3D measurements for a scene. 

Stereo Vision in Vision Stereo Vision in Vision 

Vision supports binocular stereo vision systems. A binocular stereo vision system uses 
exactly two cameras. Ideally, the two cameras are separated by a short distance, or 
baseline, and are mounted almost parallel to one another. 

Related concepts: 

• Stereo Vision 

When to Use Stereo Vision When to Use Stereo Vision 

A stereo vision system requires fixed camera settings and locations during and after 
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calibration. As a result, a stereo vision system is not suitable for applications where the 
platform on which cameras are mounted can experience strong disturbances. It is also 
not suitable for applications which require changing camera settings while making 
measurements. For best results, Vision prefers a horizontal baseline, or a system where 
the horizontal distance exceeds the vertical distance between the two cameras. 

A typical stereo vision system is passive. Stereo vision systems use stationary cameras 
and do not require moving parts, such as a laser. A stereo vision system allows you to 
establish a stereo correspondence and calculate the disparity, or horizontal difference, 
between corresponding, or conjugate, points in images captured by the system. 
Disparity information is rendered as a disparity map, which you can use to determine 
the relative depth of an object. 

Stereo images can also be processed to produce very dense depth information that 
can be mapped to real-world coordinates. 

Disparity and depth information produced with a stereo vision system can be used in 
conjunction with other algorithms, such as pattern matching or object tracking, to 
profile stationary or moving objects. 

Related concepts: 

• Stereo Vision 

Stereo Vision in Navigation Applications Stereo Vision in Navigation Applications 

Stereo vision systems are commonly used by robots for navigation. Autonomous 
mobile robots use relative distance information available from disparity maps to avert 
obstacles. Such robots might also use depth information to measure size and distance 
of obstacles for accurate path planning. Stereo vision systems are also used for 
navigation by outdoor autonomous vehicles, hospital service robots and automobile 
systems for providing depth information to human drivers. 

Related concepts: 

• When to Use Stereo Vision 
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Stereo Vision in Robotic Applications Stereo Vision in Robotic Applications 

A stereo vision system is useful in robotic industrial automation of tasks such as bin 
picking or crate handling. 

A bin-picking application requires a robot arm to pick a specific object from a 
container that holds several different kinds of parts. With a single camera, part 
occlusion and lighting variation make it difficult to determine which part is on top of 
the pile and easy to grasp. A stereo vision system can provide an inexpensive way to 
obtain 3D information and determine which parts are free to be grasped. 

Stereo vision is also effective in crate handling applications; for example, using a 
robotic arm to remove fruit or bottles from a crate. 3D information obtained from a 
stereo vision system can provide precise locations for individual fruits or the caps of 
bottles in a crate. This enables applications in which a robot arm picks an object from 
a pallet and moves it to another pallet or process. 

Related concepts: 

• When to Use Stereo Vision 

Stereo Vision in Machine Vision Applications Stereo Vision in Machine Vision Applications 

3D information can be used to locate objects in machine vision applications. For 
example, you can use 3D information to identify individual fruit for inspection or to 
verify the presence of pills in a blister pack. 3D information can also be used to inspect 
and make measurements on automotive parts or electronic components such as 
solder paste or ball-grid arrays. 

Related concepts: 

• When to Use Stereo Vision 

Stereo Vision in Surveillance Applications Stereo Vision in Surveillance Applications 

Stereo vision systems are good for tracking applications because they are robust in the 
presence of lighting variations and shadows. A stereo vision system can accurately 
provide 3D information for tracked objects which canbeused to detect abnormal 
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events, such as trespassing individuals or dropped baggage. Stereo vision systems can 
also enhance biometric systems such as facial recognition systems. 

Related concepts: 

• When to Use Stereo Vision 

What to Expect from a Stereo Vision System What to Expect from a Stereo Vision System 

This topic describes conditions that can affect the performance of a stereo vision 
system. Depth resolution refers to the accuracy with which a stereo vision system can 
estimate changes in the depth of a surface. Depth resolution is represented by the 
following equation: 

∆ z = z2

fb
∆ d

 

where, 

z is the depth of the object from the stereo system, 

f is the focal length, 

b is the baseline, 

d is disparity. 

Depth resolution is proportional to the square of the depth (z) and is inversely 
proportional to the focal length (f) and baseline (b), or distance between the cameras. 

Good depth resolution requires a large baseline (b) value, a large focal length (f) value 
and a small depth (z) value. 

Depth resolution depends on accurate disparity estimations. The accuracy of disparity 
estimation is directly proportional to pixel size, where smaller pixel sizes provide 
better resolution. Typically, disparity can be estimated accurately to about one fifth of 
a pixel. For a camera with a pixel size of 7.5 microns, this translates to a disparity 
resolution of 1.5 microns. 
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The following figure illustrates the relationship of the depth resolution to the depth of 
an object for a given focal length and baseline, and a disparity resolution of 1.5 
microns. 

Range of depth refers to the minimum and maximum distances of objects that can be 
measured by the stereo vision system for a given maximum disparity. For a simple 
stereo system, the depth of a point (z) is given by: 

z = f h
d  

where, 

f is the focal length, 

b is the baseline, 

d is disparity. 

The following figure plots depth values as a function of disparity, assuming a focal 
length (f) of 8mm, baseline (b) of 10cm and pixel size of 7.5 microns: 
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The figure illustrates that for an object which is approximately 1000 mm from the 
stereo system the disparity value is more than 100 pixels. The disparity value reduces 
drastically as depth reaches approximately 6000 mm. 

In Vision, maximum disparity indicates maximum difference between conjugate points 
in rectified stereo images. The horopter, or range of depth values, is limited by the 
number of disparities you specify when computing a disparity map. For example, if the 
number of disparities is set to 32 with a minimum disparity of 0, the horopter extends 
from approximately 3400 mm to infinity. 

To estimate the depth of objects you want to inspect, make sure that the objects are 
within the horopter. In most cases, this involves specifying a minimum disparity value 
of 0 and specifying a number of disparities large enough to include the closest object. 

Without increasing the number of disparities, the size of the horopter can only be 
increased by decreasing the baseline, decreasing the focal length, or increasing the 
pixel width of the sensor. Any of these changes cause an undesirable increase in depth 
resolution. If you increase the size of the baseline, ensure that the object under 
inspection remains within overlapping regions of interest. If you decrease the focal 
length, ensure that the object of interest remains in focus to ensure accurate matching. 

Related concepts: 

• Stereo Vision 
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Stereo Vision Concepts Stereo Vision Concepts 

This section explains the basic principles of binocular stereo vision system for a 
simplified set-up. A typical stereo vision system incorporates the following steps in 
order to compute 3D information: 

1. Perform camera model calibration for each camera. A camera model calibration 
learns internal and external parameters for each camera setup. Camera model 
calibration allows you to subsequently perform image correction to remove lens 
distortion and produce undistorted images. 

2. Perform stereo calibration for the stereo vision system. Stereo calibration 
computes the relative spatial relationship between two cameras. 

3. Perform stereo image rectification. Stereo image rectification projects images 
acquired from the left and right cameras so that the images reside in the same 
plane. The rows of rectified images align perfectly so that a point in the left image 
falls on the same row in both left and right images. 

4. Compute stereo image correspondence. Stereo correspondence establishes 
matches between the left and right rectified images to produce a disparity map. A 
disparity map is a 2D image that uses grayscale values to indicate the disparity, or 
distance, between features in the left and right image. Because disparity values 
indicate the relative depth of an object, a disparity map is sufficient for many 
stereo vision applications. 

5. Optionally compute 3D planes for applications that require precise depth 
information. 3D planes provide detailed depth information which can be mapped 
to real-world coordinates. 

For best results, Vision prefers a horizontal baseline, or a system where the horizontal 
distance exceeds the vertical distance between the two cameras. 

Related concepts: 

• Stereo Vision 

Note Vision renders depth and disparity maps with respect to the left 
rectified image. 
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Parts of a Stereo Vision System Parts of a Stereo Vision System 

This topic describes the elements of a stereo vision system. 

The following figure illustrates a simple stereo vision system, which incorporates the 
following assumptions: 

• Both cameras have the same focal length, 
• The two cameras are parallel to each other, 
• The X-axes of the two cameras intersect and align with the baseline, 
• The origin of the real-world coordinate system coincides with the origin of the left 

camera coordinate system: 

where, 

b is the baseline, distance between the two cameras, 

f is the focal length of a camera, 

x is the X-axis of a camera, 

z is the optical axis of a camera, 

P is a real-world point defined by the coordinates X, Y, and Z, 

UL is the coordinate of the real-world point P in an image acquired by the left camera, 

UR is the coordinate of the real-world point P in an image acquired by the right camera. 
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The X-coordinates of points obtained by projecting point P on the two camera image-
planes are given by uL and uR: 

UL = f x
z  

UR = f x − b
z  

The tuple (UL, UR) is known as a correspondence and related projections UL and UR are 
known as conjugate or homologous points. The distance between conjugate points is 
referred to as disparity (d), which is calculated using the following equation: 

d = (UL − UR) = f b
z  

Given a pair of conjugate points, the real-world distance of the original point from the 
stereo vision system can be calculated as follows: 

z = f b
d  

The following figure illustrates a typical stereo vision system: 

Most of the assumptions made for the simplified stereo vision system cannot be made 
for typical stereo vision applications. To compensate, a typical stereo vision system 
requires stereo calibration. 

Related concepts: 

• Stereo Vision Concepts 
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Stereo Calibration Stereo Calibration 

A stereo vision system requires camera model calibration for each camera, followed by 
stereo calibration. Stereo calibration data allows Vision to produce rectified images, 
and to calculate disparity and depth information. 

The following figure illustrates the calibration process: 

Single-camera calibration computes the following parameters: 

• Internal Parameters—Distortion model and coefficients, focal length, and optical 
center for each camera. 

• External Parameters—Rotation and translation matrices between the 
corresponding camera-coordinate system and the real-world coordinate system. 

You must perform stereo calibration to calculate the pose of each camera relative to 
the other. During stereo calibration, both cameras must view the same calibration grid. 
For the first frame, the entire calibration grid should be within the field of view for each 
camera. For subsequent frames, partial coverage of the calibration grid is acceptable. 
Stereo calibration produces the following matrices: 

• Rotation Matrix (R)—A rotation matrix, which denotes rotation between left to 
right camera-coordinate systems. 

• Translation Matrix (T)—A translation matrix, which denotes translation between 
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left to right camera-coordinate systems. 
• Essential Matrix (E)—A geometrical matrix, which relates the location of a point 

seen by the left camera to the same point as seen by the right camera, in real-
world coordinates. 

• Fundamental Matrix (F)—A geometrical matrix, which relates the location of a 
point seen by the left camera to the same point as seen by the right camera, in 
pixel coordinates. 

If a camera changes position or focal length, you must repeat camera model 
calibration for the camera and repeat stereo calibration for the entire stereo vision 
system. 

Related concepts: 

• Stereo Vision Concepts 

Maximum Projection Error and Calibration Quality Metric Maximum Projection Error and Calibration Quality Metric 

Vision provides a maximum projection error and a calibration quality metric for stereo 
calibration. 

The maximum projection error indicates the maximum error obtained by projecting a 
left camera coordinate onto the right camera coordinate. 

The calibration quality metric indicates the quality of the stereo calibration based 
upon an average root mean square error. The calibration quality metric is a value 
between 0 to 1, with 1 indicating the best calibration. If the calibration quality metric is 
less than 0.7, consider repeating the calibration process. 

Related concepts: 

• Stereo Calibration 

Stereo Image Rectification Stereo Image Rectification 

Stereo image rectification projects images acquired from the left and right cameras so 
that the images reside in the same plane. The rows of rectified images align perfectly 
so that a point falls on the same row in both in the left and the right images. 
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By row-aligning matches, stereo image rectification simplifies the processes of 
calculating stereo correspondence and computing a disparity map. Stereo image 
rectification is based upon the spatial relationship between the cameras, which is 
obtained from information produced during stereo calibration. 

To speed up the rectification process, a look-up table can be computed for each 
camera to interpolate points from the original image and create a new rectified image. 
Because learning a look-up table is memory intensive, the process is optional in Vision. 

Vision also accepts a scale parameter. Valid values are 0-1. A value of 1 constrains the 
rectified images to the original image size. Values smaller than 1 increase the scale of 
the rectified images. 

The following figure illustrates the process of image rectification: 

Related concepts: 

• Stereo Vision Concepts 
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Maximum Rectification Error and Rectification Quality Metric Maximum Rectification Error and Rectification Quality Metric 

Vision provides a maximum rectification error and a rectification quality metric to 
indicate the quality of rectified images. 

These parameters are computed using epipolar lines, which are obtained with the 
fundamental matrix produced during stereo calibration. For example, an epipolar line 
for an image obtained with the right camera describes the 3D vector of a point relative 
to the center of projection for the left camera. A valid match in the right camera image 
must lie on the epipolar line. The following figure illustrates an epipolar line in the 
right image plane: 

The maximum rectification error indicates the greatest distance between a point and 
its corresponding epipolar line. If this error is greater than 1 consider repeating the 
calibration process. 

The rectification quality metric is a value between 0 and 1, with 1 indicating perfectly 
aligned rectified images. If the rectification quality metric is less than 0.7, consider 
repeating the calibration process. 

Related concepts: 

• Stereo Image Rectification 
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Stereo Image Correspondence Stereo Image Correspondence 

Stereo correspondence establishes matches between the left and right rectified 
images to produce a disparity map. 

A disparity map is a 2D image that uses grayscale values to indicate the disparity, or 
distance, between features in left and right rectified images. The grayscale value of 
each pixel in the disparity map indicates the distance of that point from the stereo 
vision system. For better display and resolution, NI Vision multiplies disparity by a 
factor of 16. Brighter pixels indicate points that are closer to the camera and darker 
pixels indicate points that are farther away from the camera. A disparity map can be 
directly used for many applications, including the following: 

• Recognizing the relative distance of objects from the imaging system. For example, 
in an application that must pick up the closest object, it may be possible to 
segment the disparity map and identify the target object. 

• Tracking an object of interest across a sequence of images. Instead of using user-
specified point information to locate and track objects, you can segment a 
disparity map to identify objects and track the objects across a sequence of 
images. 

• Modeling object 3D information, which can be computed from the disparity map. 
• Path planning, using 3D information to locate obstacles and open areas. 

Vision provides two algorithms for establishing stereo correspondence: a block-
matching algorithm6 and a semi-global algorithm78 . The block-matching algorithm 
offers efficient performance while the semi-global algorithm provides a dense 
disparity map and works in regions with little or no apparent texture. 

Vision provides options to compute disparity to sub-pixel accuracy and to specify a 
maximum difference between a valid disparity value for a pixel compared to the 
disparity values of pixels immediately to the left and right. When Vision cannot 
determine the disparity for a point, the point is set to the value specified by the user to 

6. See K. Konolige, Small Vision System: Hardware and implementation, Proceedings of the 
International Symposium on Robotics Research, pp. 111-116, Hayama, Japan 1997. 

7. See H. Hirschmuller, Stereo Processing by Semi-Global Matching and Mutual Information, IEEE 
Transactions on PAMI, Vol. 30 (2), pp. 328-341, 2008. 

8. See S. Birchfield and C. Tomasi, Depth Discontinuities by Pixel-to-Pixel Stereo, IJCV, vol. 35(3), pp. 
269-293, 1999. 
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represent invalid pixels. 

Related concepts: 

• Stereo Vision Concepts 

Confidence Score Image Confidence Score Image 

Vision provides a confidence score image, which indicates the confidence of the 
disparity for each pixel. Score images return values between 0-1000, where 1000 
indicates the highest confidence. The block-matching algorithm computes confidence 
score based on how distinctive the match is compared to the second best match, and 
based on the similarity of the disparity to neighboring disparities. For the semi-global 
matching algorithm, confidence scores are based entirely on sum of absolute 
difference values for the match. 

Confidence score functions are logistic functions, which vary slowly over a range 
before falling suddenly in unacceptable regions. 

Related concepts: 

• Stereo Image Correspondence 

Depth Computation Depth Computation 

Some applications might require only a disparity map. Other applications require 
precise depth information. Examples of such applications are bin-picking, de-
palletizing, 3D matching, and 3D measurements. For applications that require precise 
depth information, 3D planes can be computed following stereo calibration and stereo 
image rectification. 

The following figure illustrates the complete 3D reconstruction process: 
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3D planes provide comprehensive real-world information about the scene, which can 
optionally be rendered to a real-world coordinate system. All real-world coordinates 
use the unit of measure specified during single-camera calibration. 

Origin for the X and Y planes is the optical center. Depth and disparity coordinates, 
provided in the Z plane, are relative to the left camera. 

Vision provides an error map for depth computation, which indicates the inherent 
error in measurement for each pixel. 

Related concepts: 

• Stereo Vision Concepts 
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In-Depth Discussion of Stereo Vision Concepts In-Depth Discussion of Stereo Vision Concepts 

This section provides in-depth explanations of stereo vision concepts and the Vision 
implementation of stereo vision. 

Related concepts: 

• Stereo Vision Concepts 

Stereo Calibration In-Depth Stereo Calibration In-Depth 

You must perform camera model calibration for each camera in the system before 
performing stereo calibration. Creating a camera model involves acquiring multiple 
images, usually of a calibration grid, in multiple planes. 

For each plane, a camera model provides a set which consists of rotation and 
translation matrices. Corresponding sets, computed for the left and right camera 
based on the same plane, provide the information required to compute the spatial 
relationship between the two cameras. Stereo calibration returns a single rotation and 
translation matrix (R, T) that relates relative real-world coordinates for the left and 
right cameras. The following figure illustrates a calibrated stereo vision system: 

where: 
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• Ol is the origin of the coordinate systems centered at the left camera principal 
point, 

• Or is the origin of the coordinate systems centered at the right camera principal 
point, 

• P is a real-world point being imaged by both cameras, in real-world coordinates, 
• pl is the projection of P  on the left-camera image plane, 
• pr is the projection of P  on the right-camera image plane. 

A camera model provides enough information to describe the relationship of the 
camera relative to a point (P) under inspection. Let, (Rl, Tl) and (Rr, Tr) be the rotation 
and translation matrices for the left and right cameras for the plane in which P lies. The 
real-world coordinates of the point P relative to the left and right cameras are given by 
the following equations: 

PI = RIP + TI 
Pr = RrP + Tr 

The 3D coordinates of P are given by the following equation: 

Pr = RT(Pr − T) 

The stereo translation matrix is given by the following equation: 

R = Rr(Rl)T

 

After each camera is calibrated, the stereo vision system must be calibrated. Stereo 
calibration computes the essential matrix (E) and the fundamental matrix (F). The 
essential matrix (E) contains the rotation and translation information required to relate 
the location of a point (Pl) as seen by the left camera to the same point (Pr) as seen by 
the right camera, in real-world coordinates. Assuming the relationship Pr = R(Pl – T), 
the relationship between points relative to the left and right cameras and the essential 
matrix is given by the following equation: 

Pr
T · E · Pl = 0 

The essential matrix does not contain information about the internal parameters of 
the cameras; therefore, it cannot be used to correlate pixel coordinates for conjugate 
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points. You must use the fundamental matrix F) to relate pixel coordinates for 
conjugate points. The fundamental matrix (F) includes internal parameters for both 
cameras. Give a pixel point in the left image (ql), a conjugate pixel point in the right 
image (qr), and the fundamental matrix (F), you can compute the corresponding 
epipolar line in the right image using the following equation: 

qr
T · F · ql = 0 

Related concepts: 

• In-Depth Discussion of Stereo Vision Concepts 

Stereo Image Rectification In-Depth Stereo Image Rectification In-Depth 

Given the rotation matrix and translation vector between the two stereo images, NI 
Vision attempts to limit the amount of change that a new projection produces for each 
of the two images in order to reduce the resulting distortion while maximizing the 
common viewing area9. Image rectification is provided by the following rotation 
matrices: 

R1 = Repirl 
R2 = Repirr 
where: 

• R1 is the rotation to be applied to the left image to get the left rectified image, 
• R2 is the rotation to be applied to the right image to get the right rectified image, 
• Repi is the rotation matrix which row-aligns coplanar images obtained by rl and rr, 
• rl is the rotation matrix required to make left image coplanar with the right image 

rotated by matrix rr, 
• Rr is the rotation matrix required to make right image coplanar with the left image 

rotated by matrix rl. 

Matrices rl and rr are obtained by applying half a rotation clockwise and 
counterclockwise, respectively, so that 

9. Vision uses the algorithm proposed by Bouguet for obtaining rectified images. See G. Bradski and A. 
Kaebler, Learning OpenCV - Computer Vision with the OpenCV Library, First Edition, O'Reilly Media, 
2008. 
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R = rl
Trr 

. Matrix REPI = [R1 R2 R3]T. Matrix REPI produces the left epipole, or the projection of the 
principal point of the right camera onto the left image plane, projected to infinity. 
Using the principal point of the left camera as the origin, translation matrix T provides 
the direction of the left epipole on the image plane. Consequently, specific matrices r1, 
r2, r3 are given by the following equations: 

r1 = T
(T)  

r1 =
(−TyTx0)
√T

x
2 + T

y
2
 

r3 = r1 × r2 
Related concepts: 

• In-Depth Discussion of Stereo Vision Concepts 

Stereo Image Correspondence In-Depth Stereo Image Correspondence In-Depth 

A typical correspondence algorithm consists of following three stages: 

1. Pre-filtering to normalize the image brightness and enhance texture, 
2. Matching points along horizontal lines in local windows, 
3. Post-filtering to eliminate bad matches. 

Related concepts: 

• In-Depth Discussion of Stereo Vision Concepts 

Pre-Filtering for Stereo Image Pre-Filtering for Stereo Image 
Correspondence Correspondence 
Pre-filtering is a preparatory step for the block-matching algorithm. The semi-global 
algorithm operates on the original rectified stereo images to establish a stereo 
correspondence. Vision provides two pre-filtering options: a Sobel filter and a 
normalized response filter. To prevent horizontal lines, which may mislead the 
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matching algorithm, the Sobel filter uses only the following kernel: 

The Sobel filter output is given in the following equation: Min(Max(ISobel, -Icap), Icap). 

Where: 

• ISobel is the value obtained by applying the kernel,  accumulated in a window of a 
user-defined size. 

• Icap is a positive number that limits the final pixel value. 

The normalized response filter computes the filter response through the following 
equation: Min(Max(Icenter, -Iavg -Icap), Icap) 

where, 

• Icenter is the pixel value at the point, accumulated over a window of a user-defined 
size, 

• Iavg is the average of the pixel computed through 4-neighbors of the center pixel 
and accumulated over a specified window size, 

• Icap is a positive number which limits the final pixel value. 

Related concepts: 

• Stereo Image Correspondence In-Depth 

Block Matching Algorithm Block Matching Algorithm 
The block-matching algorithm establishes a correspondence by computing the sum of 
absolute differences (SAD) computed between small windows in rectified, pre-filtered 
stereo images. 

Matching is constrained by minimum disparity and number of disparity parameters. 
For example, for a given point (xl, y) in the left image, the search in the right image is 
restricted to points that lie within (xl – minimum disparity, y) and (xl – minimum 
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disparity - number of disparities, y). 

The algorithm computes SAD values for each point in the specified range and selects 
the location in the right image with the smallest SAD value as the match. The 
complexity of this algorithm is given in the following equation: 

O(w · h · n) 
where: 

• w is the width of the rectified image, 
• h is the height of the rectified image, 
• n is the number of disparities. 

Related concepts: 

• Stereo Image Correspondence In-Depth 

Semi-Global Matching Algorithm Semi-Global Matching Algorithm 
This algorithm aims to minimize the following global energy function, E, for disparity 
image, D. 

E(D) = ∑
p

(C(p, Dp) + ∑
q ∈ Np

P1I((Dp − Dq) = 1) + ∑
q ∈ Np

P2I((Dp − Dq) > 1))
 

with P2≥P1 

where: 

• E(D) is the energy for disparity image D, 
• p, q represent indices for pixels in the image, 
• Np is the neighborhood of the pixel p, 
• C(p, Dp) is the cost of pixel matching with disparity in Dp, 
• P1 is the penalty passed by the user for change in disparity between neighboring 

pixels by 1, 
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• P2 is the penalty passed by the user for change in disparity between neighboring 
pixels by value greater than 1, 

• I[.] is the function which returns 1 if argument is true, 0 otherwise the minimized 
function produces a perfect disparity map with smoothing governed by 
parameters P1 and P2; however, minimizing the function for a 2D image space is a 
NP-complete problem. 

The semi-global matching function approximates the 2D minimization by performing 
multiple 1D, or linear, minimizations. The matching function aggregates costs on 
multiple paths which converge on the pixel under examination. Cost is computed for 
the disparity range specified by the minimum disparity and number of disparities 
parameters. By default, the matching algorithm aggregates costs for 5 directions. You 
can set the full dynamic programming parameter to true to force the algorithm to 
aggregate costs for 8 directions. Let, S(p, d) be the aggregate cost for pixel p and 
disparity d. 

Then 

S(p, d) = ∑ Lr(p, d)
r  

where r is a direction used for converging to the pixel p Lr(p, d) is the minimum cost of 
the path taken in direction r from pixel (p for disparity d) The cost Lr(p, d) is given in the 
following equation: 

The equation uses the following costs to find the disparity by adding current cost, C(p, 
d, to previous pixel in direction r: 

• The minimum of the cost at previous pixel with disparity d, 
• The cost at previous pixel with disparity d - 1 and d + 1 with added penalty P1, 
• The cost at previous pixel with disparities less than d - 1 and greater than d + 1 with 

added penalty P2. 

In order to limit the ever increasing value of Lr(p, d) on the path, minimum value of the 
previous pixel is subtracted. The upper value of Lr(p, d) is bounded by Cmax + P2, where 
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Cmax is the maximum value of cost C. The cost function C(p, d) is computed in the 
following manner: 

where IL and IR are left and right rectified images, respectively 

The value of C is aggregated over a window of a user-defined size10. After computing 
S(p, d) for each pixel p for each disparity d, the algorithm chooses the disparity which 
provides the minimum cost for that pixel. 

The complexity of this algorithm is given in the following equation: 

O(w · h · n) 

where: 

• w equals the width of the rectified image, 
• h equals the height of the rectified image, 
• n equals the number of disparities. 

Related concepts: 

• Stereo Image Correspondence In-Depth 

Post-Filtering for Stereo Image Post-Filtering for Stereo Image 
Correspondence Correspondence 
Post-filtering sets noise pixels to the value specified by the user to represent invalid 
pixels. Post-filtering consists of two steps. First, pixels that do not meet the specified 
uniqueness ratio and texture threshold are removed. Then a speckle filter is applied. 

10. Birchfield and C. Tomasi, Depth Discontinuities by Pixel-to-Pixel Stereo, IJCV, vol. 35(3), pp. 269-293, 
1999. 
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The uniqueness ratio specifies how unique the disparity of a valid match must be at 
each pixel relative to all other disparities. Valid values are 0-100, where a value of 0 
causes the uniqueness ratio to have no effect. 

The texture threshold specifies the minimum sum of absolute difference for a valid 
match at each pixel. A value of 0 causes the texture threshold to have no effect. A value 
that is too large will cause each point in the image to be rejected. 

The speckle filter examines a user-defined window around each pixel and rejects pixels 
outside the user-specified speckle range, or range of disparities within the speckle 
window. 

Vision also provides an option to interpolate the disparity map using polynomial 
interpolation. Interpolation allows pixels to be set to logical approximate values in 
cases where the stereo correspondence algorithm cannot determine a disparity value. 

Related concepts: 

• Stereo Image Correspondence In-Depth 

Depth Computation In-Depth Depth Computation In-Depth 

Using a particular disparity value at a given pixel, 3D information can be computed in 
the following manner: 

Q is given as: 

where: 

• d is the disparity at a point (x, y) in the left rectified image, 
• (cx, cy) represents the optical center in the left rectified image, 
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• f is the focal length in the left rectified image, 
• Tx is the X-component of the translation parameter, 
• c'x is the X-coordinate of the right rectified image. 

The 3D measurements can then be given by (X/W, Y/W, Z/W), which are X, Y and Z real-
world coordinates, respectively. By default, Vision renders 3D information with respect 
to the left rectified image such that the new optical center will be at (0, 0, Z) position. 
Vision sets 3D information for a pixel to not a number (NaN) if disparity cannot be 
determined. 

Related concepts: 

• In-Depth Discussion of Stereo Vision Concepts 

Error Mapping for Depth Computation Error Mapping for Depth Computation 
For 3D measurements, Vision computes error (ep) for a given pixel (p) according to the 
following equation: 

ep = 1
2 ( fTx

(cx − c 'x) − (d − 1)
−

fTx

(cx − c 'x) − (d + 1) )
 

This equation computes and averages the interval between the depth achieved from 
the previous disparity and the depth achieved from the next disparity. Consequently, 
distant objects produce larger errors than near objects. 

Related concepts: 

• Depth Computation In-Depth 

Feature Detection and Matching Feature Detection and Matching 
This section contains information about feature detection and matching. 
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Introduction to Feature Detection and Matching Introduction to Feature Detection and Matching 

Feature detection and matching are an integral part of computer vision, and are 
fundamental for many applications. Finding feature correspondence between images 
is a fundamental part of many applications. Feature detection and matching is 
comprised of three stages. 

1. Feature detection using one of the following methods: Features from Accelerated 
Segment Test (FAST) Detector, Harris Corner Detector, or Shi-Tomasi Corner 
Detector. 

2. Feature description using one of the following methods: Binary Robust Invariant 
Scalable Keypoints Descriptor (BRISK) or Fast Retina Keypoint Descriptor (FREAK). 

3. Feature matching. 

When to Use Feature Detection and Matching When to Use Feature Detection and Matching 

Feature detection, which is also known as corner detection, is useful in applications 
such as: 

• Finding defects using missing corners, 
• Shape fitting using a mathematical fit on detected corners, 
• Using FAST feature points with optical flow, 
• Analyzing an image using detected feature point strengths, for example, while 

auto-focusing. 
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Feature Matching can be used in: 

• Object (or template) matching between images invariant to gradual changes in 
rotation, scaling, and perspective transformations, 

• Finding correspondence between two images which can be used in many 
applications, such as stitching, 

• Object recognition and pose detection, 
• Establishing transformation between two images. 

Feature Detection and Matching Concepts Feature Detection and Matching Concepts 

The concept of feature detection refers to methods that aim at computing abstractions 
of image information. There is no universal or exact definition of what constitutes a 
feature, and the exact definition often depends on the problem or the type of 
application. A feature is defined as an interesting part of an image, and features are 
used as a starting point for many computer vision algorithms. The detector selects 
points that can be consistently detected across various transformations (blurring, 
rotation, and scale). Once features have been detected, the features are described 
mathematically. The result is a feature descriptor. This information can be used to find 
the matches between the two images. 

Feature Detection 

Corner Detector: A corner can be defined as the intersection of two edges. A corner can 
also be defined as a point for which, there are two dominant and different edge 
directions in a local neighborhood of the point. An interest point is a point in an image 
which has a well-defined position and can be robustly detected. This method detects 
all the corners in the image. 

• Calculate the image gradients. 
• Calculate the Eigen values (λ1 and λ2). There are three cases to be considered: 

◦ If both eigen values are small, the image region is of constant intensity, 
◦ If one eigen value is high and the other low, it indicates an edge, 
◦ If both eigen values are high, it indicates a corner. 

The Harris corner detector and Shi-Tomasi corner detector are similar except for the 
determination of a good corner. 
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• Harris Corner: Corner Score = λ1λ2 - k (λ1 + λ2)2. 
• Shi-Tomasi Corner: Corner Score = min(λ1 + λ2). 

FAST Feature Point Detector: FAST is an algorithm for identifying all the interest points 
in an image, not just corners. Interest points have high local information content and 
ideally should be repeatable between different images. 

For a pixel p of intensity Ip. 

• Choose a circle of 16 pixels around it, as shown in the following image: 

• For a pixel to be a feature, at least N (N=12) contiguous pixels should have Intensity 
> (Ip + T) or (Ip - T), where T is a threshold intensity value. 

The detectors can be used for grayscale (U8, U16, and I16) images. Rectangle and 
Rotated Rectangle are the supported ROI types. 

Feature Descriptors 

BRISK11 (Binary Robust Invariant Scalable Keypoints) and FREAK12 (Fast Retina 
Keypoint) are both binary descriptors that provide information about the feature 
point. 

BRISK is a 512-bit binary descriptor that computes the weighted Gaussian average 

11. For more information about the BRISK descriptor, see S. Leutenegger, M. Chli, and R. Siegwart.Brisk: 
Binary robust invariant scalable keypoints, 2011. 

12. For more information about the FREAK descriptor, see A. Alahi, R. Ortiz, P. Vandergheynst. FREAK: 
Fast Retina Keypoint, 2010. 
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over a select pattern of points near the keypoint. It compares the values of specific 
pairs of Gaussian windows, leading to either a 1 or a 0, depending on which window in 
the pair was greater, which creates binary descriptors. 

FREAK is also a binary descriptor that improves upon the sampling pattern and 
method of pair selection that BRISK uses, but the pattern used in this method is 
inspired by the retinal pattern in the eye. FREAK provides better rotation invariance, 
while BRISK provides better matches to changes in perspective distortion. Both 
provide similar results to changes in scale. 

Feature Matching 

Given a feature in Image 1, the best match needs to be found in Image 2 for feature 
matching. Because both BRISK and FREAK are binary descriptors, matching these 
features requires a computation of the hamming distance, with the number of bits 
different in the two descriptors being a measure of their dissimilarity. 
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Kernels Kernels 
A kernel is a structure that represents a pixel and its relationship to its neighbors. This 
section lists a number of predefined kernels supported by Vision. 

Gradient Kernels Gradient Kernels 
The following tables list the predefined gradient kernels. 

3 × 3 Kernels 

The following tables list the predefined gradient 3 × 3 kernels. 

Prewitt Filters 

The Prewitt filters have the following kernels. The notations West (W), South (S), East 
(E), and North (N) indicate which edges of bright regions they outline. 

#0 W/Edge 

–1   0   1 

–1   0   1 

–1   0   1 

#1 W/Edge 

–1   0   1 

–1   1   1 

–1   0   1 

#2 SW/Edge 

 0   1   1 

–1   0   1 

–1  –1   0 

#3 SW/Edge 

 0   1   1 

–1   1   1 

–1  –1   0 

#4 S/Edge 

 1   1   1 

 0   0   0 

–1  –1  –1 

#5 S/Edge 

 1   1   1 

 0   1   0 

–1  –1  –1 

#6 SE/Edge 

 1   1   0 

 1   0  –1 

 0  –1  –1 

#6 SE/Edge 

 1   1   0 

 1   1  –1 

 0  –1  –1 

#8 E/Edge #9 E/Edge #10 NE/Edge #11 NE/Edge 
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 1   0  –1 

 1   0  –1 

 1   0  –1 

 1   0  –1 

 1   1  –1 

 1   0  –1 

 0  –1  –1 

 1   0  –1 

 1   1   0 

 0  –1  –1 

 1   1  –1 

 1   1   0 

#12 N/Edge 

–1  –1  –1 

 0   0   0 

 1   1   1 

#13 N/Edge 

–1  –1  –1 

 0   1   0 

 1   1   1 

#14 NW/Edge 

–1  –1   0 

–1   0   1 

 0   1   1 

#15 NW/Edge 

–1  –1   0 

–1   1   1 

 0   1   1 

Sobel Filters 

The Sobel filters are very similar to the Prewitt filters, except that they highlight light 
intensity variations along a particular axis that is assigned a stronger weight. The 
Sobel filters have the following kernels. The notations West (W), South (S), East (E), and 
North (N) indicate which edges of bright regions they outline. 

#16 W/Edge 

–1   0   1 

–2   0   2 

–1   0   1 

#17 W/Edge 

–1   0   1 

–2   1   2 

–1   0   1 

#18 SW/Edge 

 0   1   2 

–1   0   1 

–2  –1   0 

#19 SW/Edge 

 0   1   2 

–1   1   1 

–2  –1   0 

#20 S/Edge 

 1   2   1 

 0   0   0 

–1  –2  –1 

#21 S/Edge 

 1   2   1 

 0   1   0 

–1  –2  –1 

#22 SE/Edge 

 2   1   0 

 1   0  –1 

 0  –1  –2 

#23 SE/Edge 

 2   1   0 

 1   1  –1 

 0  –1  –2 
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#24 E/Edge 

 1   0  –1 

 2   0  –2 

 1   0  –1 

#25 E/Edge 

 1   0  –1 

 2   1  –2 

 1   0  –1 

#26 NE/Edge 

 0  –1  –2 

 1   0  –1 

 2   1   0 

#27 NE/Edge 

 0  –1  –2 

 1   1  –1 

 2   1   0 

#28 N/Edge 

–1  –2  –1 

 0   0   0 

 1   2   1 

#29 N/Edge 

–1  –2  –1 

 0   1   0 

 1   2   1 

#30 NW/Edge 

–2  –1   0 

–1   0   1 

 0   1   2 

#31 NW/Edge 

–2  –1   0 

–1   1   1 

 0   1   2 

5 × 5 Kernels 

The following table lists the predefined gradient 5 × 5 kernels. 

#0 W/Edge 

 0  –1   0   1   0 

–1  –2   0   2   1 

–1  –2   0   2   1 

–1  –2   0   2   1 

 0  –1   0   1   0 

#1 W/Edge 

 0  –1   0   1   0 

–1  –2   0   2   1 

–1  –2   1   2   1 

–1  –2   0   2   1 

 0  –1   0   1   0 

#2 SW/Edge 

 0   0   1   1   1 

 0   0   2   2   1 

–1  –2   0   2   1 

–1  –2  –2   0   0 

–1  –1  –1   0   0 

#3 SW/Edge 

 0   0   1   1   1 

 0   0   2   2   1 

–1  –2   1   2   1 

–1  –2  –2   0   0 

–1  –1  –1   0   0 

#4 S/Edge 

 0   1   1   1   0 

 1   2   2   2   1 

 0   0   0   0   0 

#5 S/Edge 

 0   1   1   1   0 

 1   2   2   2   1 

 0   0   1   0   0 

#6 SE/Edge 

 1   1   1   0   0 

 1   2   2   0   0 

 1   2   0  –2  –1 

#7 SE/Edge 

 1   1   1   0   0 

 1   2   2   0   0 

 1   2   1  –2  –1 
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–1  –2  –2  –2  –1 

 0  –1  –1  –1   0 

–1  –2  –2  –2  –1 

 0  –1  –1  –1   0 

 0   0  –2  –2  –1 

 0   0  –1  –1  –1 

 0   0  –2  –2  –1 

 0   0  –1  –1  –1 

#8 E/Edge 

 0   1   0  –1  –0 

 1   2   0  –2  –1 

 1   2   0  –2  –1 

 1   2   0  –2  –1 

 0   1   0  –1  –0 

#9 E/Edge 

 0   1   0  –1  –0 

 1   2   0  –2  –1 

 1   2   1  –2  –1 

 1   2   0  –2  –1 

 0   1   0  –1  –0 

#10 NE/Edge 

 0   0  –1  –1  –1 

 0   0  –2   2  –1 

 1   2   0  –2  –1 

 1   2   2   0   0 

 1   1   1   0   0 

#11 NE/Edge 

 0   0  –1  –1  –1 

 0   0  –2   2  –1 

 1   2   1  –2  –1 

 1   2   2   0   0 

 1   1   1   0   0 

#12 N/Edge 

 0  –1  –1  –1   0 

–1  –2  –2  –2  –1 

 0   0   0   0   0 

 1   2   2   2   1 

 0   1   1   1   0 

#13 N/Edge 

 0  –1  –1  –1   0 

–1  –2  –2  –2  –1 

 0   0   1   0   0 

 1   2   2   2   1 

 0   1   1   1   0 

#14 NW/Edge 

–1  –1  –1   0   0 

–1  –2  –2   0   0 

–1  –2   0   2   1 

 0   0   2   2   1 

 0   0   1   1   1 

#15 NW/Edge 

–1  –1  –1   0   0 

–1  –2  –2   0   0 

–1  –2   1   2   1 

 0   0   2   2   1 

 0   0   1   1   1 

7 × 7 Kernels 

The following table lists the predefined gradient 7 × 7 kernels. 

Table 1. 

#0 W/Edge 

 0  –1  –1   0   1   1   0 

–1  –2  –2   0   2   2   1 

#1 W/Edge 

 0  –1  –1   0   1   1   0 

–1  –2  –2   0   2   2   1 

Kernels

© National Instruments 489



–1  –2  –3   0   3   2   1 

–1  –2  –3   0   3   2   1 

–1  –2  –3   0   3   2   1 

–1  –2  –2   0   2   2   1 

 0  –1  –1   0   1   1   0 

–1  –2  –3   0   3   2   1 

–1  –2  –3   1   3   2   1 

–1  –2  –3   0   3   2   1 

–1  –2  –2   0   2   2   1 

 0  –1  –1   0   1   1   0 

#2 S/Edge 

 0   1   1   1   1   1   0 

 1   2   2   2   2   2   1 

 1   2   3   3   3   2   1 

 0   0   0   0   0   0   0 

–1  –2  –3  –3  –3  –2  –1 

–1  –2  –2  –2  –2  –2  –1 

 0  –1  –1  –1  –1  –1   0 

#3 S/Edge 

 0   1   1   1   1   1   0 

 1   2   2   2   2   2   1 

 1   2   3   3   3   2   1 

 0   0   0   1   0   0   0 

–1  –2  –3  –3  –3  –2  –1 

–1  –2  –2  –2  –2  –2  –1 

 0  –1  –1  –1  –1  –1   0 

#4 E/Edge 

 0   1   1   0  –1  –1   0 

 1   2   2   0  –2  –2  –1 

 1   2   3   0  –3  –2  –1 

 1   2   3   0  –3  –2  –1 

 1   2   3   0  –3  –2  –1 

 1   2   2   0  –2  –2  –1 

 0   1   1   0  –1  –1   0 

#5 E/Edge 

 0   1   1   0  –1  –1   0 

 1   2   2   0  –2  –2  –1 

 1   2   3   0  –3  –2  –1 

 1   2   3   1  –3  –2  –1 

 1   2   3   0  –3  –2  –1 

 1   2   2   0  –2  –2  –1 

 0   1   1   0  –1  –1   0 

#6 N/Edge #7 N/Edge 
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 0  –1  –1  –1  –1  –1   0 

–1  –2  –2  –2  –2  –2  –1 

–1  –2  –3  –3  –3  –2  –1 

 0   0   0   0   0   0   0 

 1   2   3   3   3   2   1 

 1   2   2   2   2   2   1 

 0   1   1   1   1   1   0 

 0  –1  –1  –1  –1  –1   0 

–1  –2  –2  –2  –2  –2  –1 

–1  –2  –3  –3  –3  –2  –1 

 0   0   0   1   0   0   0 

 1   2   3   3   3   2   1 

 1   2   2   2   2   2   1 

 0   1   1   1   1   1   0 

Laplacian Kernels Laplacian Kernels 
The following tables list the predefined Laplacian kernels. 

3 × 3 Kernels 

#0 Contour 4 

  0    –1     0  

 –1     4    –1  

  0    –1     0  

#1 +Image×1 

  0    –1     0  

 –1     5    –1  

  0    –1     0  

#2 +Image×1 

  0    –1     0  

 –1     6    –1  

  0    –1     0  

#3 Contour 8 

 –1    –1    –1  

 –1     8    –1  

 –1    –1    –1  

#4 +Image×1 

 –1    –1    –1  

 –1    9    –1  

 –1    –1    –1  

#5 +Image×2 

 –1    –1    –1  

 –1    10    –1  

 –1    –1    –1  

#6 Contour 12 #7 +Image×1 
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 –1    –2    –1  

 –2    12    –2  

 –1    –1    –2  

 –1    –2    –1  

 –2    13    –2  

 –1    –2    –1  

5 × 5 Kernels 

#0 Contour 24 

 –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1  

 –1    –1    24   –1    –1  

 –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1  

#1 +Image×1 

 –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1  

 –1    –1    25   –1    –1  

 –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1  

7 × 7 Kernels 

#0 Contour 48 

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    48   –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

#1 +Image×1 

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    49   –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  

 –1    –1    –1    –1    –1    –1    –1  
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Smoothing Kernels Smoothing Kernels 
The following tables list the predefined smoothing kernels. 

3 × 3 Kernels 

 0   1   0 

 1   0   1 

 0   1   0 

 0   1   0 

 1   1   1 

 0   1   0 

 0   2   0 

 2   1   2 

 0   2   0 

 0   4   0 

 4   1   4 

 0   4   0 

 1   1   1 

 1   0   1 

 1   1   1 

 1   1   1 

 1   1   1 

 1   1   1 

 2   2   2 

 2   1   2 

 2   2   2 

 4   4   4 

 4   1   4 

 4   4   4 

5 × 5 Kernels 

Table 2. 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   0   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 

 1   1   1   1   1 
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7 × 7 Kernels 

Table 3. 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   0   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

 1   1   1   1   1   1   1 

Gaussian Kernels Gaussian Kernels 
The following tables list the predefined Gaussian kernels. 

3 × 3 Kernels 

 0   1   0 

 1   2   1 

 0   1   0 

 0   1   0 

 1   4   1 

 0   1   0 

 1   1   1 

 1   2   1 

 1   1   1 

 1   1   1 

 1   4   1 

 1   1   1 

 1   2   1 

 2   4   2 

 1   2   1 

 1   4   1 

 4  16  4 

 1   4   1 
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5 × 5 Kernel 

 1   2   4   2   1 

 2   4   8   4   2 

 4   8  16  8   4 

 2   4   8   4   2 

 1   2   4   2   1 

7 × 7 Kernel 

 1   1   2   2   2   1   1 

 1   2   2   4   2   2   1 

 2   2   4   8   4   2   2 

 2   4   8  16  8   4   2 

 2   2   4   8   4   2   2 

 1   2   2   4   2   2   1 

 1   1   2   2   2   1   1 
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